JP3577463B2 - III-nitride semiconductor light emitting diode - Google Patents

III-nitride semiconductor light emitting diode Download PDF

Info

Publication number
JP3577463B2
JP3577463B2 JP2001043142A JP2001043142A JP3577463B2 JP 3577463 B2 JP3577463 B2 JP 3577463B2 JP 2001043142 A JP2001043142 A JP 2001043142A JP 2001043142 A JP2001043142 A JP 2001043142A JP 3577463 B2 JP3577463 B2 JP 3577463B2
Authority
JP
Japan
Prior art keywords
layer
single crystal
nitride semiconductor
light emitting
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001043142A
Other languages
Japanese (ja)
Other versions
JP2002246645A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001043142A priority Critical patent/JP3577463B2/en
Priority to TW90133184A priority patent/TW523940B/en
Priority to US10/076,425 priority patent/US6541799B2/en
Publication of JP2002246645A publication Critical patent/JP2002246645A/en
Application granted granted Critical
Publication of JP3577463B2 publication Critical patent/JP3577463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はSi単結晶を基板とするIII族窒化物半導体発光ダイオード(LED)にあって、単結晶基板に因る発光の吸収を低減した高発光強度のpn接合ヘテロ構造型III族窒化物半導体発光LEDに関する。
【0002】
【従来技術】
従来素子駆動電源の入・出力に優位となる導電性並びに個別の素子に裁断するに利便な劈開性を呈する代表的な半導体基板材料として、珪素(Si)単結晶が周知である。最近では、珪素単結晶(シリコン)を基板としてIII族窒化物半導体発光ダイオード(LED)を構成する技術が開示されている(Electron.Lett.,33(23)(1997)、1986〜1987頁参照)。
【0003】
Si単結晶を基板とするIII族窒化物半導体LEDには、例えば窒化アルミニウム・ガリウム(AlGa1−aN:0≦a≦1)と窒化ガリウム・インジウム(GaIn1−aN:0≦a≦1)から構成されるpn接合型ダブルヘテロ(DH)構造の発光部が備えられている(Appl.Phys.Lett.,72(4)(1998)、415〜417頁参照)
【0004】
基板となるSi単結晶と発光部を構成するIII族窒化物半導体とは、格子不整合の関係にある。従来技術としてはこの単結晶基板とLED発光部との間に不整合を緩衝するために中間層を設ける提案が数多くなされている。
例えば格子不整合性を緩衝して良質の発光部構成層を得るために窒化アルミニウム(AlN)からなる中間層を設ける提案がある。(上記のAppl.Phys.Lett.,及び特開平10−242586号公報参照)。
【0005】
また、リン化ガリウム(GaP)やSiの如くの閃亜鉛鉱型(zinc−blend)単結晶基板上にリン化硼素(BP)を緩衝層として設ける技術が知られている(特開平2−275682号;特開平2−288371号;特開平2−288388号各公報明細書参照)。
さらに、Si単結晶基板上にチタン(Ti)等の金属膜を中間層として設ける提案もある(特開2000−261033号公報明細書参照)。
さらにまた面方位を{111}とするSi単結晶基板上に中間層として窒化チタン(TiN)層或いはコバルト(Co)等の窒化物層を配置する技術も開示されている(特開2000−286449号公報明細書参照)。
【0006】
一方、Si単結晶の禁止帯幅は約1.1エレクトロンボルト(単位:eV)である(寺本 巌著、「半導体デバイス概論」(1995年3月30日、(株)培風館発行初版、28頁参照)。この禁止帯幅(band gap)は、例えば、青色帯の発光に対応する遷移エネルギーと比較して半分以下と小さい。このため、Si単結晶を基板として構成したLEDでは、III族窒化物半導体発光部より放射される短波長の発光がSi単結晶基板に吸収されてしまう欠点がある。即ち、Siを基板材料とするIII族窒化物半導体LEDでは、Si単結晶基板に因る発光の吸収が避けられないため、高輝度のIII族窒化物半導体LEDを得られ難いという問題がある。
【0007】
Siを基板とするIII族窒化物半導体LEDの発光強度を高めるために、Si基板と発光部との中間に発光を外部へ反射させるためのブラッグ(Bragg)反射(DBR)構造層を設ける技術手段が公知となっている(Mat.Res.Soc.Symp.Proc.,Vol.449(1997)、79〜84頁参照)。従来例のDBR層は、アルミニウムの組成比(=a)を相違するAlGa1−aN(0≦a≦1)薄層を反復して重層させた周期的積層構造から構成されている。DBR層からの発光の反射率は、積層する周期単位を増すことにより増大させられるが、積層操作が煩雑となる問題点がある。
【0008】
なお従来より、LEDの基板を除きLEDの発光強度を向上することは数多く提案されてはいるが、単にLEDより基板部を除去するとLEDの機械的強度を損なうことが避けられないためリーズナブルな対応策が求められる。このためより簡便な技術手法を利用して十分な機械的強度を有する高発光強度のIII族窒化物半導体発光LEDを得る方法の開発が要望されていた。
【0009】
【発明が解決しようとする課題】
本発明は、Si単結晶を基板とするIII族窒化物半導体LEDにあって、LEDの機械的強度を失うことなく、LEDよりSi単結晶基板を除去して、発光部からの発光がSi基板に吸収される度合いを低減し、高輝度のSi基板系III族窒化物半導体LEDをもたらす技術手段の開発を目的とする。
【0010】
【課題を解決するための手段】
即ち本発明は、
[1] 導電性の珪素(Si)単結晶基板の表面上に、中間層、III族窒化物半導体から構成されるpn接合型ヘテロ接合構造の発光部、該単結晶基板の裏面に裏面電極、表面側の発光部上に表面電極を設けてなるIII族窒化物半導体発光ダイオードにおいて、中間層がリン(P)を含むIII−V族化合物半導体膜であり、且つ上記単結晶基板裏面の裏面電極以外の領域の珪素(Si)単結晶基板を除去して光を取り出すための穿孔部を形成し、該穿孔部の底面に前記中間層を露出させたことを特徴とするIII族窒化物半導体発光ダイオード、
【0011】
[2] 導電性の珪素単結晶基板の裏面に、複数の光を取り出すための穿孔部が設けられている、ことを特徴とする上記[1]に記載のIII族窒化物半導体発光ダイオード、
[3] 基板が{111}−結晶面を表面とする導電性の{111}−珪素単結晶であり、{111}−単結晶を除去して露出させた上記の光を取り出すための穿孔部の底面が、リン化硼素(BP)から構成されている、ことを特徴とする上記[1]または[2]に記載のIII族窒化物半導体発光ダイオード、
【0012】
[4] 光を取り出すための穿孔部の底面が、{111}−結晶面を表面とするリン化硼素から構成されている、ことを特徴とする上記[1]に記載のIII族窒化物半導体発光ダイオード、
[5] 裏面電極を設ける珪素単結晶基板の裏面から、光を取り出すための穿孔部の底部に至る深さが、80μm以上で300μm以下である、ことを特徴とする上記[1]乃至[4]の何れかに記載のIII族窒化物半導体発光ダイオード、
【0013】
[6] 中間層がMN1-XX(式中、Mは硼素以外のIII族元素を示し、Xは0<X≦1の範囲である。)から構成したものである上記[1]に記載のIII族窒化物半導体発光ダイオード、
[7] 中間層がBX1-XP(式中、Mは硼素以外のIII族元素を示し、Xは0<X≦1の範囲である。)から構成したものである上記[1]に記載のIII族窒化物半導体発光ダイオード、および
[8] 中間層が、III族構成元素またはV族構成元素の濃度に勾配を付して組成勾配層としたものである上記[6]または[7]に記載のIII族窒化物半導体発光ダイオード、を開発することにより上記の課題を解決した。
【0014】
【発明の実施の態様】
本発明のIII族窒化物半導体発光ダイオード(LED)は、面方位を{100}或いは{111}または{110}等とする導電性のSi単結晶を基板として構成できる。基板としては抵抗率が10Ω・cm以下、好ましくは10Ω・cm以下の導電性を有するものであればn形、p形の何れのSi単結晶であっても利用できる。Si基板の導電性を利用して裏面にオーミック(Ohmic)電極を敷設して簡易にLEDを構成することが必要であるため、高抵抗のアンドープSi単結晶は基板として好適には利用できない。
{111}の結晶面には{100}等の結晶面に比較してSi原子が稠密に存在しているため、面方位を{111}としたSi単結晶を基板として利用したときは、中間層からのそれを構成する元素のSi単結晶基板への拡散、侵入をより抑止できるので化学量論的にも均衡のとれた中間層とするに利便である。
【0015】
Si単結晶基板裏面のオーミック電極(裏面電極=第1電極)を敷設する領域にあるSi単結晶は残存させ、それ以外の領域のSi単結晶材料は公知のエッチング技法を利用して除去する。裏面電極(第1電極)を形成する領域に限定して基板材料を残存させることとすれば、基板全体を除去する場合に比較して、残存する基板材料の保有する機械的強度を利用してより強固にLEDを支持する効果がある。また、導電性の基板材料を残存させることにより、その上には低接触抵抗のオーミック性に優れる裏面電極(第1電極)がもたらされる効果がある。
【0016】
例えば、塩素(Cl)系気体を利用してプラズマエッチング法で除去するか、または例えば、弗酸(HF)と硝酸(HNO3)との混合液を使用する湿式エッチング技法に依り除去しても良い。
即ち、上記の裏面電極を積層した以外の領域に存在するSi単結晶を選択的に除去する際には、公知のフォトリソグラフィーを利用した選択パターニングを介して実行できる。Si単結晶を除去する領域は、必要とされる裏面電極以外の領域を可及的広範囲とするのが望ましい。Si単結晶を除去した領域の断面積を広くする程、Si基板材料に因る発光部からの発光の吸収が避けられるために、外部へ透光できる面積が増大し、発光強度の向上に寄与できる。
【0017】
選択パターニングを施す領域の断面形状については、上記の理由からエッチング加工穿孔の容易性と断面積の大きさ並びにIII族窒化物半導体LEDの機械的強度の許容する範囲内で任意の形状を選択することができる。例えば図1に示すような、裏面電極12以外のSi単結晶11の裏面領域に円形の穿孔部13を唯一設けてなるLEDの基板11の裏面11b側の構成がある。該円形の穿孔部は複数個配置することもできる。1例としてSi単結晶基板11の裏面11bに複数の円形の穿孔部13を設けた例を図2に示す。図1及び図2に例示した穿孔部13の水平断面形状は円形としたが、楕円形或いは円の一部をなす様な扇形等、簡便に選択パターニングが達成され、エッチング加工を果たせる円形状であれば好適である。
【0018】
何れの形状にしても、発光強度の増大には、穿孔部の断面の形状による影響よりも穿孔部の合計の断面積の面積に比例して発光強度が増加する。このため、Si単結晶の除去部分の断面積を、基板の除去に因って発光部の機械的支持力が極端に低下しない程度にできるだけ広くすることが重要である。
【0019】
また穿孔部の断面形状を例えば正方形、長方形、菱形、或いは平行四辺形などの方形とする穿孔部を設けても良い。何れも、上記の実施形態に記した円形状の穿孔部と同様に、穿孔部の断面形状をエッチング加工に依って得られ易い形状としている。
