JP2002246645A - Group iii nitride semiconductor light emitting diode - Google Patents

Group iii nitride semiconductor light emitting diode

Info

Publication number
JP2002246645A
JP2002246645A JP2001043142A JP2001043142A JP2002246645A JP 2002246645 A JP2002246645 A JP 2002246645A JP 2001043142 A JP2001043142 A JP 2001043142A JP 2001043142 A JP2001043142 A JP 2001043142A JP 2002246645 A JP2002246645 A JP 2002246645A
Authority
JP
Japan
Prior art keywords
group iii
single crystal
layer
light emitting
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001043142A
Other languages
Japanese (ja)
Other versions
JP3577463B2 (en
Inventor
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001043142A priority Critical patent/JP3577463B2/en
Priority to TW90133184A priority patent/TW523940B/en
Priority to US10/076,425 priority patent/US6541799B2/en
Publication of JP2002246645A publication Critical patent/JP2002246645A/en
Application granted granted Critical
Publication of JP3577463B2 publication Critical patent/JP3577463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-brightness Si substrate type group III nitride semiconductor LED from which a Si single crystal substrate is removed to reduce the absorption ratio of light emission by the Si substrate, without losing a mechanical strength. SOLUTION: The group III nitride semiconductor light emitting diode comprises at least a group III nitride semiconductor-made light emitting part having a p-n junction type hetero-junction structure laminated on the surface of a conductive silicon single crystal substrate through a metal or semiconductor intermediate layer, a backside electrode on the backside of the substrate, a surface electrode on the light emitting part at the surface side and a hole part formed by removing the Si single crystal substrate in regions of the single crystal substrate backside other than the backside electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はSi単結晶を基板と
するIII族窒化物半導体発光ダイオード(LED)にあ
って、単結晶基板に因る発光の吸収を低減した高発光強
度のpn接合ヘテロ構造型III族窒化物半導体発光LE
Dおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a group III nitride semiconductor light emitting diode (LED) using a Si single crystal as a substrate, and a pn junction heterojunction having a high luminous intensity and reduced light absorption due to the single crystal substrate. Structure type III nitride semiconductor light emitting LE
D and its manufacturing method.

【0002】[0002]

【従来技術】従来素子駆動電源の入・出力に優位となる
導電性並びに個別の素子に裁断するに利便な劈開性を呈
する代表的な半導体基板材料として、珪素(Si)単結
晶が周知である。最近では、珪素単結晶(シリコン)を
基板としてIII族窒化物半導体発光ダイオード(LE
D)を構成する技術が開示されている(Electro
n.Lett.,33(23)(1997)、1986
〜1987頁参照)。
2. Description of the Related Art Conventionally, silicon (Si) single crystal is well known as a typical semiconductor substrate material exhibiting conductivity which is superior to input / output of an element driving power supply and cleavage which is convenient for cutting into individual elements. . Recently, a group III nitride semiconductor light-emitting diode (LE) using silicon single crystal (silicon) as a substrate
D) is disclosed (Electro
n. Lett. , 33 (23) (1997), 1986.
1987 page).

【0003】Si単結晶を基板とするIII族窒化物半導
体LEDには、例えば窒化アルミニウム・ガリウム(A
aGa1-aN:0≦a≦1)と窒化ガリウム・インジウ
ム(GaaIn1-aN:0≦a≦1)から構成されるpn
接合型ダブルヘテロ(DH)構造の発光部が備えられて
いる(Appl.Phys.Lett.,72(4)
(1998)、415〜417頁参照)
[0003] Group III nitride semiconductor LEDs using a Si single crystal as a substrate include, for example, aluminum gallium nitride (A
l a Ga 1-a N: 0 ≦ a ≦ 1) and gallium indium nitride (Ga a In 1-a N : 0 ≦ a ≦ 1) pn consists
A light emitting portion having a junction type double hetero (DH) structure is provided (Appl. Phys. Lett., 72 (4)
(1998), pp. 415-417).

【0004】基板となるSi単結晶と発光部を構成する
III族窒化物半導体とは、格子不整合の関係にある。従
来技術としてはこの単結晶基板とLED発光部との間に
不整合を緩衝するために中間層を設ける提案が数多くな
されている。例えば格子不整合性を緩衝して良質の発光
部構成層を得るために窒化アルミニウム(AlN)から
なる中間層を設ける提案がある。(上記のAppl.P
hys.Lett.,及び特開平10−242586号
公報参照)。
Constituting a light emitting part with a Si single crystal serving as a substrate
The group III nitride semiconductor has a lattice mismatch. Many proposals have been made in the prior art to provide an intermediate layer between the single-crystal substrate and the LED light-emitting portion to buffer the mismatch. For example, there is a proposal to provide an intermediate layer made of aluminum nitride (AlN) in order to buffer lattice mismatch and obtain a high-quality light-emitting portion constituting layer. (The above Appl.P
hys. Lett. , And JP-A-10-242586).

【0005】また、リン化ガリウム(GaP)やSiの
如くの閃亜鉛鉱型(zinc−blend)単結晶基板
上にリン化硼素(BP)を緩衝層として設ける技術が知
られている(特開平2−275682号;特開平2−2
88371号;特開平2−288388号各公報明細書
参照)。さらに、Si単結晶基板上にチタン(Ti)等
の金属膜を中間層として設ける提案もある(特開200
0−261033号公報明細書参照)。さらにまた面方
位を{111}とするSi単結晶基板上に中間層として
窒化チタン(TiN)層或いはコバルト(Co)等の窒
化物層を配置する技術も開示されている(特開2000
−286449号公報明細書参照)。
Further, a technique is known in which boron phosphide (BP) is provided as a buffer layer on a zinc-blend type single crystal substrate such as gallium phosphide (GaP) or Si (Japanese Patent Laid-Open Publication No. HEI 9-26139). JP-A-2-275682;
88371; see JP-A-2-288388. Further, there is a proposal to provide a metal film such as titanium (Ti) as an intermediate layer on a Si single crystal substrate (Japanese Patent Application Laid-Open No. 200-200200).
0-261333). Furthermore, a technique has been disclosed in which a nitride layer such as a titanium nitride (TiN) layer or a cobalt (Co) layer is disposed as an intermediate layer on a Si single crystal substrate having a plane orientation of {111} (Japanese Patent Laid-Open No. 2000-2000).
-286449).

【0006】一方、Si単結晶の禁止帯幅は約1.1エ
レクトロンボルト(単位:eV)である(寺本 巌著、
「半導体デバイス概論」(1995年3月30日、
(株)培風館発行初版、28頁参照)。この禁止帯幅
(band gap)は、例えば、青色帯の発光に対応
する遷移エネルギーと比較して半分以下と小さい。この
ため、Si単結晶を基板として構成したLEDでは、II
I族窒化物半導体発光部より放射される短波長の発光が
Si単結晶基板に吸収されてしまう欠点がある。即ち、
Siを基板材料とするIII族窒化物半導体LEDでは、
Si単結晶基板に因る発光の吸収が避けられないため、
高輝度のIII族窒化物半導体LEDを得られ難いという
問題がある。
On the other hand, the band gap of a Si single crystal is about 1.1 electron volts (unit: eV) (Iwao Teramoto,
"Introduction to Semiconductor Devices" (March 30, 1995,
(See the first edition published by Baifukan Co., Ltd., page 28). This band gap is, for example, less than half as small as the transition energy corresponding to the emission in the blue band. For this reason, in an LED configured with a Si single crystal as a substrate, II
There is a disadvantage that short-wavelength light emitted from the group I nitride semiconductor light-emitting portion is absorbed by the Si single crystal substrate. That is,
In a group III nitride semiconductor LED using Si as a substrate material,
Since the absorption of light emission due to the Si single crystal substrate is inevitable,
There is a problem that it is difficult to obtain a high-luminance group III nitride semiconductor LED.

【0007】Siを基板とするIII族窒化物半導体LE
Dの発光強度を高めるために、Si基板と発光部との中
間に発光を外部へ反射させるためのブラッグ(Brag
g)反射(DBR)構造層を設ける技術手段が公知とな
っている(Mat.Res.Soc.Symp.Pro
c.,Vol.449(1997)、79〜84頁参
照)。従来例のDBR層は、アルミニウムの組成比(=
a)を相違するAlaGa1-aN(0≦a≦1)薄層を反
復して重層させた周期的積層構造から構成されている。
DBR層からの発光の反射率は、積層する周期単位を増
すことにより増大させられるが、積層操作が煩雑となる
問題点がある。
Group III nitride semiconductor LE using Si as substrate
In order to enhance the light emission intensity of D, Bragg for reflecting light emission to the outside between the Si substrate and the light emitting portion is used.
g) Technical means for providing a reflective (DBR) structure layer are known (Mat. Res. Soc. Symp. Pro).
c. , Vol. 449 (1997), pp. 79-84). The conventional DBR layer has a composition ratio of aluminum (=
It is composed of a periodic laminated structure in which thin layers of Al a Ga 1-a N (0 ≦ a ≦ 1) different from a) are repeatedly laminated.
The reflectance of light emitted from the DBR layer can be increased by increasing the number of periodic units to be stacked, but there is a problem that the stacking operation becomes complicated.