図3に{111}−Si単結晶基板11の裏面11bに断面形状を長方形とする帯状の穿孔部13を設けた場合の構成を例示する。断面形状を方形とする穿孔部を設けるにあっても、穿孔部の総断面積を、基板の除去に因って発光部の機械的支持力の極端な低下を招かない程度に広大とするのが肝要である。Si基板を除去した断面積の拡張を期して、複数の方形状の穿孔部を設置することができる。
【0020】
また穿孔部をいくつかの形状を連結させた帯状の穿孔部を設けることもできる。円形状と方形状の穿孔部を連結させて帯状の穿孔部としても支障はない。方形状と円形状の穿孔部とを図4に例示する如く組み合わせれば、方形状の穿孔部を単に設ける場合に比較して、より基板の除去面積を拡大でき、発光を透過できる面積の拡大が果たせる。
【0021】
上記した何れの水平断面形状の穿孔部であっても、その周囲には、基板裏面電極としてオーミック電極を配置する。p形のSi基板には、金(Au)等の金属被膜を被着させて裏面p形オーミック電極を形成する。n形のSi基板については、例えば、アルミニウム(Al)またはアルミニウム・アンチモン(Al−Sb)合金などからn形オーミック電極を構成できる。裏面電極は、Si基板の裏面上の互いに孤立した位置に複数設置することもできるが、互いに電気的に連続した一体とする様に設けるのが望ましい。
【0022】
本発明のIII族窒化物半導体LEDにおける穿孔部は、その底面を上記の中間層の結晶面とする。即ち、穿孔部を中間層を構成する部位(必要な強度を保持できる地点)に到達した時点で停止して、中間層の構成層を穿孔部の底面として露呈させる。この場合には中間層を底面とする穿孔部の深さはSi単結晶基板の厚さと略同等となる。また、中間層上に設けられた発光部層の構成層を穿孔部の底面として構成することもできる。しかし、発光部構成層を底面とすべく穿孔を進行させると、発光強度は増大するが、LEDの機械的強度を支持する中間層が弱体化するためLEDが全体として薄層化されるため機械的強度が劣化し、発光部を機械的に支持するに支障を来すこととなる。従って基板をなすSi単結晶の穿孔部を発光部の下方の中間層で停止して、底面を中間層の構成層とすれば発光部を機械的に支持するに好都合な構成となる。
【0023】
底面を中間層とする穿孔部は、Si単結晶基板表面上に中間層を積層した後、中間層上に単一(single)または2重(double)異種(へテロ)接合の発光部を設ける以前に形成することができる。しかし、この場合も穿孔部の形成過程を積層工程の中途に挿入することが必要となるため積層工程が不連続となり工程が冗長となる。また発光部を形成した後に形成することもできる。
一方Si単結晶基板の厚さが薄いほど、より簡単に穿孔部を形成することができる。従ってSi単結晶基板上表面に積層構造体(pn接合型へテロ構造の発光部)を成長させた後、Si単結晶基板の裏面に研磨加工を行い厚さを減じた後に穿孔すると簡単に穿孔部を形成することができる。
【0024】
またラッピング(lapping)等の研削手段によりSi単結晶基板の厚さを減少させて積層構造体全体の厚みを減少させることにより、個別素子とするための裁断が容易に行える利点がある。
Si単結晶基板裏面の研削量を極端に大とし、徒に基板の厚さを減ずると、穿孔部の形成および個別素子への裁断は容易となるが、LEDを機械的強度を支持するには不十分となる。残存させるSi基板の厚さはおおよそ300〜80μm、好ましくは250〜100μmとするのが好適である。
【0025】
中間層を窒化チタン(TiN)、窒化ジルコニウム(ZrN)等の高融点金属に窒化物あるいはアルミニウムや金などの単体金属から構成する手段も考慮される。
しかし、単体金属膜では発光部よりの発光が吸収される度合いが顕著に大きいため、中間層を金属膜から構成すると、中間層で発光が吸収されあるいは遮蔽され、穿孔部より外部へ放出される発光の強度が極度に低下する不都合が発生する場合がある。
【0026】
また高融点金属の窒化物は窒素と金属元素との化学量論的な当量比に依存して着色する場合がある。従って金属窒化物材料を用いて中間層を構成するとその着色の程度により穿孔部から取り出せる発光の強度が不安定となる場合がある。III族窒化物半導体LEDの発光部を形成する一般的なIII族窒化物半導体とほぼ同等の格子定数を有する単体金属あるいは金属窒化物は殆どない。このため、単体金属あるいは金属窒化物からなる中間層は、格子ミスマッチにより結晶性に優れる発光部を構成するIII族窒化物半導体層を積層するには必ずしも好適とはならない。一方中間層を半導体材料から構成すると、上記のごとく金属材料などで避けられない中間層による発光の吸収を低減できる効果が得られる。
【0027】
従って、リンを含むIII−V族化合物半導体からは、砒素(As)を構成元素とするIII−V族化合物半導体に比較して機械的強度に優れる強固な中間層を構成できる。また、砒化硼素(BAs)の融点は約1000℃であるのに対し、リン化硼素(BP)のそれは約3000℃と高い(寺本 巌著、「半導体デバイス概論」(1995年3月30日、(株)培風館発行初版、28頁参照)。このため、リン含有III−V族化合物半導体からは、上層のIII族窒化物半導体層を堆積する際の約1000℃を越える高温での工程にも耐熱性を発揮する中間層を構成できる利点がある。
【0028】
リン含有III−V族化合物半導体には、リン化硼素(BP)、窒化リン化ガリウム(GaN1−X:0<X≦1)、窒化リン化アルミニウム(AlN1−X:0<X≦1)、窒化リン化インジウム(InN1−X:0<X≦1)およびリン化硼素アルミニウム(BAl1−XP:0<X≦1)、リン化硼素ガリウム(BGa1−XP:0<X≦1)、及びリン化硼素インジウム(BIn1−XP:0<X≦1)等が例示できる。中間層の伝導形は基板とする導電性単結晶の伝導形に合致させるのが普通である。
【0029】
Si単結晶とは格子定数を異にする例えば、リン化硼素(BP)から緩衝層構成する場合、比較的低温で成長させた緩衝層(低温緩衝層)は、Si単結晶と多層構造体の構成層との格子ミスマッチ(mismatch)を緩和して結晶性に優れる構成層をもたらすのに有効に作用する。例えば、250℃以上500℃以下の比較的低温で成膜したBP低温緩衝層は、約16.5%に及ぶSi単結晶との格子ミスマッチ(庄野 克房著、「半導体技術(上巻)」((財)東京大学出版会、1992年6月25日発行9刷、77頁参照)を緩和して、ミスフィット転位等の結晶欠陥密度の少ない良質の多層構造体の構成層をもたらすに効果を奏する(米国特許US−6,069,021号参照)。
【0030】
中間層をIII族構成元素またはV族構成元素の濃度勾配を付した結晶層から構成すると、Si単結晶基板と上層の例えば、III族窒化物半導体層との格子ミスマッチを緩和するに好都合となる。例えば、Si単結晶基板に接合する界面でのインジウム(In)組成比を0.67とし、表面に向けてインジウム組成比を減少させたリン化硼素・インジウム(BIn1−XP:0<X≦1)層からは、Si単結晶との格子ミスマッチを緩和しつつ、上層として結晶性に優れる例えば、窒化リン化ガリウム(GaN1−X:0<X≦1)結晶層をもたらす中間層が構成できる。格子ミスマッチに起因する転位等の結晶欠陥の少ない結晶性に優れるIII族窒化物半導体層をもたらせる組成勾配を付した中間層は、窒化リン化アルミニウム(AlN1−X:0<X≦1)、窒化リン化インジウム(InN1−XPX:0<X≦1)等から構成できる。
【0031】
本発明のIII族窒化物半導体LEDの中間層における組成勾配層は、例えば窒化リン化ガリウム(GaN1−X:0<X≦1)等の組成式MN1−X(0<X≦1、MはIII族元素を表す。)混晶であって、構成元素である窒素(N)以外のリン(P)の組成比(=X)を層厚の増加方向に減少させ、それに対応して窒素組成比(=1−X)を増加させて構成する。組成の勾配様式は、直線状、曲線状、或いは段階状等とすることができる(特開2000−22211号公報明細書参照)。組成勾配を有する中間層は、同層の成膜時に成長反応系内に添加する窒素、リンの供給源の添加量を経時的に変化させることにより形成できる。V族元素の組成に勾配を付した中間層は、Si単結晶基板との格子ミスマッチを緩和して結晶性に優れるIII族窒化物半導体層をもたらす作用を有する。
【0032】
また、中間層はIII族構成元素の組成に勾配を付したリン含有III−V族化合物半導体結晶層から構成できる。特に、III族構成元素として硼素(B)を含む例えば、リン化硼素ガリウム(BGa1−XP:0<X≦1)、リン化硼素インジウム(BIn1−XP:0<X≦1)等の組成式B1−XP(0<X≦1、MはIII族元素を表す。)で表記されるリン化硼素(BP)系混晶からSi単結晶基板との格子ミスマッチを緩和するに有効な中間層を構成できる。複数のIII族構成元素と唯一のV族構成元素から構成されるIII−V族化合物半導体では、硼素またはその他のIII族構成元素の組成に勾配を付して中間層を構成する。
【0033】
特に、Si単結晶を基板とする場合にあって、層厚の増加方向に硼素(B)の組成比(=X)を増加させ、逆にガリウム(Ga)またはインジウム(In)等の他のIII族構成元素の組成比を減ずる様に組成勾配を付した組成勾配層は中間層として好適に利用できる。
【0034】
例えば、Si単結晶基板との接合界面での硼素組成比(=X)を0.02とし、表面での硼素組成比を1.0とした BGa1−XPは、Si単結晶(格子定数=5.431Å)基板に格子整合し、且つ窒素組成比を0.97とする窒化リン化ガリウム(GaN0.970.03:格子定数=4.538Å)にも格子整合を果たす中間層として有用となる。
III族元素の組成に勾配を付した中間層は、例えば、MOCVD法による中間層の成膜時に、反応系へのIII族構成元素原料となす有機金属化合物の供給量を経時的に変化させることにより形成できる。
【0035】
本発明のIII族窒化物半導体LEDにおいて、導電性の珪素(Si)単結晶基板の表面上に半導体からなる中間層を介して積層されたIII族窒化物半導体導体から構成されるpn接合型ヘテロ接合構造の発光部を含み、該単結晶基板の裏面に裏面電極と表面側の発光部上に表面電極とを備えてなるIII族窒化物半導体発光ダイオードに於いて、上記単結晶基板裏面領域の裏面電極以外の領域の上記Si単結晶基板を除去して形成した穿孔部は、発光部よりの発光を外部に取り出す部分を構成する。
【0036】
本発明III族窒化物半導体発光ダイオードの穿孔部の底面を構成する中間層は、穿孔部上に設けられた発光部を強固に支持する作用を有する。
特に、本発明の穿孔部の底面のなす面方位を{111}面とした中間層は、中間層を構成する元素のSi単結晶基板への拡散侵入を抑制するとともに、上部に設けられた発光部をより強固に支持する部分を構成する。
【0037】
本発明III族窒化物半導体発光ダイオードのリン(P)を含むIII−V族化合物半導体膜から構成される中間層は、Si単結晶基板の裏面に穿孔を施すに際し穿孔加工に伴う損傷、浸食が発光部へ及ぶのを防止する耐化学性等に優れる中間層を形成する。
【0038】
特に、III族構成元素またはV族構成元素の組成に勾配を付した組成勾配層から構成した中間層は、Si単結晶基板と上層のIII族窒化物半導体層との格子ミズマッチを緩和して、結晶欠陥密度の小さい良質のIII族窒化物半導体層をもたらすと共に、発光部を構成するこれらIII族窒化物半導体層を強固に支持する作用を有する。
【0039】
低温緩衝層および高温緩衝層からなる中間層を有するIII族窒化物半導体LEDは、例えば次の方法により製造することができる。
基板材料としてn形またはp形{111}−Si単結晶基板を使用し、その上に設ける高温緩衝層より低温で形成される低温緩衝層および前記低温緩衝層上に設けた低温緩衝層より高温で形成される高温緩衝層からなる中間層を設ける。低温緩衝層としては、MOCVD手段により約250〜550℃において低温成長させた非晶質を主体とするリン化硼素層を成長させ、次いで約750〜1200℃においてMOCVD手段により単体のリン化硼素単結晶層を成長させる。高温緩衝層はLEDの機械的強度を保持させるためのものであり、比較的機械的強度に優れたIII−V族化合物半導体から選ばれ、低温緩衝層は基板と高温緩衝層の積層を補助する化合物層を使用する。
【0040】
中間層の上には、下部クラッド層、発光層および上部クラッド層からなる発光部を積層する。下部クラッド層は高温緩衝層に格子整合するn形またはp形III族窒化物半導体結晶層、例えばBP高温緩衝層に整合するGaN0.970.03結晶層を850〜1200℃において設ける。その上に上記下部クラッド層よりも低温でn形またはp形のIII族窒化物半導体層を成膜する。この発光層は量子井戸構造であっても良い。上部クラッド層は下部クラッド層とは反対の伝導系を呈するp形またはn形のIII族窒化物半導体層とする。次にエッチングした基板残部に第1導電形電極を上部クラッド層に第2導電形電極を設けてIII族窒化物半導体LEDとする。
【0041】
なお穿孔部は、基板に中間層を積層した以降、基板と中間層および発光部を積層した後の間の何れの工程において穿孔を行っても良い。なお穿孔に先立ち、Si基板裏面をラッピングして約300〜80μmの厚さに研磨した後、フッ酸および硝酸の混合液を用い約10〜30℃で湿式エッチングにより穿孔することが好ましい。
【0042】
また中間層として組成勾配緩衝層を有するIII族窒化物半導体LEDは、例えば次の方法により製造することができる。
基板材料としてn形またはp形{111}−Si単結晶基板を使用し、この基板上にリン化硼素ガリウムをMOCVD手段により層厚の増加方向に硼素含有量を増加した組成勾配緩衝層を成膜する。成長時にはSi単結晶と同じ格子定数が得られるように硼素濃度を規制し、最終時にはその上層になる下部クラッド層と同じ程度の格子定数が得られるようにガリウム源を減量する。組成勾配緩衝層はおよそ600〜1200℃の温度で成長することができる。成長の際、温度は一定に保っても良いし、途中で変化させても良い。
この組成勾配緩衝層上に下部クラッド層、発光層および上部クラッド層からなる発光部を積層する。
【0043】
下部クラッド層は、組成勾配層に格子整合するp形III族窒化物半導体層であり、MOCVD手段により約850〜1200℃で成長させる。次いで発光層はクラッド層と格子整合するp形III族窒化物半導体層であり、該層は量子井戸構造であっても良い。上部クラッド層はn形III族窒化物半導体結晶層であり、MOCVD手段により成膜される。
第1導電形電極はアルミニウムまたはその合金を、第2導電形電極は金またはその合金を使用する。
以下実施例により具体的に説明する。
【0044】
【実施例】
(実施例1)
裏面に円形の穿孔部を設けたSi単結晶を基板としたIII族窒化物半導体LEDを例にして本発明を具体的に説明する。図5に本実施例に係わるLED10の断面構造を模式的に示す。
【0045】
基板101には、硼素(B)ドープp形(100)−Si単結晶を用いた。基板101上にはリン化硼素(BP)からなる低温緩衝層102を堆積した。低温緩衝層102はトリエチル硼素((CB)/ホスフィン(PH)/水素(H)系常圧MOCVD法により、350℃で成長させた。
緩衝層102の層厚は約14nmとした。低温緩衝層102の表面には、上記のMOCVD気相成長手段を利用して、950℃でマグネシウム(Mg)をドーピングしたp形BP層を高温緩衝層103として積層した。マグネシウムのドーピング源にはビスシクロペンタジエニルマグネシウム(分子式:bis−(CMg)を用いた。高温緩衝層103のキャリア濃度は約7×1018cm−3とした。層厚は約350nmとした。
【0046】
高温緩衝層103上には、リン(P)組成比を0.03(=3%)とするマグネシウムドープp形窒化リン化ガリウム(組成式:GaN0.970.03)層を下部クラッド層104として積層した。GaN0.970.03層は、トリメチルガリウム((CHGa)/PH3/アンモニア(NH)/H系常圧MOCVD法により950℃で成長させた。立方晶となったp形GaN0.970.03層のキャリア濃度は約8×1017cm−3とし、層厚は約85nmとした。
【0047】
下部クラッド層104上には、n形窒化ガリウム・インジウム(組成式GaIn1−XN:0≦X≦1)からなる発光層105を積層させた。発光層105をなす珪素(Si)ドープGaIn1−XN層は、(CHGa/トリメチルインジウム((CHIn)/ジシラン(Si)/NH/H系常圧MOCVD法により、850℃で成長させた。発光層105の平均的なインジウム(In)組成比は0.10であった。発光層105の層厚は約80nmとした。キャリア濃度は約3×1018cm−3に設定した。
【0048】
Ga0.90In0.10N発光層105上には、アルミニウム(Al)組成に勾配を付した珪素(Si)ドープn形窒化アルミニウム・ガリウム混晶(AlγGa1− γN)層を上部クラッド層106として積層した。Al組成比(=γ)は、層厚の増加方向に0.2から0(零)に単調に略直線的に減少させた。層厚は200nmとした。
【0049】
上記のp形GaN0.970.03下部クラッド層104、n形Ga0.90In0.10N発光層105、及びn形AlγGa1− γN組成勾配層からなる上部クラッド層106からpn接合型ダブルヘテロ接合構造の発光部107を構成した。
【0050】
公知のフォトリソグラフィー技術と選択エッチング技術を利用して、図6に示す如く、p形Si単結晶基板101の裏面の中央部を、底面の直径を約150μmとする中空筒状に穿孔した。穿孔部109は弗酸(HF)と硝酸(HNO)の混合液によりSi単結晶をエッチングして除去して形成した。穿孔部109の深さは基板101の層厚に相当する約300μmとした。エッチングは穿孔部109の底面109aにBP低温緩衝層102が露出する迄、進行させた。穿孔部109の周囲に残置させたSi単結晶基板101上には、金(Au)被膜からなるp形オーミック電極110を配置した。上部クラッド層106表面の中央には、金(Au)からなる円形のオーミック電極108を配置した。n形オーミック電極108の直径は約130μmとした。穿孔部109の円形底面109aの中心と表面オーミック電極108の水平形状の中心とは合致させた。
【0051】
両オーミック電極108,110間にLED駆動用電流を通流した。電流−電圧(I−V特性)は発光部107の良好なpn接合特性に基づく正常な整流特性を示した。I−V特性から求めた順方向電圧(所謂、Vf)は約3V(順方向電流=20mA)となった。また、逆方向電圧は約15V(逆方向電流=10μA)となった。順方向に20ミリアンペア(mA)の動作電流を通流した際には、発光中心波長を約470nmとする青色光が出射された。発光スペクトルの半値幅は約18nmであった。一般的な積分球を利用して測定されるチップ状態での発光強度は約18マイクロワット(μW)となり、高発光強度のIII族窒化物半導体発光素子が提供された。
【0052】
(実施例2)
リン(P)ドープn形{111}−Si単結晶基板201上に、ジボラン(分子式:B)/(CHGa/PH/H系減圧MOCVD法で650℃で、硼素(B)組成比(=X)を層厚の増加方向に増加させたリン化硼素・ガリウム(組成式:BGa1−XP)組成勾配層からなる緩衝層202を積層させた。成長時の反応系の圧力は約1.3×10パスカル(単位:Pa)に設定した。緩衝層202の層厚は0.8μmとした。BGa1−XP組成勾配層202のSi単結晶201との接合面での硼素(B)組成比(=X)は、Si単結晶と同一の格子定数(=5.431Å)が得られる0.02とした。また、表面での硼素組成比は、上層のGaN0.970.03下部クラッド層と同一の格子定数(=4.538Å)を獲る1.0とした。硼素組成比(=X)は緩衝層202の層厚の増加方向に直線的に増加させた。硼素組成比はMOCVD反応系への硼素源としてのジボランの供給量を経時的に増量させ、逆にガリウム(Ga)源としてのトリメチルガリウム((CHGa)の供給量を減量させて変化させた。BGa1−XP組成勾配層202の成長時には、ジシラン(Si)−H混合ガスを使用して珪素(Si)をドーピングした。
【0053】
Ga1−XP組成勾配緩衝層202上には、リン(P)組成比を0.03(=3%)とする珪素(Si)ドープn形窒化リン化ガリウム(組成式:GaN0.970.03)層を下部クラッド層204として積層した。GaN0.970.03層は、トリメチルガリウム(分子式:(CHGa)/PH/NH/H系常圧MOCVD法により950℃で成長させた。立方晶のn形GaN0.970.03層のキャリア濃度は約8×1017cm−3とし、層厚は約85nmとした。
【0054】
下部クラッド層204上には、n形窒化ガリウム・インジウム(組成式GaIn1−XN:0≦X≦1)からなる発光層205を積層させた。発光層205をなす珪素(Si)ドープGaIn1−XN層は、(CHGa/(CHIn/Si/NH/H系常圧MOCVD法により、850℃で成長させた。発光層205の平均的なインジウム(In)組成比は0.10とした。発光層205の層厚は約80nmとし、キャリア濃度は約3×1018cm−3に設定した。
【0055】
Ga0.90In0.10N発光層205上には、亜鉛(Zn)とマグネシウム(Mg)を共にドーピングしたp形窒化ガリウム混晶(GaN)層を上部クラッド層206として積層した。
【0056】
上記のn形GaN0.970.03下部クラッド層204、n形Ga0.90In0.10N発光層205、及びp形GaN層からなる上部クラッド層206からpn接合型ダブルヘテロ接合構造の発光部207を構成した。図7に本実施例の積層構造体の断面構造を模式的に示す。
【0057】
次ぎに、{111}−Si単結晶基板201の裏面を研磨して、基板の厚さを約350μmから約150μmと薄くした。然る後、公知のフォトリソグラフィー技術と選択エッチング技術を利用して、n形Si単結晶基板201の裏面の中央部に図8に示す如くの長方形状の穿孔部209を設けた。穿孔部209の短辺の長さは200μmとし、長辺は250μmとした。穿孔部209は、塩素系の気体を用いたプラズマエッチング手段を利用してSi単結晶201を除去して形成した。穿孔部209の基板201裏面からの深さは約150μmであった。穿孔部209の底面209aには、面方位を{111}とするSi単結晶を基板201として利用することに依り得た{111}−BGa1−XP緩衝層202の表面を露呈させた。穿孔部209を囲繞する様に残置させたSi単結晶の上には、金(Au)からなるn形オーミック電極208を設けた。
【0058】
上部クラッド層206の表面の略全面には、金(Au)と酸化ニッケル(NiO)との重層構造の厚膜からなるp形オーミック電極210を形成した。金被膜の厚さは約2μmとし、酸化ニッケルの厚さは約0.5μmとした。
【0059】
上記の如く構成したLED20のp形オーミック電極210側を支持体に導通させて接着した後、穿孔部209を通過して外部に出射される発光の強度を測定した。このマウント状態で一般的な積分球を利用して測定された発光強度は約16マイクロワット(μW)となり、高発光強度のIII族窒化物半導体発光素子が提供された。発光の中心波長は約470nmであり、発光スペクトルの半値幅は約20nmとなった。順方向電圧(Vf)は約3V(順方向電流=20mA)となった。また、逆方向電圧は約15V(逆方向電流=10μA)であった。
【0060】
【発明の効果】
本発明は、導電性の珪素(Si)単結晶基板の表面上に、金属或いは半導体からなる中間層を介して積層された、III族窒化物半導体から構成されるpn接合型ヘテロ接合構造の発光部を少なくとも含み、該単結晶基板の裏面に裏面電極と、表面側の発光部上に表面電極とを備えてなるIII族窒化物半導体発光ダイオードに於いて、単結晶基板裏面に部分的に単結晶基板を除去して形成した穿孔部を設けると共に、穿孔部の周囲の残置した導電性のSi単結晶基板上にオーミック電極を配置してLEDを構成することとしたので、LEDとしての機械的強度を失うことなくSi単結晶基板に因る発光の吸収を完全にまたは大幅に低減して、LEDの発光を穿孔部を通過させて外部に取り出せるため、発光強度に優れるIII族窒化物半導体LEDを提供できる。
【0061】
またこの場合、穿孔部の底面が中間層の結晶面が露呈する様にSi単結晶を確実に除去するときは、穿孔部に於けるSi単結晶に因る発光の吸収を完全に回避して、発光強度の低下を来さずに発光を外部に取り出すことができるため、高発光強度のIII族窒化物半導体LEDを提供できる。
また穿孔部のSi単結晶を確実に除去して、底面に中間層の{111}結晶面を露呈させる構成としたときは、Si単結晶基板に因る発光の吸収を回避できると共に、Si単結晶基板を除去したことに因る発光部の支持力の低下を補完して、強固に保持された発光部を備えた基板除去型のIII族窒化物半導体LEDを提供できる。
【0062】
特に、リン(P)を含むIII−V族化合物半導体膜から中間層を構成する場合には砒素を構成元素とするIII−V族半導体に比し、機械的強度もすぐれ、また融点も極めてたかいところから、発光部を強固に支持でき、且つ耐熱性に優れる中間層を備えたIII族窒化物半導体LEDを構成できる。
さらに中間層としてIII族構成元素またはV族構成元素の組成に勾配を付した組成勾配層とすることにより、Si単結晶と上層のIII族窒化物半導体層の双方に格子整合する中間層を構成できるため、発光層との界面における格子不整合性に起因する結晶欠陥密度を減少できるため良好な結晶性のIII族窒化物半導体層を得ることができ、高発光強度のIII族窒化物半導体LEDがもたらされる。
【図面の簡単な説明】
【図1】穿孔部の穿孔形状を例示する平面模式図である。