【0008】なお従来より、LEDの基板を除きLED
の発光強度を向上することは数多く提案されてはいる
が、単にLEDより基板部を除去するとLEDの機械的
強度を損なうことが避けられないためリーズナブルな対
応策が求められる。このためより簡便な技術手法を利用
して十分な機械的強度を有する高発光強度のIII族窒化
物半導体発光LEDを得る方法の開発が要望されてい
た。
Conventionally, except for the LED substrate, LED
Although many proposals have been made to improve the light emission intensity of the LED, it is inevitable that the mechanical strength of the LED will be impaired if the substrate is simply removed from the LED, so that a reasonable countermeasure is required. Therefore, development of a method for obtaining a group III nitride semiconductor light-emitting LED having a sufficient luminous intensity and having sufficient mechanical strength by using a simpler technique has been demanded.

【0009】[0009]

【発明が解決しようとする課題】本発明は、Si単結晶
を基板とするIII族窒化物半導体LEDにあって、LE
Dの機械的強度を失うことなく、LEDよりSi単結晶
基板を除去して、発光部からの発光がSi基板に吸収さ
れる度合いを低減し、高輝度のSi基板系III族窒化物
半導体LEDをもたらす技術手段の開発を目的とする。
SUMMARY OF THE INVENTION The present invention relates to a group III nitride semiconductor LED using a Si single crystal as a substrate.
Without removing the mechanical strength of D, the Si single crystal substrate is removed from the LED to reduce the degree to which light emitted from the light emitting portion is absorbed by the Si substrate, and a high-luminance Si-based group III nitride semiconductor LED The aim is to develop technical means to bring about.

【0010】[0010]

【課題を解決するための手段】即ち本発明は、[1]
導電性の珪素(Si)単結晶基板の表面上に、金属或い
は半導体からなる中間層を介して積層された、III族窒
化物半導体から構成されるpn接合型ヘテロ接合構造の
発光部を少なくとも含み、該単結晶基板の裏面に裏面電
極と、表面側の発光部上に表面電極とを備え、かつ上記
単結晶基板裏面の裏面電極以外の領域のSi単結晶基板
を除去して形成した穿孔部が設けられていることを特徴
とするIII族窒化物半導体発光ダイオード、
That is, the present invention provides [1]
Includes at least a light emitting portion of a pn junction type heterojunction structure composed of a group III nitride semiconductor, which is stacked on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer composed of a metal or a semiconductor. A perforated portion provided with a back electrode on the back surface of the single crystal substrate and a front electrode on the light emitting portion on the front surface, and formed by removing the Si single crystal substrate in a region other than the back electrode on the back surface of the single crystal substrate Is provided, a group III nitride semiconductor light emitting diode,

【0011】[2] Si単結晶基板の裏面電極が、連
続した一体の金属被膜電極である上記[1]に記載のII
I族窒化物半導体発光ダイオード、[3] Si単結晶
基板の裏面電極が、穿孔部の外周に連続した一体の金属
被膜電極として構成された上記[1]または[2]に記
載のIII族窒化物半導体発光ダイオード、
[2] The II as described in [1] above, wherein the back electrode of the Si single crystal substrate is a continuous and integral metal film electrode.
I-nitride semiconductor light-emitting diode, [3] The III-nitride according to [1] or [2], wherein the back electrode of the Si single crystal substrate is formed as an integral metal film electrode continuous with the outer periphery of the perforated portion. Object semiconductor light emitting diode,

【0012】[4] 穿孔部の底面が、上記の中間層で
ある上記[1]ないし[3]のいずれかに記載のIII族
窒化物半導体発光ダイオード、[5] 中間層が、リン
(P)を含むIII−V族化合物半導体膜から構成したも
のである上記[4]に記載のIII族窒化物半導体発光ダ
イオード、[6] 中間層がMN1-XX(式中、Mは硼
素以外のIII族元素を示し、Xは0<X≦1の範囲であ
る。)から構成したものである上記[4]または[5]
に記載のIII族窒化物半導体発光ダイオード、[7]
中間層がBX1-XP(式中、Mは硼素以外のIII族元素
を示し、Xは0<X≦1の範囲である。)から構成した
ものである上記[4]または[5]に記載のIII族窒化
物半導体発光ダイオード、[8] 中間層が、III族構
成元素またはV族構成元素の濃度に勾配を付して組成勾
配層としたものである上記[7]に記載のIII族窒化物
半導体発光ダイオード、
[4] The group III nitride semiconductor light-emitting diode according to any one of [1] to [3], wherein the bottom surface of the perforated portion is the above-mentioned intermediate layer, [5] The intermediate layer is made of phosphorus (P) ), The group III nitride semiconductor light emitting diode according to the above [4], wherein the intermediate layer is MN 1-X P X (where M is boron Wherein X is in the range of 0 <X ≦ 1.) [4] or [5].
Group III nitride semiconductor light emitting diode according to [7],
[4] or [4] wherein the intermediate layer is composed of B X M 1-X P (where M represents a Group III element other than boron and X is in the range of 0 <X ≦ 1). [5] The group III nitride semiconductor light-emitting diode according to [7], wherein the intermediate layer is a composition gradient layer obtained by giving a gradient to the concentration of the group III constituent element or the group V constituent element. The group III nitride semiconductor light-emitting diode according to

【0013】[9] 導電性のSi単結晶基板に低温緩
衝層、高温緩衝層からなる中間層を設け、続いてpn接
合型へテロ接合構造の下部クラッド層、発光層および上
部クラッド層からなる発光部を設ける前または該発光部
を設けた後に、Si単結晶基板裏面を中空筒状に穿孔し
て穿孔部を設けるとともに、残ったSi単結晶基板裏面
に第1導電形電極、上部クラッド層上面に第2導電形電
極を設けることを特徴とするIII族窒化物半導体発光ダ
イオードの製造方法、[10] 低温緩衝層がMOCV
D手段により250〜550℃で成長させた層であり、
高温緩衝層がMOCVD手段により750〜1200℃
で成長させた、上記[9]に記載のIII族窒化物半導体
発光ダイオードの製造方法、[11] 導電性のSi単
結晶基板に組成勾配緩衝層からなる中間層を設け、続い
てpn接合型へテロ接合構造の下部クラッド層、発光層
および上部クラッド層からなる発光部を設ける前または
該発光部を設けた後にSi単結晶基板裏面を中空筒状に
穿孔して穿孔部を設けるとともに、残ったSi単結晶基
板裏面に第1導電形電極、上部クラッド層上面に第2導
電形電極を設けることを特徴とするIII族窒化物半導体
発光ダイオードの製造方法、および[12] 導電性の
Si単結晶基板の面方位を{111}とした上記[9]
ないし[11]のいずれかに記載のIII族窒化物半導体
発光ダイオードの製造方法、[13] Si単結晶基板
の表面に中間層を設けた後、前記Si単結晶基板の裏面
を研削して該基板の厚さを300〜80μmとし、次い
でオーミック電極を敷設する領域以外の部分の単結晶基
板を除去して穿孔部を設ける上記[9]ないし[12]
のいずれかに記載のIII族窒化物半導体発光ダイオード
の製造方法、を開発することにより上記の課題を解決し
た。
[9] An intermediate layer composed of a low-temperature buffer layer and a high-temperature buffer layer is provided on a conductive Si single crystal substrate, followed by a lower cladding layer having a pn junction type heterojunction structure, a light emitting layer, and an upper cladding layer. Before or after providing the light emitting portion, the back surface of the Si single crystal substrate is perforated in a hollow cylindrical shape to form a perforated portion, and the first conductive type electrode and the upper cladding layer are formed on the remaining back surface of the Si single crystal substrate. A method of manufacturing a group III nitride semiconductor light emitting diode, wherein a second conductivity type electrode is provided on the upper surface, [10] The low temperature buffer layer is a MOCV
A layer grown at 250 to 550 ° C. by means D,
High temperature buffer layer is 750-1200 ° C by MOCVD means
[11] The method for manufacturing a group III nitride semiconductor light-emitting diode according to the above [9], wherein an intermediate layer made of a composition gradient buffer layer is provided on a conductive Si single crystal substrate, followed by a pn junction type Before or after providing the light emitting portion comprising the lower cladding layer, the light emitting layer and the upper cladding layer of the hetero junction structure, the back surface of the Si single crystal substrate is punched into a hollow cylindrical shape to provide a hole, and the remaining portion is provided. A method of manufacturing a group III nitride semiconductor light-emitting diode, wherein a first conductivity type electrode is provided on the back surface of the Si single crystal substrate and a second conductivity type electrode is provided on the upper clad layer, and [12] The above [9] wherein the plane orientation of the crystal substrate is {111}.
[13] The method for producing a group III nitride semiconductor light-emitting diode according to any one of [11] to [13], after providing an intermediate layer on the surface of the Si single crystal substrate, grinding the back surface of the Si single crystal substrate. [9] to [12] above, in which the thickness of the substrate is set to 300 to 80 μm, and the perforated portion is provided by removing the single crystal substrate in a portion other than the region where the ohmic electrode is laid.
The above-mentioned problem has been solved by developing a method for manufacturing a group III nitride semiconductor light-emitting diode according to any one of the above.