【図2】穿孔部の穿孔形状を例示する平面模式図である。
【図3】穿孔部の穿孔形状を例示する平面模式図である。
【図4】穿孔部の穿孔形状を例示する平面模式図である。
【図5】実施例1に記載のLEDの断面模式図である。
【図6】実施例1に記載のLEDの裏面の構造を示す模式図である。
【図7】実施例2に記載のLEDの断面模式図である。
【図8】実施例2に記載のLEDの裏面の構造を示す模式図である。
【符号の説明】
10、20 III族窒化物半導体LED
11、101、201 Si単結晶基板
11b 基板裏面
12 裏面電極
13 穿孔部
102 リン化硼素(BP)低温緩衝層
103 BP高温結晶層
202 組成勾配緩衝層
104、204 下部クラッド層
105、205 発光層
106、206 上部クラッド層
107、207 発光部
108、208 n形オーミック電極
109,209 穿孔部
109a、209a 穿孔部底面
110、210 p形オーミック電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a group III nitride semiconductor light emitting diode (LED) using a Si single crystal as a substrate, and a pn junction heterostructure type III nitride semiconductor having a high luminous intensity and reduced light absorption due to the single crystal substrate. It relates to a light emitting LED.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, silicon (Si) single crystal is well known as a typical semiconductor substrate material exhibiting conductivity which is superior to input / output of an element driving power supply and cleavage which is convenient for cutting into individual elements. Recently, a technique for forming a group III nitride semiconductor light emitting diode (LED) using a silicon single crystal (silicon) as a substrate has been disclosed (see Electron. Lett., 33 (23) (1997), pp. 1986-1987). ).
[0003]
Group III nitride semiconductor LEDs using a Si single crystal as a substrate include, for example, aluminum gallium nitride (AlaGa1-aN ≦ a ≦ 1) and gallium indium nitride (GaaIn1-aA light emitting portion having a pn junction type double hetero (DH) structure composed of N: 0 ≦ a ≦ 1 is provided (see Appl. Phys. Lett., 72 (4) (1998), pp. 415-417). )
[0004]
The Si single crystal serving as the substrate and the group III nitride semiconductor forming the light emitting portion have a lattice mismatch relationship. As the prior art, many proposals have been made to provide an intermediate layer between the single crystal substrate and the LED light emitting portion to buffer the mismatch.
For example, there is a proposal to provide an intermediate layer made of aluminum nitride (AlN) in order to buffer lattice mismatch and obtain a high-quality light-emitting portion constituting layer. (See Appl. Phys. Lett. And JP-A-10-242586).
[0005]
In addition, a technique is known in which boron phosphide (BP) is provided as a buffer layer on a zinc-blend type single crystal substrate such as gallium phosphide (GaP) or Si (Japanese Patent Laid-Open No. 2-275682). No. JP-A-2-288371; JP-A-2-288388).
Further, there is a proposal to provide a metal film such as titanium (Ti) as an intermediate layer on a Si single crystal substrate (see Japanese Patent Application Laid-Open No. 2000-261333).
Furthermore, a technique has been disclosed in which a nitride layer such as a titanium nitride (TiN) layer or a cobalt (Co) layer is disposed as an intermediate layer on a Si single crystal substrate having a plane orientation of {111} (Japanese Patent Laid-Open No. 2000-286449). Reference).
[0006]
On the other hand, the band gap of a Si single crystal is about 1.1 electron volts (unit: eV) (Iwao Teramoto, "Introduction to Semiconductor Devices" (March 30, 1995, first edition, published by Baifukan Co., Ltd., p. 28). This band gap is smaller than, for example, half or less of the transition energy corresponding to light emission in the blue band. There is a disadvantage that short-wavelength light emitted from the semiconductor light emitting portion is absorbed by the Si single crystal substrate, that is, in a group III nitride semiconductor LED using Si as a substrate material, light emission caused by the Si single crystal substrate is present. There is a problem that it is difficult to obtain a high-brightness group-III nitride semiconductor LED because absorption of light is inevitable.
[0007]
Technical Means of Providing a Bragg Reflection (DBR) Structure Layer for Reflecting Light Emission Outside Between a Si Substrate and a Light-Emitting Part to Increase the Light Emission Intensity of a Group III Nitride Semiconductor LED Using Si as a Substrate (Mat. Res. Soc. Symp. Proc., Vol. 449 (1997), pp. 79-84). In the conventional DBR layer, Al having a different aluminum composition ratio (= a) is used.aGa1-aIt is composed of a periodic laminated structure in which N (0 ≦ a ≦ 1) thin layers are repeatedly laminated. The reflectance of light emitted from the DBR layer can be increased by increasing the number of periodic units to be stacked, but there is a problem that the stacking operation is complicated.
[0008]
Although many proposals have been made to improve the light emission intensity of LEDs except for the substrate of the LED, it is reasonable to simply remove the substrate part from the LED to impair the mechanical strength of the LED. Measures are required. Therefore, development of a method for obtaining a group III nitride semiconductor light-emitting LED having sufficient mechanical strength and high luminous intensity using a simpler technique has been demanded.
[0009]
[Problems to be solved by the invention]
The present invention relates to a group III nitride semiconductor LED having a Si single crystal as a substrate, wherein the Si single crystal substrate is removed from the LED without losing the mechanical strength of the LED, and light emission from the light emitting portion is performed on the Si substrate. It is an object of the present invention to develop a technical means for reducing the degree of absorption into a Si substrate-based group III nitride semiconductor LED with high brightness.
[0010]
[Means for Solving the Problems]
That is, the present invention
[1] An intermediate layer, a light emitting portion of a pn junction type heterojunction structure composed of a group III nitride semiconductor on a surface of a conductive silicon (Si) single crystal substrate, a back electrode on a back surface of the single crystal substrate, In a group III nitride semiconductor light emitting diode in which a front surface electrode is provided on a front side light emitting portion, an intermediate layer is a III-V compound semiconductor film containing phosphorus (P), and a back surface electrode on the back surface of the single crystal substrate A group III nitride semiconductor light emitting device, wherein a perforated portion for extracting light is formed by removing a silicon (Si) single crystal substrate in a region other than the region, and the intermediate layer is exposed on a bottom surface of the perforated portion. diode,
[0011]
[2] The group III nitride semiconductor light-emitting diode according to the above [1], wherein a perforated portion for extracting a plurality of lights is provided on a back surface of the conductive silicon single crystal substrate.
[3] The substrate is a conductive {111} -silicon single crystal having a {111} -crystal plane as a surface, and a perforated portion for extracting the above-mentioned light that is exposed by removing the {111} -single crystal. Wherein the bottom surface of the group III is composed of boron phosphide (BP), wherein the group III nitride semiconductor light emitting diode according to the above [1] or [2],
[0012]
[4] The group III nitride semiconductor according to [1], wherein the bottom surface of the hole for extracting light is made of boron phosphide having a {111} -crystal plane as a surface. Light emitting diode,
[5] The above-mentioned [1] to [4], wherein the depth from the back surface of the silicon single crystal substrate on which the back surface electrode is provided to the bottom of the perforated portion for extracting light is 80 μm or more and 300 μm or less. ] The group III nitride semiconductor light-emitting diode according to any of [1],
[0013]
[6] The middle layer is MN1-XPX(Wherein, M represents a group III element other than boron, and X is in the range of 0 <X ≦ 1), wherein the group III nitride semiconductor light emitting diode according to the above [1],
[7] The middle layer is BXM1-XThe group III nitride semiconductor light-emitting diode according to the above [1], which is composed of P (wherein M represents a group III element other than boron, and X satisfies 0 <X ≦ 1). and
[8] The group III nitride semiconductor light-emitting diode according to the above [6] or [7], wherein the intermediate layer is formed as a composition gradient layer by giving a gradient to the concentration of the group III constituent element or the group V constituent element. Solved the above-mentioned problem.
[0014]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The group III nitride semiconductor light-emitting diode (LED) of the present invention can be formed using a conductive Si single crystal having a plane orientation of {100}, {111}, or {110} as a substrate. The substrate has a resistivity of 103Ω · cm or less, preferably 101Any single crystal of n-type or p-type can be used as long as it has conductivity of Ω · cm or less. Since it is necessary to easily form an LED by laying an ohmic electrode on the back surface using the conductivity of the Si substrate, a high-resistance undoped Si single crystal cannot be suitably used as the substrate.
Since Si atoms are present more densely in the {111} crystal plane than in the {100} crystal plane, when a Si single crystal with a plane orientation of {111} is used as a substrate, Since diffusion and intrusion of elements constituting the layer from the layer into the Si single crystal substrate can be further suppressed, it is convenient to form an intermediate layer that is stoichiometrically balanced.
[0015]
The Si single crystal in the region where the ohmic electrode (back surface electrode = first electrode) is laid on the back surface of the Si single crystal substrate is left, and the Si single crystal material in the other region is removed using a known etching technique. If the substrate material is left only in the region where the back electrode (first electrode) is to be formed, the mechanical strength of the remaining substrate material is utilized as compared with the case where the entire substrate is removed. This has the effect of supporting the LED more firmly. Also, by leaving the conductive substrate material, there is an effect that a back electrode (first electrode) having low contact resistance and excellent ohmic properties is provided thereon.
[0016]
For example, it may be removed by a plasma etching method using a chlorine (Cl) -based gas, or may be removed by a wet etching technique using a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO3). .
That is, the selective removal of the Si single crystal existing in the region other than the region where the back electrode is stacked can be performed through selective patterning using known photolithography. It is desirable that the region from which the Si single crystal is removed has a region other than the required back electrode as wide as possible. As the cross-sectional area of the region from which the Si single crystal is removed is increased, the absorption of light emitted from the light-emitting portion due to the Si substrate material is avoided, so that the area that can transmit light to the outside increases, contributing to the improvement of light emission intensity. it can.
[0017]
Regarding the cross-sectional shape of the region to be subjected to the selective patterning, an arbitrary shape is selected within the permissible range of the ease of the etching drilling, the size of the cross-sectional area, and the mechanical strength of the group III nitride semiconductor LED for the above-described reason. be able to. For example, as shown in FIG. 1, there is a configuration on the back surface 11 b side of the LED substrate 11 in which only a circular perforated portion 13 is provided in the back surface region of the Si single crystal 11 other than the back electrode 12. A plurality of the circular perforations may be arranged. FIG. 2 shows an example in which a plurality of circular perforations 13 are provided on the back surface 11b of the Si single crystal substrate 11 as an example. Although the horizontal cross-sectional shape of the perforated portion 13 illustrated in FIGS. 1 and 2 is circular, it is a circular shape such as an elliptical shape or a sector shape that forms a part of a circle, in which selective patterning can be easily achieved and etching can be performed. It is preferable if there is.
[0018]
Regardless of the shape, the emission intensity increases in proportion to the area of the total cross-sectional area of the perforated portion, rather than the influence of the cross-sectional shape of the perforated portion. For this reason, it is important that the cross-sectional area of the portion where the Si single crystal is removed is made as wide as possible to the extent that the mechanical support force of the light emitting portion does not extremely decrease due to the removal of the substrate.
[0019]
Further, a perforated portion having a rectangular cross section such as a square, a rectangle, a rhombus, or a parallelogram may be provided. In any case, similarly to the circular perforated portion described in the above embodiment, the cross-sectional shape of the perforated portion is a shape that can be easily obtained by etching.
FIG. 3 illustrates a configuration in which a band-shaped perforated portion 13 having a rectangular cross section is provided on the back surface 11b of the {111} -Si single crystal substrate 11. Even in the case of providing a perforated portion having a rectangular cross-sectional shape, the total cross-sectional area of the perforated portion is set to be large enough not to cause an extreme decrease in the mechanical supporting force of the light emitting portion due to removal of the substrate. Is essential. In order to expand the cross-sectional area from which the Si substrate has been removed, a plurality of rectangular holes can be provided.
[0020]
It is also possible to provide a band-shaped perforated portion in which several perforations are connected. There is no problem even if the circular and square perforated portions are connected to form a band-shaped perforated portion. When the rectangular and circular perforations are combined as illustrated in FIG. 4, the removal area of the substrate can be further increased and the area through which light can be transmitted can be increased as compared with a case where a rectangular perforation is simply provided. Can be fulfilled.
[0021]
In any of the above-described perforated portions having a horizontal cross-sectional shape, an ohmic electrode is disposed as a substrate back surface electrode around the perforated portion. A metal film such as gold (Au) is applied to the p-type Si substrate to form a back-side p-type ohmic electrode. For an n-type Si substrate, for example, an n-type ohmic electrode can be made of aluminum (Al) or aluminum-antimony (Al-Sb) alloy. A plurality of back electrodes can be provided at positions isolated from each other on the back surface of the Si substrate, but are preferably provided so as to be electrically continuous with each other and integrated.
[0022]
The bottom surface of the perforated portion in the group III nitride semiconductor LED of the present invention is a crystal plane of the intermediate layer. That is, the perforated portion is stopped when it reaches a portion constituting the intermediate layer (a point where the required strength can be maintained), and the constituent layer of the intermediate layer is exposed as the bottom surface of the perforated portion. In this case, the depth of the perforated portion having the intermediate layer as the bottom surface is substantially equal to the thickness of the Si single crystal substrate. Further, the constituent layer of the light emitting section layer provided on the intermediate layer may be configured as the bottom face of the perforated section. However, when the perforation is advanced so that the light-emitting portion constituting layer becomes the bottom surface, the luminous intensity increases, but the intermediate layer supporting the mechanical strength of the LED is weakened. As a result, the mechanical strength is deteriorated, which hinders the mechanical support of the light emitting unit. Therefore, if the perforated portion of the Si single crystal forming the substrate is stopped at the intermediate layer below the light emitting portion, and the bottom surface is formed as a constituent layer of the intermediate layer, a structure convenient for mechanically supporting the light emitting portion is obtained.
[0023]
In the perforated portion having the bottom surface as an intermediate layer, after the intermediate layer is laminated on the surface of the Si single crystal substrate, a single or double heterogeneous light emitting portion is provided on the intermediate layer. Can be previously formed. However, also in this case, it is necessary to insert the process of forming the perforated portion in the middle of the laminating step, so that the laminating step is discontinuous and the step becomes redundant. Further, it can be formed after forming the light emitting portion.
On the other hand, as the thickness of the Si single crystal substrate is smaller, the perforated portion can be formed more easily. Therefore, when a laminated structure (light emitting portion having a pn junction type hetero structure) is grown on the upper surface of the Si single crystal substrate, the back surface of the Si single crystal substrate is polished to reduce the thickness, and then the holes are easily drilled. A part can be formed.
[0024]
Further, by reducing the thickness of the Si single crystal substrate by grinding means such as lapping to reduce the thickness of the entire laminated structure, there is an advantage that cutting for individual elements can be easily performed.
If the grinding amount of the back surface of the Si single crystal substrate is made extremely large and the thickness of the substrate is reduced, the formation of the perforated portion and the cutting into individual elements become easy, but in order to support the mechanical strength of the LED, Will be insufficient. The thickness of the remaining Si substrate is preferably about 300 to 80 μm, and more preferably 250 to 100 μm.
[0025]
Means in which the intermediate layer is made of a high melting point metal such as titanium nitride (TiN) or zirconium nitride (ZrN) or a single metal such as aluminum or gold may be considered.
However, since the degree of absorption of light emitted from the light emitting portion is remarkably large in a single metal film, when the intermediate layer is formed of a metal film, the light emission is absorbed or shielded by the intermediate layer and is emitted to the outside from the perforated portion. There may be a case where the intensity of light emission is extremely reduced.
[0026]
Further, the nitride of the high melting point metal may be colored depending on the stoichiometric equivalent ratio between nitrogen and the metal element. Therefore, when the intermediate layer is formed using a metal nitride material, the intensity of the light emitted from the perforated portion may become unstable depending on the degree of coloring. Almost no single metal or metal nitride has a lattice constant substantially equal to that of a general group III nitride semiconductor forming a light emitting portion of a group III nitride semiconductor LED. For this reason, an intermediate layer made of a single metal or a metal nitride is not always suitable for laminating a group III nitride semiconductor layer constituting a light emitting portion having excellent crystallinity due to lattice mismatch. On the other hand, when the intermediate layer is made of a semiconductor material, the effect of reducing the absorption of light emission by the intermediate layer, which cannot be avoided by the metal material as described above, can be obtained.