【0014】[0014]

【発明の実施の態様】本発明のIII族窒化物半導体発光
ダイオード(LED)は、面方位を{100}或いは
{111}または{110}等とする導電性のSi単結
晶を基板として構成できる。基板としては抵抗率が10
3Ω・cm以下、好ましくは101Ω・cm以下の導電性
を有するものであればn形、p形の何れのSi単結晶で
あっても利用できる。Si基板の導電性を利用して裏面
にオーミック(Ohmic)電極を敷設して簡易にLE
Dを構成することが必要であるため、高抵抗のアンドー
プSi単結晶は基板として好適には利用できない。{1
11}の結晶面には{100}等の結晶面に比較してS
i原子が稠密に存在しているため、面方位を{111}
としたSi単結晶を基板として利用したときは、中間層
からのそれを構成する元素のSi単結晶基板への拡散、
侵入をより抑止できるので化学量論的にも均衡のとれた
中間層とするに利便である。
BEST MODE FOR CARRYING OUT THE INVENTION The group III nitride semiconductor light emitting diode (LED) of the present invention can be constituted by using a conductive Si single crystal having a plane orientation of {100}, {111} or {110} as a substrate. . The substrate has a resistivity of 10
Any n-type or p-type Si single crystal can be used as long as it has a conductivity of 3 Ω · cm or less, preferably 10 1 Ω · cm or less. An ohmic electrode is laid on the back surface using the conductivity of the Si substrate, and LE
Since it is necessary to form D, a high-resistance undoped Si single crystal cannot be suitably used as a substrate. $ 1
The crystal plane of {11} is smaller than that of {100} etc.
Since the i-atoms exist densely, the plane orientation is {111}
When a Si single crystal was used as the substrate, the diffusion of the constituent elements from the intermediate layer into the Si single crystal substrate,
Since intrusion can be further suppressed, it is convenient to form a stoichiometrically balanced intermediate layer.

【0015】Si単結晶基板裏面のオーミック電極(裏
面電極=第1電極)を敷設する領域にあるSi単結晶は
残存させ、それ以外の領域のSi単結晶材料は公知のエ
ッチング技法を利用して除去する。裏面電極(第1電
極)を形成する領域に限定して基板材料を残存させるこ
ととすれば、基板全体を除去する場合に比較して、残存
する基板材料の保有する機械的強度を利用してより強固
にLEDを支持する効果がある。また、導電性の基板材
料を残存させることにより、その上には低接触抵抗のオ
ーミック性に優れる裏面電極(第1電極)がもたらされ
る効果がある。
The Si single crystal in the region where the ohmic electrode (back surface electrode = first electrode) is laid on the back surface of the Si single crystal substrate is left, and the Si single crystal material in the other region is formed by using a known etching technique. Remove. If the substrate material is left only in the region where the back electrode (first electrode) is to be formed, the mechanical strength of the remaining substrate material is utilized as compared with the case where the entire substrate is removed. This has the effect of supporting the LED more firmly. Also, by leaving the conductive substrate material, there is an effect that a back electrode (first electrode) having low contact resistance and excellent ohmic properties is provided thereon.

【0016】例えば、塩素(Cl)系気体を利用してプ
ラズマエッチング法で除去するか、または例えば、弗酸
(HF)と硝酸(HNO3)との混合液を使用する湿式
エッチング技法に依り除去しても良い。即ち、上記の裏
面電極を積層した以外の領域に存在するSi単結晶を選
択的に除去する際には、公知のフォトリソグラフィーを
利用した選択パターニングを介して実行できる。Si単
結晶を除去する領域は、必要とされる裏面電極以外の領
域を可及的広範囲とするのが望ましい。Si単結晶を除
去した領域の断面積を広くする程、Si基板材料に因る
発光部からの発光の吸収が避けられるために、外部へ透
光できる面積が増大し、発光強度の向上に寄与できる。
For example, it is removed by a plasma etching method using a chlorine (Cl) -based gas, or by a wet etching technique using a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO3). May be. That is, the selective removal of the Si single crystal existing in the region other than the region where the back electrode is stacked can be performed through selective patterning using known photolithography. It is desirable that the region from which the Si single crystal is removed has a region other than the required back electrode as wide as possible. As the cross-sectional area of the region from which the Si single crystal is removed is increased, the absorption of light emitted from the light-emitting portion due to the Si substrate material is avoided, so that the area that can transmit light to the outside increases, contributing to the improvement of light emission intensity. it can.

【0017】選択パターニングを施す領域の断面形状に
ついては、上記の理由からエッチング加工穿孔の容易性
と断面積の大きさ並びにIII族窒化物半導体LEDの機
械的強度の許容する範囲内で任意の形状を選択すること
ができる。例えば図1に示すような、裏面電極12以外
のSi単結晶11の裏面領域に円形の穿孔部13を唯一
設けてなるLEDの基板11の裏面11b側の構成があ
る。該円形の穿孔部は複数個配置することもできる。1
例としてSi単結晶基板11の裏面11bに複数の円形
の穿孔部13を設けた例を図2に示す。図1及び図2に
例示した穿孔部13の水平断面形状は円形としたが、楕
円形或いは円の一部をなす様な扇形等、簡便に選択パタ
ーニングが達成され、エッチング加工を果たせる円形状
であれば好適である。
The cross-sectional shape of the region to be subjected to selective patterning may be any shape within the allowable range of the easiness of etching drilling, the size of the cross-sectional area, and the mechanical strength of the group III nitride semiconductor LED for the reasons described above. Can be selected. For example, as shown in FIG. 1, there is a configuration on the back surface 11 b side of the LED substrate 11 in which only the circular perforated portion 13 is provided in the back surface region of the Si single crystal 11 other than the back surface electrode 12. A plurality of the circular perforations may be arranged. 1
FIG. 2 shows an example in which a plurality of circular perforations 13 are provided on the back surface 11b of the Si single crystal substrate 11. Although the horizontal cross-sectional shape of the perforated portion 13 illustrated in FIGS. 1 and 2 is circular, it is a circular shape such as an elliptical shape or a sector shape that forms a part of a circle, in which selective patterning can be easily achieved and etching can be performed. It is preferable if there is.

【0018】何れの形状にしても、発光強度の増大に
は、穿孔部の断面の形状による影響よりも穿孔部の合計
の断面積の面積に比例して発光強度が増加する。このた
め、Si単結晶の除去部分の断面積を、基板の除去に因
って発光部の機械的支持力が極端に低下しない程度にで
きるだけ広くすることが重要である。
Regardless of the shape, the luminous intensity increases in proportion to the area of the total cross-sectional area of the perforated portion, rather than the influence of the cross-sectional shape of the perforated portion. For this reason, it is important that the cross-sectional area of the portion where the Si single crystal is removed is made as wide as possible to the extent that the mechanical support force of the light emitting portion is not extremely reduced due to the removal of the substrate.

【0019】また穿孔部の断面形状を例えば正方形、長
方形、菱形、或いは平行四辺形などの方形とする穿孔部
を設けても良い。何れも、上記の実施形態に記した円形
状の穿孔部と同様に、穿孔部の断面形状をエッチング加
工に依って得られ易い形状としている。図3に{11
1}−Si単結晶基板11の裏面11bに断面形状を長
方形とする帯状の穿孔部13を設けた場合の構成を例示
する。断面形状を方形とする穿孔部を設けるにあって
も、穿孔部の総断面積を、基板の除去に因って発光部の
機械的支持力の極端な低下を招かない程度に広大とする
のが肝要である。Si基板を除去した断面積の拡張を期
して、複数の方形状の穿孔部を設置することができる。
Further, a perforated portion having a rectangular cross section such as a square, a rectangle, a rhombus, or a parallelogram may be provided. In any case, similarly to the circular perforated portion described in the above embodiment, the cross-sectional shape of the perforated portion is a shape that can be easily obtained by etching. 3 in FIG.
A configuration in which a band-shaped perforated portion 13 having a rectangular cross section is provided on the back surface 11b of the 1} -Si single crystal substrate 11 will be exemplified. Even when providing a perforated portion having a rectangular cross-sectional shape, the total cross-sectional area of the perforated portion should be wide enough to prevent an extreme decrease in the mechanical support force of the light emitting portion due to removal of the substrate. Is essential. In order to expand the cross-sectional area from which the Si substrate has been removed, a plurality of rectangular holes can be provided.

【0020】また穿孔部をいくつかの形状を連結させた
帯状の穿孔部を設けることもできる。円形状と方形状の
穿孔部を連結させて帯状の穿孔部としても支障はない。
方形状と円形状の穿孔部とを図4に例示する如く組み合
わせれば、方形状の穿孔部を単に設ける場合に比較し
て、より基板の除去面積を拡大でき、発光を透過できる
面積の拡大が果たせる。
It is also possible to provide a band-shaped perforated portion in which the perforated portions are connected in several shapes. There is no problem even if the circular and square perforated portions are connected to form a band-shaped perforated portion.
When the rectangular and circular perforations are combined as illustrated in FIG. 4, the removal area of the substrate can be further increased and the area through which light can be transmitted can be increased as compared with the case where the rectangular perforations are simply provided. Can be fulfilled.

【0021】上記した何れの水平断面形状の穿孔部であ
っても、その周囲には、基板裏面電極としてオーミック
電極を配置する。p形のSi基板には、金(Au)等の
金属被膜を被着させて裏面p形オーミック電極を形成す
る。n形のSi基板については、例えば、アルミニウム
(Al)またはアルミニウム・アンチモン(Al−S
b)合金などからn形オーミック電極を構成できる。裏
面電極は、Si基板の裏面上の互いに孤立した位置に複
数設置することもできるが、互いに電気的に連続した一
体とする様に設けるのが望ましい。
In any of the above-described perforated portions having a horizontal cross-sectional shape, an ohmic electrode is disposed as a back surface electrode of the substrate around the perforated portion. A metal film such as gold (Au) is applied to the p-type Si substrate to form a back-side p-type ohmic electrode. For an n-type Si substrate, for example, aluminum (Al) or aluminum-antimony (Al-S
b) An n-type ohmic electrode can be composed of an alloy or the like. Although a plurality of back electrodes can be provided at positions isolated from each other on the back surface of the Si substrate, it is preferable that the back electrodes be provided so as to be electrically continuous and integral with each other.

【0022】本発明のIII族窒化物半導体LEDにおけ
る穿孔部は、その底面を上記の中間層の結晶面とする。
即ち、穿孔部を中間層を構成する部位(必要な強度を保
持できる地点)に到達した時点で停止して、中間層の構
成層を穿孔部の底面として露呈させる。この場合には中
間層を底面とする穿孔部の深さはSi単結晶基板の厚さ
と略同等となる。また、中間層上に設けられた発光部層
の構成層を穿孔部の底面として構成することもできる。
しかし、発光部構成層を底面とすべく穿孔を進行させる
と、発光強度は増大するが、LEDの機械的強度を支持
する中間層が弱体化するためLEDが全体として薄層化
されるため機械的強度が劣化し、発光部を機械的に支持
するに支障を来すこととなる。従って基板をなすSi単
結晶の穿孔部を発光部の下方の中間層で停止して、底面
を中間層の構成層とすれば発光部を機械的に支持するに
好都合な構成となる。
The perforations in the group III nitride semiconductor LED of the present invention have the bottom surface as the crystal plane of the above-mentioned intermediate layer.
That is, the perforated portion is stopped when it reaches a portion constituting the intermediate layer (a point where the required strength can be maintained), and the constituent layer of the intermediate layer is exposed as the bottom surface of the perforated portion. In this case, the depth of the perforated portion having the intermediate layer as the bottom surface is substantially equal to the thickness of the Si single crystal substrate. Further, the constituent layer of the light emitting portion layer provided on the intermediate layer may be configured as the bottom surface of the perforated portion.
However, when the perforation is advanced to make the light-emitting portion constituting layer the bottom surface, the luminous intensity increases, but the intermediate layer supporting the mechanical strength of the LED is weakened, so that the LED is made thinner as a whole, As a result, the mechanical strength is deteriorated, which hinders the mechanical support of the light emitting unit. Therefore, if the perforated portion of the Si single crystal forming the substrate is stopped at the intermediate layer below the light emitting portion and the bottom surface is formed as a constituent layer of the intermediate layer, a configuration convenient for mechanically supporting the light emitting portion is obtained.

【0023】底面を中間層とする穿孔部は、Si単結晶
基板表面上に中間層を積層した後、中間層上に単一(s
ingle)または2重(double)異種(へテ
ロ)接合の発光部を設ける以前に形成することができ
る。しかし、この場合も穿孔部の形成過程を積層工程の
中途に挿入することが必要となるため積層工程が不連続
となり工程が冗長となる。また発光部を形成した後に形
成することもできる。一方Si単結晶基板の厚さが薄い
ほど、より簡単に穿孔部を形成することができる。従っ
てSi単結晶基板上表面に積層構造体(pn接合型へテ
ロ構造の発光部)を成長させた後、Si単結晶基板の裏
面に研磨加工を行い厚さを減じた後に穿孔すると簡単に
穿孔部を形成することができる。
The perforated portion having a bottom surface as an intermediate layer is formed by stacking an intermediate layer on the surface of a Si single crystal substrate and then forming a single (s) on the intermediate layer.
It can be formed before providing an ingle or double heterogeneous light emitting portion. However, also in this case, it is necessary to insert the process of forming the perforated portion in the middle of the laminating step, so that the laminating step is discontinuous and the step becomes redundant. Further, it can be formed after forming the light emitting portion. On the other hand, as the thickness of the Si single crystal substrate is smaller, the perforated portion can be formed more easily. Therefore, when a laminated structure (light-emitting portion having a pn junction type hetero structure) is grown on the upper surface of the Si single crystal substrate, the back surface of the Si single crystal substrate is polished to reduce the thickness, and then the hole is easily drilled. A part can be formed.

【0024】またラッピング(lapping)等の研
削手段によりSi単結晶基板の厚さを減少させて積層構
造体全体の厚みを減少させることにより、個別素子とす
るための裁断が容易に行える利点がある。Si単結晶基
板裏面の研削量を極端に大とし、徒に基板の厚さを減ず
ると、穿孔部の形成および個別素子への裁断は容易とな
るが、LEDを機械的強度を支持するには不十分とな
る。残存させるSi基板の厚さはおおよそ300〜80
μm、好ましくは250〜100μmとするのが好適で
ある。
[0024] Further, by reducing the thickness of the Si single crystal substrate by grinding means such as lapping or the like to reduce the thickness of the entire laminated structure, there is an advantage that cutting for individual elements can be easily performed. . If the amount of grinding on the back surface of the Si single crystal substrate is made extremely large and the thickness of the substrate is reduced, the formation of perforated portions and cutting into individual elements become easy, but in order to support the LED with mechanical strength Will be insufficient. The thickness of the remaining Si substrate is approximately 300 to 80
μm, preferably 250 to 100 μm.

【0025】中間層を窒化チタン(TiN)、窒化ジル
コニウム(ZrN)等の高融点金属に窒化物あるいはア
ルミニウムや金などの単体金属から構成する手段も考慮
される。しかし、単体金属膜では発光部よりの発光が吸
収される度合いが顕著に大きいため、中間層を金属膜か
ら構成すると、中間層で発光が吸収されあるいは遮蔽さ
れ、穿孔部より外部へ放出される発光の強度が極度に低
下する不都合が発生する場合がある。
Means for forming the intermediate layer from a high melting point metal such as titanium nitride (TiN) or zirconium nitride (ZrN) or a single metal such as aluminum or gold may be considered. However, since the degree of absorption of light emitted from the light emitting portion is remarkably large in a single metal film, when the intermediate layer is formed of a metal film, the light emission is absorbed or shielded by the intermediate layer and is emitted to the outside from the perforated portion. There may be a case where the intensity of light emission is extremely reduced.

【0026】また高融点金属の窒化物は窒素と金属元素
との化学量論的な当量比に依存して着色する場合があ
る。従って金属窒化物材料を用いて中間層を構成すると
その着色の程度により穿孔部から取り出せる発光の強度
が不安定となる場合がある。III族窒化物半導体LED
の発光部を形成する一般的なIII族窒化物半導体とほぼ
同等の格子定数を有する単体金属あるいは金属窒化物は
殆どない。このため、単体金属あるいは金属窒化物から
なる中間層は、格子ミスマッチにより結晶性に優れる発
光部を構成するIII族窒化物半導体層を積層するには必
ずしも好適とはならない。一方中間層を半導体材料から
構成すると、上記のごとく金属材料などで避けられない
中間層による発光の吸収を低減できる効果が得られる。
The nitride of the high melting point metal may be colored depending on the stoichiometric equivalent ratio between nitrogen and the metal element. Therefore, when the intermediate layer is formed using a metal nitride material, the intensity of light emitted from the perforated portion may become unstable depending on the degree of coloring. III-nitride semiconductor LED
There is hardly any single metal or metal nitride having a lattice constant substantially equal to that of a general group III nitride semiconductor forming the light emitting portion. For this reason, an intermediate layer made of a single metal or a metal nitride is not always suitable for laminating a group III nitride semiconductor layer constituting a light emitting portion having excellent crystallinity due to lattice mismatch. On the other hand, when the intermediate layer is made of a semiconductor material, the effect of reducing the absorption of light emitted by the intermediate layer, which is inevitable with the metal material as described above, is obtained.