[0027]
Therefore, a strong intermediate layer having excellent mechanical strength can be formed from a III-V compound semiconductor containing phosphorus as compared with a III-V compound semiconductor containing arsenic (As) as a constituent element. The melting point of boron arsenide (BAs) is about 1000 ° C., whereas that of boron phosphide (BP) is as high as about 3000 ° C. (Iwao Teramoto, “Introduction to Semiconductor Devices” (March 30, 1995, (Refer to the first edition published by Baifukan Co., Ltd., p. 28.) For this reason, from the phosphorus-containing III-V compound semiconductor, the step of depositing the upper group III nitride semiconductor layer at a high temperature exceeding about 1000 ° C. There is an advantage that an intermediate layer exhibiting heat resistance can be formed.
[0028]
Phosphorus-containing III-V compound semiconductors include boron phosphide (BP), gallium nitride phosphide (GaN)1-XPX: 0 <X ≦ 1, aluminum phosphide nitride (AlN)1-XPX: 0 <X ≦ 1), indium phosphide nitride (InN1-XPX: 0 <X ≦ 1) and aluminum boron phosphide (BXAl1-XP: 0 <X ≦ 1), gallium boron phosphide (BXGa1-XP: 0 <X ≦ 1) and indium boron phosphide (BXIn1-XP: 0 <X ≦ 1). The conduction type of the intermediate layer usually matches the conduction type of the conductive single crystal used as the substrate.
[0029]
For example, when the buffer layer is made of boron phosphide (BP) having a different lattice constant from that of the Si single crystal, the buffer layer (low-temperature buffer layer) grown at a relatively low temperature is composed of the Si single crystal and the multilayer structure. It effectively acts to alleviate the lattice mismatch (mismatch) with the constituent layer to provide a constituent layer having excellent crystallinity. For example, a BP low-temperature buffer layer formed at a relatively low temperature of 250 ° C. or more and 500 ° C. or less has a lattice mismatch of about 16.5% with a Si single crystal (Katsufusa Shono, “Semiconductor Technology (First Volume)” ( (Published by The University of Tokyo, June 25, 1992, ninth printing, p. 77)) to reduce the crystal defect density such as misfit dislocations and to provide the constituent layers of a high-quality multilayer structure. (See US Pat. No. 6,069,021).
[0030]
When the intermediate layer is formed of a crystal layer having a concentration gradient of a group III constituent element or a group V constituent element, it is convenient for alleviating lattice mismatch between the Si single crystal substrate and an upper layer, for example, a group III nitride semiconductor layer. . For example, the indium (In) composition ratio at the interface bonded to the Si single crystal substrate is set to 0.67, and the indium composition ratio is reduced toward the surface.XIn1-XFrom the P: 0 <X ≦ 1) layer, for example, gallium phosphide nitride (GaN) having excellent crystallinity as an upper layer while relaxing lattice mismatch with the Si single crystal1-XPX0 <X ≦ 1) An intermediate layer providing a crystal layer can be formed. An intermediate layer having a composition gradient that can provide a group III nitride semiconductor layer having excellent crystallinity with few crystal defects such as dislocations due to lattice mismatch is formed of aluminum nitride phosphide (AlN1-XPX: 0 <X ≦ 1), indium nitride phosphide (InN1-XPX: 0 <X ≦ 1) and the like.
[0031]
The composition gradient layer in the intermediate layer of the group III nitride semiconductor LED of the present invention is, for example, gallium phosphide (GaN).1-XPX: 0 <X ≦ 1)1-XPX(0 <X ≦ 1, M represents a group III element.) In a mixed crystal, the composition ratio (= X) of phosphorus (P) other than the constituent element nitrogen (N) is increased in the direction of increasing the layer thickness. It is configured to decrease and correspondingly increase the nitrogen composition ratio (= 1−X). The gradient of the composition can be linear, curved, stepped, or the like (see JP-A-2000-22211). The intermediate layer having a composition gradient can be formed by changing the addition amount of the supply source of nitrogen and phosphorus added to the growth reaction system at the time of forming the same layer over time. The intermediate layer having a gradient in the composition of the group V element has an effect of relaxing lattice mismatch with the Si single crystal substrate to provide a group III nitride semiconductor layer having excellent crystallinity.
[0032]
Further, the intermediate layer can be constituted by a phosphorus-containing III-V compound semiconductor crystal layer in which the composition of the group III constituent elements is graded. In particular, for example, boron gallium phosphide (B) containing boron (B) as a group III constituent elementXGa1-XP: 0 <X ≦ 1), indium boron phosphide (BXIn1-XP: composition formula B such as 0 <X ≦ 1)XM1-XA boron phosphide (BP) -based mixed crystal represented by P (0 <X ≦ 1, M represents a group III element) can constitute an intermediate layer effective for relaxing lattice mismatch with a Si single crystal substrate. . In a group III-V compound semiconductor composed of a plurality of group III constituent elements and a single group V constituent element, an intermediate layer is formed by giving a gradient to the composition of boron or other group III constituent elements.
[0033]
In particular, when a substrate is made of Si single crystal, the composition ratio (= X) of boron (B) is increased in the direction of increasing the layer thickness, and conversely, another composition such as gallium (Ga) or indium (In) is used. A composition gradient layer having a composition gradient so as to reduce the composition ratio of group III constituent elements can be suitably used as an intermediate layer.
[0034]
For example, the boron composition ratio (= X) at the bonding interface with the Si single crystal substrate is set to 0.02, and the boron composition ratio at the surface is set to 1.0.XGa1-XP is lattice-matched to a Si single crystal (lattice constant: 5.431 °) substrate, and gallium phosphide (GaN) having a nitrogen composition ratio of 0.97 is used.0.97P0.03: Lattice constant = 4.538 °), which is useful as an intermediate layer that achieves lattice matching.
The intermediate layer in which the composition of the group III element is graded is formed by, for example, changing the supply amount of the organometallic compound serving as the group III constituent element raw material to the reaction system over time when forming the intermediate layer by the MOCVD method. Can be formed by
[0035]
In the group III nitride semiconductor LED of the present invention, a pn junction type heterostructure composed of a group III nitride semiconductor conductor laminated on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer made of a semiconductor. A group III nitride semiconductor light-emitting diode including a light emitting portion having a junction structure and a back electrode on the back surface of the single crystal substrate and a front electrode on the light emitting portion on the front surface side, wherein the single crystal substrate has a back surface region. The perforated portion formed by removing the Si single crystal substrate in a region other than the back surface electrode forms a portion for extracting light emitted from the light emitting unit to the outside.
[0036]
The intermediate layer constituting the bottom surface of the perforated portion of the group III nitride semiconductor light emitting diode of the present invention has an action of firmly supporting the light emitting portion provided on the perforated portion.
In particular, the intermediate layer in which the plane orientation formed by the bottom surface of the perforated portion according to the present invention has the {111} plane suppresses the diffusion of the elements constituting the intermediate layer into the Si single crystal substrate and emits light provided on the top. It constitutes a part that supports the part more firmly.
[0037]
The intermediate layer composed of the III-V compound semiconductor film containing phosphorus (P) of the group III nitride semiconductor light-emitting diode of the present invention suffers from damage and erosion due to the perforation process when perforating the back surface of the Si single crystal substrate. An intermediate layer having excellent chemical resistance and the like for preventing the light emitting portion from being formed is formed.
[0038]
In particular, the intermediate layer composed of a composition gradient layer having a gradient in the composition of the group III constituent element or the group V constituent element relaxes the lattice mismatch between the Si single crystal substrate and the upper group III nitride semiconductor layer, A good quality group III nitride semiconductor layer having a small crystal defect density is provided, and the group III nitride semiconductor layer constituting the light emitting portion is firmly supported.
[0039]
A group III nitride semiconductor LED having an intermediate layer composed of a low-temperature buffer layer and a high-temperature buffer layer can be manufactured, for example, by the following method.
An n-type or p-type {111} -Si single crystal substrate is used as a substrate material, and a low-temperature buffer layer formed at a lower temperature than a high-temperature buffer layer provided thereon and a higher temperature than a low-temperature buffer layer provided on the low-temperature buffer layer An intermediate layer consisting of a high-temperature buffer layer formed by the above is provided. As the low-temperature buffer layer, an amorphous boron phosphide layer mainly composed of an amorphous material grown at a low temperature of about 250 to 550 ° C. by MOCVD means is grown, and then at about 750 to 1200 ° C., a single boron phosphide layer is formed by MOCVD means. Grow a crystal layer. The high-temperature buffer layer is for maintaining the mechanical strength of the LED, and is selected from a group III-V compound semiconductor having relatively excellent mechanical strength, and the low-temperature buffer layer assists the lamination of the substrate and the high-temperature buffer layer. Use a compound layer.
[0040]
On the intermediate layer, a light emitting section including a lower clad layer, a light emitting layer, and an upper clad layer is laminated. The lower cladding layer is an n-type or p-type group III nitride semiconductor crystal layer lattice-matched to the high-temperature buffer layer, for example, GaN matched to the BP high-temperature buffer layer0.97P0.03A crystal layer is provided at 850-1200 ° C. An n-type or p-type group III nitride semiconductor layer is formed thereon at a lower temperature than the lower cladding layer. This light emitting layer may have a quantum well structure. The upper cladding layer is a p-type or n-type group III nitride semiconductor layer having a conduction system opposite to that of the lower cladding layer. Next, a first-conductivity-type electrode is provided on the remaining portion of the etched substrate, and a second-conductivity-type electrode is provided on the upper cladding layer, to obtain a group III nitride semiconductor LED.
[0041]
The perforated portion may be perforated in any process after the lamination of the intermediate layer on the substrate and after the lamination of the intermediate layer and the light emitting portion on the substrate. Prior to the perforation, it is preferable that the back surface of the Si substrate is lapped and polished to a thickness of about 300 to 80 μm, and then perforated by wet etching at about 10 to 30 ° C. using a mixed solution of hydrofluoric acid and nitric acid.
[0042]
A group III nitride semiconductor LED having a composition gradient buffer layer as an intermediate layer can be manufactured, for example, by the following method.