【0027】従って、リンを含むIII−V族化合物半導
体からは、砒素(As)を構成元素とするIII−V族化
合物半導体に比較して機械的強度に優れる強固な中間層
を構成できる。また、砒化硼素(BAs)の融点は約1
000℃であるのに対し、リン化硼素(BP)のそれは
約3000℃と高い(寺本 巌著、「半導体デバイス概
論」(1995年3月30日、(株)培風館発行初版、
28頁参照)。このため、リン含有III−V族化合物半
導体からは、上層のIII族窒化物半導体層を堆積する際
の約1000℃を越える高温での工程にも耐熱性を発揮
する中間層を構成できる利点がある。
Therefore, a strong intermediate layer having excellent mechanical strength can be formed from a III-V compound semiconductor containing phosphorus as compared with a III-V compound semiconductor containing arsenic (As) as a constituent element. The melting point of boron arsenide (BAs) is about 1
3,000 ° C, whereas that of boron phosphide (BP) is as high as about 3000 ° C (Iwao Teramoto, “Introduction to Semiconductor Devices” (March 30, 1995, Baifukan Co., Ltd., first edition,
See page 28). Therefore, from the phosphorus-containing III-V compound semiconductor, there is an advantage that an intermediate layer exhibiting heat resistance can be formed even in a process at a high temperature exceeding about 1000 ° C. when depositing the upper group III nitride semiconductor layer. is there.

【0028】リン含有III−V族化合物半導体には、リ
ン化硼素(BP)、窒化リン化ガリウム(GaN
1-XX:0<X≦1)、窒化リン化アルミニウム(Al
1-XX:0<X≦1)、窒化リン化インジウム(In
1-XX:0<X≦1)およびリン化硼素アルミニウム
(BXAl1-XP:0<X≦1)、リン化硼素ガリウム
(BXGa1-XP:0<X≦1)、及びリン化硼素インジ
ウム(BXIn1-XP:0<X≦1)等が例示できる。中
間層の伝導形は基板とする導電性単結晶の伝導形に合致
させるのが普通である。
The phosphorus-containing III-V compound semiconductors include boron phosphide (BP) and gallium nitride phosphide (GaN).
1-X P X : 0 <X ≦ 1), aluminum nitride phosphide (Al
N 1 -X P X : 0 <X ≦ 1), indium phosphide nitride (In)
N 1 -X P X : 0 <X ≦ 1), aluminum boron phosphide (B X Al 1 -X P: 0 <X ≦ 1), gallium boron phosphide (B X Ga 1 -X P: 0 <X) ≦ 1), and indium boron phosphide (B X In 1-X P: 0 <X ≦ 1). The conduction type of the intermediate layer usually matches the conduction type of the conductive single crystal used as the substrate.

【0029】Si単結晶とは格子定数を異にする例え
ば、リン化硼素(BP)から緩衝層構成する場合、比較
的低温で成長させた緩衝層(低温緩衝層)は、Si単結
晶と多層構造体の構成層との格子ミスマッチ(mism
atch)を緩和して結晶性に優れる構成層をもたらす
のに有効に作用する。例えば、250℃以上500℃以
下の比較的低温で成膜したBP低温緩衝層は、約16.
5%に及ぶSi単結晶との格子ミスマッチ(庄野 克房
著、「半導体技術(上巻)」((財)東京大学出版会、
1992年6月25日発行9刷、77頁参照)を緩和し
て、ミスフィット転位等の結晶欠陥密度の少ない良質の
多層構造体の構成層をもたらすに効果を奏する(米国特
許US−6,069,021号参照)。
For example, when the buffer layer is made of boron phosphide (BP) having a different lattice constant from that of the Si single crystal, the buffer layer grown at a relatively low temperature (low temperature buffer layer) is composed of the Si single crystal and the multilayer. Lattice mismatch (mism) with the constituent layers of the structure
act) to effectively provide a constituent layer having excellent crystallinity. For example, a BP low-temperature buffer layer formed at a relatively low temperature of not less than 250 ° C. and not more than 500 ° C.
Lattice mismatch with 5% Si single crystal (Katsufusa Shono, "Semiconductor Technology (1st volume)" (The University of Tokyo Press,
(See, 9th printing, June 25, 1992, p. 77), which is effective in providing a constituent layer of a high-quality multilayer structure having a low density of crystal defects such as misfit dislocations (US Pat. 069,021).

【0030】中間層をIII族構成元素またはV族構成元
素の濃度勾配を付した結晶層から構成すると、Si単結
晶基板と上層の例えば、III族窒化物半導体層との格子
ミスマッチを緩和するに好都合となる。例えば、Si単
結晶基板に接合する界面でのインジウム(In)組成比
を0.67とし、表面に向けてインジウム組成比を減少
させたリン化硼素・インジウム(BXIn1-XP:0<X
≦1)層からは、Si単結晶との格子ミスマッチを緩和
しつつ、上層として結晶性に優れる例えば、窒化リン化
ガリウム(GaN1-XX:0<X≦1)結晶層をもたら
す中間層が構成できる。格子ミスマッチに起因する転位
等の結晶欠陥の少ない結晶性に優れるIII族窒化物半導
体層をもたらせる組成勾配を付した中間層は、窒化リン
化アルミニウム(AlN1-XX:0<X≦1)、窒化リ
ン化インジウム(InN1−XPX:0<X≦1)等か
ら構成できる。
When the intermediate layer is formed of a crystal layer having a concentration gradient of a group III constituent element or a group V constituent element, the lattice mismatch between the Si single crystal substrate and the upper layer, for example, a group III nitride semiconductor layer can be reduced. It will be convenient. For example, indium (In) composition ratio at the interface of bonding the Si single crystal substrate was 0.67, boron indium phosphide having a reduced indium composition ratio toward the front surface (B X In 1-X P : 0 <X
≦ 1), an intermediate layer that provides, for example, a gallium phosphide nitride (GaN 1-X P X : 0 <X ≦ 1) crystal layer having excellent crystallinity as an upper layer while alleviating lattice mismatch with a Si single crystal. Layers can be configured. The intermediate layer having a composition gradient that can provide a group III nitride semiconductor layer excellent in crystallinity with few crystal defects such as dislocations due to lattice mismatch is formed of aluminum nitride phosphide (AlN 1−X P X : 0 <X) ≦ 1), indium phosphide nitride (InN1-XPX: 0 <X ≦ 1) or the like.

【0031】本発明のIII族窒化物半導体LEDの中間
層における組成勾配層は、例えば窒化リン化ガリウム
(GaN1-XX:0<X≦1)等の組成式MN1-X
X(0<X≦1、MはIII族元素を表す。)混晶であっ
て、構成元素である窒素(N)以外のリン(P)の組成
比(=X)を層厚の増加方向に減少させ、それに対応し
て窒素組成比(=1−X)を増加させて構成する。組成
の勾配様式は、直線状、曲線状、或いは段階状等とする
ことができる(特開2000−22211号公報明細書
参照)。組成勾配を有する中間層は、同層の成膜時に成
長反応系内に添加する窒素、リンの供給源の添加量を経
時的に変化させることにより形成できる。V族元素の組
成に勾配を付した中間層は、Si単結晶基板との格子ミ
スマッチを緩和して結晶性に優れるIII族窒化物半導体
層をもたらす作用を有する。
The composition gradient layer in the intermediate layer of the group III nitride semiconductor LED of the present invention is composed of, for example, gallium nitride phosphide (GaN 1-X P X : 0 <X ≦ 1) or the like with a composition formula MN 1-X P
X (0 <X ≦ 1, M represents a group III element) is a mixed crystal, and the composition ratio (= X) of phosphorus (P) other than nitrogen (N), which is a constituent element, is determined by the increasing direction of the layer thickness. And the nitrogen composition ratio (= 1−X) is correspondingly increased. The gradient of the composition may be linear, curved, or stepwise (see Japanese Patent Application Laid-Open No. 2000-22211). The intermediate layer having a composition gradient can be formed by changing the addition amount of the supply source of nitrogen and phosphorus added to the growth reaction system at the time of forming the same layer. The intermediate layer in which the composition of the group V element is graded has the effect of relaxing the lattice mismatch with the Si single crystal substrate to provide a group III nitride semiconductor layer having excellent crystallinity.

【0032】また、中間層はIII族構成元素の組成に勾
配を付したリン含有III−V族化合物半導体結晶層から
構成できる。特に、III族構成元素として硼素(B)を
含む例えば、リン化硼素ガリウム(BXGa1-XP:0<
X≦1)、リン化硼素インジウム(BXIn1-XP:0<
X≦1)等の組成式BX1-XP(0<X≦1、MはIII
族元素を表す。)で表記されるリン化硼素(BP)系混
晶からSi単結晶基板との格子ミスマッチを緩和するに
有効な中間層を構成できる。複数のIII族構成元素と唯
一のV族構成元素から構成されるIII−V族化合物半導
体では、硼素またはその他のIII族構成元素の組成に勾
配を付して中間層を構成する。
The intermediate layer can be composed of a phosphorus-containing III-V compound semiconductor crystal layer having a gradient in the composition of the group III constituent elements. In particular, for example, including boron (B) as a Group III constituent element, boron phosphide gallium (B X Ga 1-X P : 0 <
X ≦ 1), indium boron phosphide (B X In 1-X P: 0 <
Composition formula B X M 1-X P (0 <X ≦ 1, M is III
Represents a group element. The boron phosphide (BP) -based mixed crystal described in ()) can form an intermediate layer effective for alleviating lattice mismatch with a Si single crystal substrate. In a group III-V compound semiconductor composed of a plurality of group III constituent elements and a single group V constituent element, an intermediate layer is formed by giving a gradient to the composition of boron or other group III constituent elements.

【0033】特に、Si単結晶を基板とする場合にあっ
て、層厚の増加方向に硼素(B)の組成比(=X)を増
加させ、逆にガリウム(Ga)またはインジウム(I
n)等の他のIII族構成元素の組成比を減ずる様に組成
勾配を付した組成勾配層は中間層として好適に利用でき
る。
In particular, when a substrate is made of Si single crystal, the composition ratio (= X) of boron (B) is increased in the direction of increasing the layer thickness, and conversely, gallium (Ga) or indium (I
A composition gradient layer having a composition gradient so as to reduce the composition ratio of other group III constituent elements such as n) can be suitably used as an intermediate layer.

【0034】例えば、Si単結晶基板との接合界面での
硼素組成比(=X)を0.02とし、表面での硼素組成
比を1.0とした BXGa1-XPは、Si単結晶(格子
定数=5.431Å)基板に格子整合し、且つ窒素組成
比を0.97とする窒化リン化ガリウム(GaN0.97
0.03:格子定数=4.538Å)にも格子整合を果たす
中間層として有用となる。III族元素の組成に勾配を付
した中間層は、例えば、MOCVD法による中間層の成
膜時に、反応系へのIII族構成元素原料となす有機金属
化合物の供給量を経時的に変化させることにより形成で
きる。
For example, when the boron composition ratio (= X) at the bonding interface with the Si single crystal substrate is 0.02 and the boron composition ratio at the surface is 1.0, B X Ga 1 -X P is Gallium phosphide (GaN 0.97 P) lattice-matched to a single crystal (lattice constant = 5.431 °) substrate and having a nitrogen composition ratio of 0.97
0.03 : lattice constant = 4.538 °), which is useful as an intermediate layer that achieves lattice matching. The intermediate layer having a gradient in the composition of the group III element can be obtained by, for example, changing the supply amount of the organometallic compound serving as the group III constituent element material to the reaction system over time when forming the intermediate layer by the MOCVD method. Can be formed.

【0035】本発明のIII族窒化物半導体LEDにおい
て、導電性の珪素(Si)単結晶基板の表面上に半導体
からなる中間層を介して積層されたIII族窒化物半導体
導体から構成されるpn接合型ヘテロ接合構造の発光部
を含み、該単結晶基板の裏面に裏面電極と表面側の発光
部上に表面電極とを備えてなるIII族窒化物半導体発光
ダイオードに於いて、上記単結晶基板裏面領域の裏面電
極以外の領域の上記Si単結晶基板を除去して形成した
穿孔部は、発光部よりの発光を外部に取り出す部分を構
成する。
In the group III nitride semiconductor LED of the present invention, a pn composed of a group III nitride semiconductor conductor laminated on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer made of a semiconductor. A III-nitride semiconductor light-emitting diode comprising a light-emitting portion having a junction-type heterojunction structure and comprising a back electrode on the back surface of the single-crystal substrate and a front electrode on the light-emitting portion on the front surface side; The perforated portion formed by removing the Si single crystal substrate in a region other than the back surface electrode in the back surface region forms a portion for extracting light emitted from the light emitting portion to the outside.

【0036】本発明III族窒化物半導体発光ダイオード
の穿孔部の底面を構成する中間層は、穿孔部上に設けら
れた発光部を強固に支持する作用を有する。特に、本発
明の穿孔部の底面のなす面方位を{111}面とした中
間層は、中間層を構成する元素のSi単結晶基板への拡
散侵入を抑制するとともに、上部に設けられた発光部を
より強固に支持する部分を構成する。
The intermediate layer forming the bottom surface of the perforated portion of the group III nitride semiconductor light emitting diode of the present invention has a function of firmly supporting the light emitting portion provided on the perforated portion. In particular, the intermediate layer in which the plane orientation formed by the bottom surface of the perforated portion according to the present invention has a {111} plane suppresses the diffusion of elements constituting the intermediate layer into the Si single crystal substrate and emits light provided on the top. It constitutes a part that supports the part more firmly.

【0037】本発明III族窒化物半導体発光ダイオード
のリン(P)を含むIII−V族化合物半導体膜から構成
される中間層は、Si単結晶基板の裏面に穿孔を施すに
際し穿孔加工に伴う損傷、浸食が発光部へ及ぶのを防止
する耐化学性等に優れる中間層を形成する。
The intermediate layer composed of the III-V compound semiconductor film containing phosphorus (P) of the group III nitride semiconductor light emitting diode of the present invention is damaged by the perforation processing when perforating the back surface of the Si single crystal substrate. Forming an intermediate layer having excellent chemical resistance for preventing erosion from reaching the light emitting portion.

【0038】特に、III族構成元素またはV族構成元素
の組成に勾配を付した組成勾配層から構成した中間層
は、Si単結晶基板と上層のIII族窒化物半導体層との
格子ミズマッチを緩和して、結晶欠陥密度の小さい良質
のIII族窒化物半導体層をもたらすと共に、発光部を構
成するこれらIII族窒化物半導体層を強固に支持する作
用を有する。
In particular, the intermediate layer composed of a composition gradient layer having a gradient in the composition of the group III constituent element or the group V constituent element relaxes the lattice mismatch between the Si single crystal substrate and the upper group III nitride semiconductor layer. As a result, a high-quality group III nitride semiconductor layer having a low crystal defect density is provided, and the group III nitride semiconductor layer constituting the light emitting portion is firmly supported.

【0039】低温緩衝層および高温緩衝層からなる中間
層を有するIII族窒化物半導体LEDは、例えば次の方
法により製造することができる。基板材料としてn形ま
たはp形{111}−Si単結晶基板を使用し、その上
に設ける高温緩衝層より低温で形成される低温緩衝層お
よび前記低温緩衝層上に設けた低温緩衝層より高温で形
成される高温緩衝層からなる中間層を設ける。低温緩衝
層としては、MOCVD手段により約250〜550℃
において低温成長させた非晶質を主体とするリン化硼素
層を成長させ、次いで約750〜1200℃においてM
OCVD手段により単体のリン化硼素単結晶層を成長さ
せる。高温緩衝層はLEDの機械的強度を保持させるた
めのものであり、比較的機械的強度に優れたIII−V族
化合物半導体から選ばれ、低温緩衝層は基板と高温緩衝
層の積層を補助する化合物層を使用する。
A group III nitride semiconductor LED having an intermediate layer consisting of a low-temperature buffer layer and a high-temperature buffer layer can be manufactured, for example, by the following method. An n-type or p-type {111} -Si single crystal substrate is used as a substrate material, and a low-temperature buffer layer formed at a lower temperature than a high-temperature buffer layer provided thereon and a higher temperature than a low-temperature buffer layer provided on the low-temperature buffer layer An intermediate layer consisting of a high-temperature buffer layer formed by the above is provided. As the low-temperature buffer layer, about 250 to 550 ° C. by MOCVD means
At 750-1200 ° C. to form an amorphous boron phosphide layer grown at a low temperature.
A single boron phosphide single crystal layer is grown by OCVD means. The high-temperature buffer layer is for maintaining the mechanical strength of the LED, and is selected from a group III-V compound semiconductor having relatively excellent mechanical strength, and the low-temperature buffer layer assists the lamination of the substrate and the high-temperature buffer layer. Use a compound layer.