An n-type or p-type {111} -Si single crystal substrate is used as a substrate material, and a composition gradient buffer layer in which gallium boron phosphide is increased in the direction of increasing the thickness of the layer by MOCVD means is formed on the substrate. Film. During the growth, the boron concentration is regulated so as to obtain the same lattice constant as that of the Si single crystal, and at the end, the gallium source is reduced so as to obtain the same lattice constant as that of the lower clad layer formed thereon. The composition gradient buffer layer can be grown at a temperature of approximately 600-1200C. During growth, the temperature may be kept constant or may be changed midway.
On this composition gradient buffer layer, a light emitting portion composed of a lower cladding layer, a light emitting layer and an upper cladding layer is laminated.
[0043]
The lower cladding layer is a p-type group III nitride semiconductor layer lattice-matched to the composition gradient layer, and is grown at about 850 to 1200 ° C. by MOCVD. Next, the light emitting layer is a p-type group III nitride semiconductor layer lattice-matched to the cladding layer, and the layer may have a quantum well structure. The upper cladding layer is an n-type group III nitride semiconductor crystal layer, and is formed by MOCVD.
The first conductivity type electrode uses aluminum or its alloy, and the second conductivity type electrode uses gold or its alloy.
Hereinafter, specific examples will be described.
[0044]
【Example】
(Example 1)
The present invention will be specifically described with reference to a group III nitride semiconductor LED using a Si single crystal substrate having a circular perforated portion on the back surface as a substrate. FIG. 5 schematically shows a cross-sectional structure of the LED 10 according to the present embodiment.
[0045]
As the substrate 101, a boron (B) -doped p-type (100) -Si single crystal was used. On the substrate 101, a low-temperature buffer layer 102 made of boron phosphide (BP) was deposited. The low-temperature buffer layer 102 is made of triethyl boron ((C2H5)3B) / phosphine (PH3) / Hydrogen (H2) System It was grown at 350 ° C. by normal pressure MOCVD.
The thickness of the buffer layer 102 was about 14 nm. On the surface of the low-temperature buffer layer 102, a p-type BP layer doped with magnesium (Mg) at 950 ° C. was laminated as a high-temperature buffer layer 103 by using the above-mentioned MOCVD vapor deposition method. As a doping source of magnesium, biscyclopentadienyl magnesium (molecular formula: bis- (C5H4)2Mg) was used. The carrier concentration of the high temperature buffer layer 103 is about 7 × 1018cm-3And The layer thickness was about 350 nm.
[0046]
On the high-temperature buffer layer 103, a magnesium-doped p-type gallium nitride phosphide (composition formula: GaN) having a phosphorus (P) composition ratio of 0.03 (= 3%)0.97P0.03) Layer was laminated as lower cladding layer 104. GaN0.97P0.03The layer is made of trimethylgallium ((CH3)3Ga) / PH3 / ammonia (NH3) / H2It was grown at 950 ° C. by a system normal pressure MOCVD method. Cubic p-type GaN0.97P0.03The carrier concentration of the layer is about 8 × 1017cm-3And the layer thickness was about 85 nm.
[0047]
On the lower cladding layer 104, an n-type gallium indium nitride (composition formula GaXIn1-XN: 0 ≦ X ≦ 1). Silicon (Si) doped Ga forming the light emitting layer 105XIn1-XThe N layer includes (CH3)3Ga / trimethylindium ((CH3)3In) / disilane (Si)2H6) / NH3/ H2It was grown at 850 ° C. by a system normal pressure MOCVD method. The average composition ratio of indium (In) in the light emitting layer 105 was 0.10. The layer thickness of the light emitting layer 105 was about 80 nm. Carrier concentration is about 3 × 1018cm-3Set to.
[0048]
Ga0.90In0.10On the N light-emitting layer 105, a silicon (Si) -doped n-type aluminum-gallium nitride mixed crystal (AlγGa1- γThe N) layer was laminated as the upper cladding layer 106. The Al composition ratio (= γ) monotonically decreased substantially linearly from 0.2 to 0 (zero) in the direction of increasing the layer thickness. The layer thickness was 200 nm.
[0049]
The above p-type GaN0.97P0.03Lower cladding layer 104, n-type Ga0.90In0.10N light emitting layer 105 and n-type AlγGa1- γThe light emitting section 107 having a pn junction type double hetero junction structure was formed from the upper cladding layer 106 composed of an N composition gradient layer.
[0050]
Using a known photolithography technique and a selective etching technique, as shown in FIG. 6, a central portion of the back surface of the p-type Si single crystal substrate 101 was perforated into a hollow cylindrical shape having a bottom diameter of about 150 μm. The perforated portion 109 is made of hydrofluoric acid (HF) and nitric acid (HNO3The silicon single crystal was removed by etching with the mixed solution of (1). The depth of the perforated portion 109 was about 300 μm corresponding to the layer thickness of the substrate 101. The etching was allowed to proceed until the BP low-temperature buffer layer 102 was exposed on the bottom surface 109a of the perforated portion 109. A p-type ohmic electrode 110 made of a gold (Au) film was arranged on Si single crystal substrate 101 left around perforated portion 109. At the center of the surface of the upper cladding layer 106, a circular ohmic electrode 108 made of gold (Au) was arranged. The diameter of the n-type ohmic electrode 108 was about 130 μm. The center of the circular bottom surface 109 a of the perforated portion 109 was aligned with the center of the horizontal shape of the surface ohmic electrode 108.
[0051]
An LED driving current was passed between both ohmic electrodes 108 and 110. The current-voltage (IV characteristics) showed normal rectification characteristics based on good pn junction characteristics of the light emitting unit 107. The forward voltage (so-called Vf) obtained from the IV characteristics was about 3 V (forward current = 20 mA). The reverse voltage was about 15 V (reverse current = 10 μA). When an operating current of 20 milliamperes (mA) was passed in the forward direction, blue light having an emission center wavelength of about 470 nm was emitted. The half width of the emission spectrum was about 18 nm. The light emission intensity in a chip state measured using a general integrating sphere was about 18 microwatts (μW), and a group III nitride semiconductor light emitting device with high light emission intensity was provided.
[0052]
(Example 2)
Phosphorus (P) -doped n-type {111} -Si single crystal substrate 201 has diborane (molecular formula: B2H6) / (CH3)3Ga / PH3/ H2Boron phosphide / gallium phosphide (composition formula: B) in which the composition ratio (= X) of boron (B) is increased in the direction of increasing the layer thickness at 650 ° C. by the reduced pressure MOCVD method.XGa1-XP) A buffer layer 202 composed of a composition gradient layer was laminated. The pressure of the reaction system during growth is about 1.3 × 104Pascal (unit: Pa) was set. The thickness of the buffer layer 202 was 0.8 μm. BXGa1-XThe boron (B) composition ratio (= X) at the junction surface of the P composition gradient layer 202 with the Si single crystal 201 was set to 0.02, at which the same lattice constant (= 5.431 °) as that of the Si single crystal was obtained. . The boron composition ratio at the surface is determined by the upper layer GaN0.97P0.03The lattice constant was set to 1.0 so as to obtain the same lattice constant (= 4.538 °) as that of the lower cladding layer. The boron composition ratio (= X) was linearly increased in the direction in which the thickness of the buffer layer 202 increased. The boron composition ratio increases the supply amount of diborane as a boron source to the MOCVD reaction system with time, and conversely, trimethylgallium ((CH) as a gallium (Ga) source3)3The supply amount of Ga) was reduced and changed. BXGa1-XDuring the growth of the P composition gradient layer 202, disilane (Si2H6) -H2Silicon (Si) was doped using the mixed gas.
[0053]
BXGa1-XOn the P composition gradient buffer layer 202, a silicon (Si) -doped n-type gallium phosphide having a phosphorus (P) composition ratio of 0.03 (= 3%) (composition formula: GaN)0.97P0.03) Layer was laminated as lower cladding layer 204. GaN0.97P0.03The layer is made of trimethylgallium (molecular formula: (CH3)3Ga) / PH3/ NH3/ H2It was grown at 950 ° C. by a system normal pressure MOCVD method. Cubic n-type GaN0.97P0.03The carrier concentration of the layer is about 8 × 1017cm-3And the layer thickness was about 85 nm.
[0054]
On the lower cladding layer 204, an n-type gallium indium nitride (composition formula GaXIn1-XN: 0 ≦ X ≦ 1). Silicon (Si) doped Ga forming the light emitting layer 205XIn1-XThe N layer includes (CH3)3Ga / (CH3)3In / Si2H6/ NH3/ H2It was grown at 850 ° C. by a system normal pressure MOCVD method. The average indium (In) composition ratio of the light emitting layer 205 was set to 0.10. The thickness of the light emitting layer 205 is about 80 nm, and the carrier concentration is about 3 × 1018cm-3Set to.
[0055]
Ga0.90In0.10On the N light emitting layer 205, a p-type gallium nitride mixed crystal (GaN) layer doped with both zinc (Zn) and magnesium (Mg) was laminated as an upper cladding layer 206.
[0056]
The above n-type GaN0.97P0.03Lower cladding layer 204, n-type Ga0.90In0.10A light emitting portion 207 having a pn junction type double hetero junction structure was constituted by the N light emitting layer 205 and the upper cladding layer 206 made of a p-type GaN layer. FIG. 7 schematically shows a cross-sectional structure of the laminated structure of the present embodiment.
[0057]
Next, the back surface of the {111} -Si single crystal substrate 201 was polished to reduce the thickness of the substrate from about 350 μm to about 150 μm. Thereafter, using a known photolithography technique and a selective etching technique, a rectangular perforated portion 209 as shown in FIG. 8 was formed at the center of the back surface of the n-type Si single crystal substrate 201. The length of the short side of the perforated portion 209 was 200 μm, and the length of the long side was 250 μm. The perforated portion 209 was formed by removing the Si single crystal 201 using plasma etching means using a chlorine-based gas. The depth of the perforated portion 209 from the back surface of the substrate 201 was about 150 μm. On the bottom surface 209a of the perforated portion 209, a {111} -B obtained by using a Si single crystal having a plane orientation of {111} as the substrate 201 is used.XGa1-XThe surface of the P buffer layer 202 was exposed. An n-type ohmic electrode 208 made of gold (Au) was provided on the Si single crystal left so as to surround the perforated portion 209.
[0058]
On almost the entire surface of the upper cladding layer 206, a p-type ohmic electrode 210 made of a thick film having a multilayer structure of gold (Au) and nickel oxide (NiO) was formed. The thickness of the gold coating was about 2 μm, and the thickness of the nickel oxide was about 0.5 μm.
[0059]
After the p-type ohmic electrode 210 side of the LED 20 configured as described above was electrically connected to the support and bonded to the support, the intensity of light emitted through the perforated portion 209 and emitted to the outside was measured. The light emission intensity measured using a general integrating sphere in this mounted state was about 16 microwatts (μW), and a group III nitride semiconductor light emitting device with high light emission intensity was provided. The center wavelength of the light emission was about 470 nm, and the half width of the light emission spectrum was about 20 nm. The forward voltage (Vf) was about 3 V (forward current = 20 mA). The reverse voltage was about 15 V (reverse current = 10 μA).