【0040】中間層の上には、下部クラッド層、発光層
および上部クラッド層からなる発光部を積層する。下部
クラッド層は高温緩衝層に格子整合するn形またはp形
III族窒化物半導体結晶層、例えばBP高温緩衝層に整
合するGaN0.970.03結晶層を850〜1200℃に
おいて設ける。その上に上記下部クラッド層よりも低温
でn形またはp形のIII族窒化物半導体層を成膜する。
この発光層は量子井戸構造であっても良い。上部クラッ
ド層は下部クラッド層とは反対の伝導系を呈するp形ま
たはn形のIII族窒化物半導体層とする。次にエッチン
グした基板残部に第1導電形電極を上部クラッド層に第
2導電形電極を設けてIII族窒化物半導体LEDとす
る。
On the intermediate layer, a light emitting portion composed of a lower cladding layer, a light emitting layer and an upper cladding layer is laminated. Lower cladding layer is n-type or p-type lattice-matched to high-temperature buffer layer
A group III nitride semiconductor crystal layer, for example, a GaN 0.97 P 0.03 crystal layer matching the BP high temperature buffer layer is provided at 850-1200 ° C. An n-type or p-type group III nitride semiconductor layer is formed thereon at a lower temperature than the lower cladding layer.
This light emitting layer may have a quantum well structure. The upper cladding layer is a p-type or n-type group III nitride semiconductor layer having a conduction system opposite to that of the lower cladding layer. Next, a first-conductivity-type electrode is provided on the etched remaining part of the substrate, and a second-conductivity-type electrode is provided on the upper cladding layer, to obtain a group III nitride semiconductor LED.

【0041】なお穿孔部は、基板に中間層を積層した以
降、基板と中間層および発光部を積層した後の間の何れ
の工程において穿孔を行っても良い。なお穿孔に先立
ち、Si基板裏面をラッピングして約300〜80μm
の厚さに研磨した後、フッ酸および硝酸の混合液を用い
約10〜30℃で湿式エッチングにより穿孔することが
好ましい。
The perforated portion may be perforated in any step after the lamination of the intermediate layer on the substrate and after the lamination of the intermediate layer and the light emitting portion on the substrate. Prior to drilling, wrap the back surface of the Si substrate to about 300-80 μm
After polishing to a thickness of, it is preferable to perform perforation by wet etching at about 10 to 30 ° C. using a mixed solution of hydrofluoric acid and nitric acid.

【0042】また中間層として組成勾配緩衝層を有する
III族窒化物半導体LEDは、例えば次の方法により製
造することができる。基板材料としてn形またはp形
{111}−Si単結晶基板を使用し、この基板上にリ
ン化硼素ガリウムをMOCVD手段により層厚の増加方
向に硼素含有量を増加した組成勾配緩衝層を成膜する。
成長時にはSi単結晶と同じ格子定数が得られるように
硼素濃度を規制し、最終時にはその上層になる下部クラ
ッド層と同じ程度の格子定数が得られるようにガリウム
源を減量する。組成勾配緩衝層はおよそ600〜120
0℃の温度で成長することができる。成長の際、温度は
一定に保っても良いし、途中で変化させても良い。この
組成勾配緩衝層上に下部クラッド層、発光層および上部
クラッド層からなる発光部を積層する。
Further, a composition gradient buffer layer is provided as an intermediate layer.
The group III nitride semiconductor LED can be manufactured, for example, by the following method. An n-type or p-type {111} -Si single crystal substrate is used as a substrate material, and a composition gradient buffer layer in which boron content is increased in the direction of increasing the layer thickness by MOCVD means on this substrate is formed by gallium boron phosphide. Film.
At the time of growth, the boron concentration is regulated so as to obtain the same lattice constant as that of the Si single crystal, and the gallium source is reduced at the final stage so as to obtain the same lattice constant as that of the lower clad layer formed thereon. The composition gradient buffer layer is approximately 600 to 120
It can grow at a temperature of 0 ° C. During the growth, the temperature may be kept constant or may be changed midway. On this composition gradient buffer layer, a light emitting portion composed of a lower cladding layer, a light emitting layer and an upper cladding layer is laminated.

【0043】下部クラッド層は、組成勾配層に格子整合
するp形III族窒化物半導体層であり、MOCVD手段
により約850〜1200℃で成長させる。次いで発光
層はクラッド層と格子整合するp形III族窒化物半導体
層であり、該層は量子井戸構造であっても良い。上部ク
ラッド層はn形III族窒化物半導体結晶層であり、MO
CVD手段により成膜される。第1導電形電極はアルミ
ニウムまたはその合金を、第2導電形電極は金またはそ
の合金を使用する。以下実施例により具体的に説明す
る。
The lower cladding layer is a p-type group III nitride semiconductor layer lattice-matched to the composition gradient layer, and is grown at about 850 to 1200 ° C. by MOCVD. Next, the light emitting layer is a p-type group III nitride semiconductor layer lattice-matched to the cladding layer, and this layer may have a quantum well structure. The upper cladding layer is an n-type group III nitride semiconductor crystal layer,
The film is formed by CVD means. The first conductivity type electrode uses aluminum or its alloy, and the second conductivity type electrode uses gold or its alloy. Hereinafter, specific examples will be described.

【0044】[0044]

【実施例】(実施例1)裏面に円形の穿孔部を設けたS
i単結晶を基板としたIII族窒化物半導体LEDを例に
して本発明を具体的に説明する。図5に本実施例に係わ
るLED10の断面構造を模式的に示す。
(Embodiment 1) S having a circular perforation on the back surface
The present invention will be specifically described by taking a group III nitride semiconductor LED using an i single crystal as a substrate as an example. FIG. 5 schematically shows a cross-sectional structure of the LED 10 according to the present embodiment.

【0045】基板101には、硼素(B)ドープp形
(100)−Si単結晶を用いた。基板101上にはリ
ン化硼素(BP)からなる低温緩衝層102を堆積し
た。低温緩衝層102はトリエチル硼素((C253
B)/ホスフィン(PH3)/水素(H2)系常圧MOC
VD法により、350℃で成長させた。緩衝層102の
層厚は約14nmとした。低温緩衝層102の表面に
は、上記のMOCVD気相成長手段を利用して、950
℃でマグネシウム(Mg)をドーピングしたp形BP層
を高温緩衝層103として積層した。マグネシウムのド
ーピング源にはビスシクロペンタジエニルマグネシウム
(分子式:bis−(C542Mg)を用いた。高温
緩衝層103のキャリア濃度は約7×1018cm-3とし
た。層厚は約350nmとした。
As the substrate 101, a boron (B) -doped p-type (100) -Si single crystal was used. On the substrate 101, a low-temperature buffer layer 102 made of boron phosphide (BP) was deposited. The low-temperature buffer layer 102 is made of triethyl boron ((C 2 H 5 ) 3
B) / phosphine (PH 3 ) / hydrogen (H 2 ) based atmospheric pressure MOC
It was grown at 350 ° C. by the VD method. The thickness of the buffer layer 102 was about 14 nm. On the surface of the low-temperature buffer layer 102, 950 is applied using the MOCVD vapor deposition means described above.
A p-type BP layer doped with magnesium (Mg) at ° C. was laminated as a high-temperature buffer layer 103. Biscyclopentadienyl magnesium doping source of magnesium (molecular formula: bis- (C 5 H 4) 2 Mg) were used. The carrier concentration of the high-temperature buffer layer 103 was about 7 × 10 18 cm −3 . The layer thickness was about 350 nm.

【0046】高温緩衝層103上には、リン(P)組成
比を0.03(=3%)とするマグネシウムドープp形
窒化リン化ガリウム(組成式:GaN0.970.03)層を
下部クラッド層104として積層した。GaN0.97
0.03層は、トリメチルガリウム((CH33Ga)/P
H3/アンモニア(NH3)/H2系常圧MOCVD法に
より950℃で成長させた。立方晶となったp形GaN
0.970.03層のキャリア濃度は約8×1017cm-3
し、層厚は約85nmとした。
On the high temperature buffer layer 103, a magnesium-doped p-type gallium phosphide (composition formula: GaN 0.97 P 0.03 ) layer having a phosphorus (P) composition ratio of 0.03 (= 3%) is formed as a lower cladding layer. It was laminated as 104. GaN 0.97 P
The 0.03 layer is made of trimethylgallium ((CH 3 ) 3 Ga) / P
It was grown at 950 ° C. by an H3 / ammonia (NH 3 ) / H 2 system atmospheric pressure MOCVD method. Cubic p-type GaN
The carrier concentration of the 0.97 P 0.03 layer was about 8 × 10 17 cm −3 , and the layer thickness was about 85 nm.

【0047】下部クラッド層104上には、n形窒化ガ
リウム・インジウム(組成式GaXIn1-XN:0≦X≦
1)からなる発光層105を積層させた。発光層105
をなす珪素(Si)ドープGaXIn1-XN層は、(CH
33Ga/トリメチルインジウム((CH33In)/
ジシラン(Si26)/NH3/H2系常圧MOCVD法
により、850℃で成長させた。発光層105の平均的
なインジウム(In)組成比は0.10であった。発光
層105の層厚は約80nmとした。キャリア濃度は約
3×1018cm-3に設定した。
On the lower cladding layer 104, an n-type gallium indium nitride (composition formula Ga X In 1 -X N: 0 ≦ X ≦
The light emitting layer 105 of 1) was laminated. Light emitting layer 105
(Si) -doped Ga x In 1 -x N layer
3 ) 3 Ga / trimethylindium ((CH 3 ) 3 In) /
It was grown at 850 ° C. by a disilane (Si 2 H 6 ) / NH 3 / H 2 system normal pressure MOCVD method. The average indium (In) composition ratio of the light-emitting layer 105 was 0.10. The layer thickness of the light emitting layer 105 was about 80 nm. The carrier concentration was set to about 3 × 10 18 cm −3 .

【0048】Ga0.90In0.10N発光層105上には、
アルミニウム(Al)組成に勾配を付した珪素(Si)
ドープn形窒化アルミニウム・ガリウム混晶(Alγ
1- γN)層を上部クラッド層106として積層した。
Al組成比(=γ)は、層厚の増加方向に0.2から0
(零)に単調に略直線的に減少させた。層厚は200n
mとした。
On the Ga 0.90 In 0.10 N light emitting layer 105,
Silicon (Si) with graded aluminum (Al) composition
Doped n-type aluminum nitride-gallium mixed crystal (Al γ G
a 1 -γN ) layer was laminated as the upper cladding layer 106.
The Al composition ratio (= γ) ranges from 0.2 to 0 in the increasing direction of the layer thickness.
(Zero) monotonically decreased substantially linearly. 200n layer thickness
m.

【0049】上記のp形GaN0.970.03下部クラッド
層104、n形Ga0.90In0.10N発光層105、及び
n形AlγGa1-γN組成勾配層からなる上部クラッド
層106からpn接合型ダブルヘテロ接合構造の発光部
107を構成した。
The lower cladding layer 104 composed of the p-type GaN 0.97 P 0.03 lower cladding layer 104, the n-type Ga 0.90 In 0.10 N light-emitting layer 105, and the n-type Al γ Ga 1-γ N composition gradient layer is used to form a pn junction type. The light emitting section 107 having a double hetero junction structure was formed.

【0050】公知のフォトリソグラフィー技術と選択エ
ッチング技術を利用して、図6に示す如く、p形Si単
結晶基板101の裏面の中央部を、底面の直径を約15
0μmとする中空筒状に穿孔した。穿孔部109は弗酸
(HF)と硝酸(HNO3)の混合液によりSi単結晶
をエッチングして除去して形成した。穿孔部109の深
さは基板101の層厚に相当する約300μmとした。
エッチングは穿孔部109の底面109aにBP低温緩
衝層102が露出する迄、進行させた。穿孔部109の
周囲に残置させたSi単結晶基板101上には、金(A
u)被膜からなるp形オーミック電極110を配置し
た。上部クラッド層106表面の中央には、金(Au)
からなる円形のオーミック電極108を配置した。n形
オーミック電極108の直径は約130μmとした。穿
孔部109の円形底面109aの中心と表面オーミック
電極108の水平形状の中心とは合致させた。
Using a known photolithography technique and a selective etching technique, as shown in FIG.
It was perforated into a hollow cylindrical shape having a thickness of 0 μm. The perforated portion 109 was formed by etching and removing a Si single crystal with a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ). The depth of the perforated portion 109 was set to about 300 μm corresponding to the thickness of the substrate 101.
The etching was allowed to proceed until the BP low-temperature buffer layer 102 was exposed on the bottom surface 109a of the perforated portion 109. Gold (A) is formed on the Si single crystal substrate 101 left around the perforated portion 109.
u) A p-type ohmic electrode 110 made of a coating was arranged. In the center of the surface of the upper cladding layer 106, gold (Au)
A circular ohmic electrode 108 made of The diameter of the n-type ohmic electrode 108 was about 130 μm. The center of the circular bottom surface 109a of the perforated portion 109 was aligned with the center of the horizontal shape of the surface ohmic electrode 108.

【0051】両オーミック電極108,110間にLE
D駆動用電流を通流した。電流−電圧(I−V特性)は
発光部107の良好なpn接合特性に基づく正常な整流
特性を示した。I−V特性から求めた順方向電圧(所
謂、Vf)は約3V(順方向電流=20mA)となっ
た。また、逆方向電圧は約15V(逆方向電流=10μ
A)となった。順方向に20ミリアンペア(mA)の動
作電流を通流した際には、発光中心波長を約470nm
とする青色光が出射された。発光スペクトルの半値幅は
約18nmであった。一般的な積分球を利用して測定さ
れるチップ状態での発光強度は約18マイクロワット
(μW)となり、高発光強度のIII族窒化物半導体発光
素子が提供された。
LE between both ohmic electrodes 108 and 110
D drive current was passed. The current-voltage (IV characteristics) showed normal rectification characteristics based on good pn junction characteristics of the light emitting unit 107. The forward voltage (so-called Vf) obtained from the IV characteristics was about 3 V (forward current = 20 mA). The reverse voltage is about 15 V (reverse current = 10 μm).
A). When an operating current of 20 milliamperes (mA) is passed in the forward direction, the emission center wavelength is about 470 nm.
Blue light was emitted. The half width of the emission spectrum was about 18 nm. The light emission intensity in a chip state measured using a general integrating sphere was about 18 microwatts (μW), and a group III nitride semiconductor light emitting device with high light emission intensity was provided.

【0052】(実施例2)リン(P)ドープn形{11
1}−Si単結晶基板201上に、ジボラン(分子式:
26)/(CH33Ga/PH3/H2系減圧MOCV
D法で650℃で、硼素(B)組成比(=X)を層厚の
増加方向に増加させたリン化硼素・ガリウム(組成式:
XGa1-XP)組成勾配層からなる緩衝層202を積層
させた。成長時の反応系の圧力は約1.3×104パス
カル(単位:Pa)に設定した。緩衝層202の層厚は
0.8μmとした。BXGa1-XP組成勾配層202のS
i単結晶201との接合面での硼素(B)組成比(=
X)は、Si単結晶と同一の格子定数(=5.431
Å)が得られる0.02とした。また、表面での硼素組
成比は、上層のGaN0.970.03下部クラッド層と同一
の格子定数(=4.538Å)を獲る1.0とした。硼
素組成比(=X)は緩衝層202の層厚の増加方向に直
線的に増加させた。硼素組成比はMOCVD反応系への
硼素源としてのジボランの供給量を経時的に増量させ、
逆にガリウム(Ga)源としてのトリメチルガリウム
((CH33Ga)の供給量を減量させて変化させた。
XGa1-XP組成勾配層202の成長時には、ジシラン
(Si26)−H2混合ガスを使用して珪素(Si)を
ドーピングした。
Example 2 Phosphorus (P) -doped n-type # 11
On a 1 ラ ン -Si single crystal substrate 201, diborane (molecular formula:
B 2 H 6) / (CH 3) 3 Ga / PH 3 / H 2 system vacuum MOCV
Boron phosphide / gallium phosphide (composition formula: B) in which the boron (B) composition ratio (= X) is increased in the direction of increasing the layer thickness at 650 ° C. by the method D.
A buffer layer 202 composed of a (B X Ga 1 -X P) composition gradient layer was laminated. The pressure of the reaction system during growth was set to about 1.3 × 10 4 Pascal (unit: Pa). The thickness of the buffer layer 202 was 0.8 μm. S of the B X Ga 1-X P composition gradient layer 202
Boron (B) composition ratio at the interface with the i-single crystal 201 (=
X) is the same lattice constant as the Si single crystal (= 5.431)
Å) was set to 0.02 so that Å) was obtained. The boron composition ratio on the surface was set to 1.0 which obtains the same lattice constant (= 4.538 °) as that of the upper GaN 0.97 P 0.03 lower cladding layer. The boron composition ratio (= X) was linearly increased in the direction in which the thickness of the buffer layer 202 increased. The boron composition ratio increases the supply amount of diborane as a boron source to the MOCVD reaction system with time,
Conversely, the supply amount of trimethylgallium ((CH 3 ) 3 Ga) as a gallium (Ga) source was reduced and changed.
During the growth of B X Ga 1-X P compositional gradient layer 202, doped with silicon (Si) using disilane (Si 2 H 6) -H 2 mixed gas.

【0053】BXGa1-XP組成勾配緩衝層202上に
は、リン(P)組成比を0.03(=3%)とする珪素
(Si)ドープn形窒化リン化ガリウム(組成式:Ga
0.970.03)層を下部クラッド層204として積層し
た。GaN0.970.03層は、トリメチルガリウム