[0060]
【The invention's effect】
The present invention relates to light emission of a pn-junction type heterojunction structure composed of a group III nitride semiconductor laminated on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer composed of a metal or a semiconductor. A III-nitride semiconductor light emitting diode comprising at least a portion, a back electrode on the back surface of the single crystal substrate, and a front electrode on the light emitting portion on the front side. Since a perforated portion formed by removing the crystal substrate is provided, and an ohmic electrode is disposed on the remaining conductive Si single crystal substrate around the perforated portion to constitute an LED, mechanical Absorption of luminescence due to the Si single crystal substrate is completely or significantly reduced without losing the intensity, and the luminescence of the LED can be extracted to the outside by passing through the perforated part. It is possible to provide a LED.
[0061]
Further, in this case, when the Si single crystal is reliably removed such that the bottom surface of the perforated portion exposes the crystal plane of the intermediate layer, absorption of light emission caused by the Si single crystal in the perforated portion is completely avoided. In addition, since light emission can be extracted to the outside without lowering the light emission intensity, a group III nitride semiconductor LED with high light emission intensity can be provided.
Further, when the single crystal of the perforated portion is reliably removed and the {111} crystal plane of the intermediate layer is exposed on the bottom surface, it is possible to avoid the absorption of light emitted by the single crystal silicon substrate, It is possible to provide a substrate-removed type III-nitride semiconductor LED including a light-emitting portion that is firmly held by compensating for a decrease in the supporting force of the light-emitting portion due to the removal of the crystal substrate.
[0062]
In particular, when the intermediate layer is formed from a III-V compound semiconductor film containing phosphorus (P), the mechanical strength is excellent and the melting point is extremely high as compared with a III-V semiconductor containing arsenic as a constituent element. Thus, a group III nitride semiconductor LED that can firmly support the light emitting portion and has an intermediate layer having excellent heat resistance can be configured.
Further, by forming a composition gradient layer in which the composition of the group III constituent element or the group V constituent element is graded as the intermediate layer, an intermediate layer lattice-matched to both the Si single crystal and the upper group III nitride semiconductor layer is formed. Therefore, the crystal defect density due to lattice mismatch at the interface with the light emitting layer can be reduced, so that a group III nitride semiconductor layer having good crystallinity can be obtained, and a group III nitride semiconductor LED having high emission intensity Is brought.
[Brief description of the drawings]
FIG. 1 is a schematic plan view illustrating a perforated shape of a perforated portion.
FIG. 2 is a schematic plan view illustrating a shape of a perforated portion;
FIG. 3 is a schematic plan view illustrating a shape of a perforated portion;
FIG. 4 is a schematic plan view illustrating a perforation shape of a perforation portion.
FIG. 5 is a schematic sectional view of the LED described in Example 1.
FIG. 6 is a schematic diagram showing the structure of the back surface of the LED described in Example 1.
FIG. 7 is a schematic sectional view of the LED described in Example 2.
FIG. 8 is a schematic diagram showing the structure of the back surface of the LED described in Example 2.
[Explanation of symbols]
10,20 Group III nitride semiconductor LED
11, 101, 201 Si single crystal substrate
11b Backside of substrate
12 Back electrode
13 Perforated part
102 Boron phosphide (BP) low temperature buffer layer
103 BP high temperature crystal layer
202 Composition gradient buffer layer
104, 204 Lower cladding layer
105, 205 light emitting layer
106, 206 Upper cladding layer
107, 207 light emitting unit
108,208 n-type ohmic electrode
109,209 Perforated part
109a, 209a Perforated bottom surface
110, 210 p-type ohmic electrode

Claims (8)

導電性の珪素(Si)単結晶基板の表面上に、中間層、III族窒化物半導体から構成されるpn接合型ヘテロ接合構造の発光部、該単結晶基板の裏面に裏面電極、表面側の発光部上に表面電極を設けてなるIII族窒化物半導体発光ダイオードにおいて、中間層がリン(P)を含む III −V族化合物半導体膜であり、且つ上記単結晶基板裏面の裏面電極以外の領域の珪素(Si)単結晶基板を除去して光を取り出すための穿孔部を形成し、該穿孔部の底面に前記中間層を露出させたことを特徴とするIII族窒化物半導体発光ダイオード。On the surface of a conductive silicon (Si) single crystal substrate, an intermediate layer, a light emitting portion having a pn junction type heterojunction structure composed of a group III nitride semiconductor, a back electrode on the back surface of the single crystal substrate, In a group III nitride semiconductor light emitting diode in which a surface electrode is provided on a light emitting portion, an intermediate layer is a group III- V compound semiconductor film containing phosphorus (P) , and a region other than the back surface electrode on the back surface of the single crystal substrate. A group III nitride semiconductor light-emitting diode , wherein a perforated portion for extracting light is formed by removing the silicon (Si) single crystal substrate of step (a) , and the intermediate layer is exposed on the bottom surface of the perforated portion . 導電性の珪素単結晶基板の裏面に、光を取り出すための複数の穿孔部が設けられていることを特徴とする請求項1に記載のIII族窒化物半導体発光ダイオード。 On the back surface of the conductive silicon single-crystal substrate, III-nitride semiconductor light emitting diode according to Motomeko 1, wherein a plurality of perforations for taking out light is provided. 基板が{111}−結晶面を表面とする導電性の{111}−珪素単結晶であり、{111}−単結晶を除去して露出させた上記の光を取り出すための穿孔部の底面が、リン化硼素(BP)から構成されていることを特徴とする請求項1または2に記載のThe substrate is a conductive {111} -silicon single crystal having a {111} -crystal plane as a surface, and the bottom surface of the perforated portion for removing the above-described light that has been exposed by removing the {111} -single crystal is , And boron phosphide (BP). IIIIII 族窒化物半導体発光ダイオード。Group nitride semiconductor light emitting diode. 光を取り出すための穿孔部の底面が、{111}−結晶面を表面とするリン化硼素から構成されている、ことを特徴とする請求項3に記載のThe bottom surface of the perforated portion for extracting light is made of boron phosphide having a {111} -crystal plane as a surface. IIIIII 族窒化物半導体発光ダイオード。Group nitride semiconductor light emitting diode. 裏面電極を設ける珪素単結晶基板の裏面から、光を取り出すための穿孔部の底部に至る深さが、80μm以上で300μm以下であることを特徴とする請求項1乃至4の何れか1項に記載のThe depth from the back surface of the silicon single crystal substrate on which the back electrode is provided to the bottom of the perforated portion for extracting light is 80 μm or more and 300 μm or less, according to any one of claims 1 to 4, wherein Stated IIIIII 族窒化物半導体発光ダイオード。Group nitride semiconductor light emitting diode. 中間層がMN1-XX(式中、Mは硼素以外のIII族元素を示し、Xは0<X≦1の範囲である。)から構成したものである請求項1に記載のIII族窒化物半導体発光ダイオード。The III according to claim 1, wherein the intermediate layer is composed of MN 1-X P X (where M represents a Group III element other than boron, and X is in the range of 0 <X ≦ 1). Group nitride semiconductor light emitting diode. 中間層がBX1-XP(式中、Mは硼素以外のIII族元素を示し、Xは0<X≦1の範囲である。)から構成したものである請求項1〜6のいずれか1項に記載のIII族窒化物半導体発光ダイオード。Intermediate layer B X M 1-X P (wherein, M represents a group III element other than boron, X is 0 <a range of X ≦ 1.) Of claims 1 to 6 in which was formed from 13. The group III nitride semiconductor light-emitting diode according to claim 1. 中間層が、III族構成元素またはV族構成元素の濃度に勾配を付して組成勾配層としたものである請求項6または7に記載のIII族窒化物半導体発光ダイオード。8. The group III nitride semiconductor light emitting diode according to claim 6, wherein the intermediate layer is a composition gradient layer in which the concentration of the group III constituent element or the group V constituent element is graded.
JP2001043142A 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode Expired - Fee Related JP3577463B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001043142A JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode
TW90133184A TW523940B (en) 2001-02-20 2001-12-31 III-Group Nitrides Semiconductor Luminescence Diode and Method for preparing the same
US10/076,425 US6541799B2 (en) 2001-02-20 2002-02-19 Group-III nitride semiconductor light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043142A JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode

Publications (2)

Publication Number Publication Date
JP2002246645A JP2002246645A (en) 2002-08-30
JP3577463B2 true JP3577463B2 (en) 2004-10-13

Family

ID=18905357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043142A Expired - Fee Related JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode

Country Status (2)

Country Link
JP (1) JP3577463B2 (en)
TW (1) TW523940B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757514B2 (en) * 2004-03-15 2011-08-24 昭和電工株式会社 Compound semiconductor light emitting diode
JP2007184346A (en) * 2006-01-05 2007-07-19 Kyocera Corp Light emitting element and manufacturing method thereof
JP4191227B2 (en) 2007-02-21 2008-12-03 昭和電工株式会社 Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
DE102007020979A1 (en) * 2007-04-27 2008-10-30 Azzurro Semiconductors Ag A nitride semiconductor device having a group III nitride layer structure on a group IV substrate surface of at most twofold symmetry
TWI458141B (en) * 2007-12-31 2014-10-21 Epistar Corp A light-emitting device having a thinned structure and the manufacturing method thereof

Also Published As

Publication number Publication date
JP2002246645A (en) 2002-08-30
TW523940B (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP4405085B2 (en) Vertical Indium Gallium Nitride LED
JP4135550B2 (en) Semiconductor light emitting device
JP3952210B2 (en) Nitride-based semiconductor device and manufacturing method thereof
KR101008285B1 (en) ?-nitride semiconductor light emitting device
JP4119501B2 (en) Semiconductor light emitting device
US6541799B2 (en) Group-III nitride semiconductor light-emitting diode
JP2005244207A (en) Nitride gallium based compound semiconductor luminous element
TW200917540A (en) III-nitride semiconductor light emitting device
JP3646655B2 (en) Group III nitride semiconductor light emitting diode
KR101000276B1 (en) Semiconductor light emiitting device
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP4329166B2 (en) Group III nitride semiconductor optical device
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JP4374720B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP4313478B2 (en) AlGaInP light emitting diode
JP3541775B2 (en) Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
US20030173573A1 (en) Pn-junction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
TW200541115A (en) Group Ⅲ nitride semiconductor light-emitting device
JP4329165B2 (en) Group III nitride semiconductor light emitting device
JP3659174B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing the same
JP2000174342A (en) Nitride semiconductor light-emitting element
JP3975763B2 (en) Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees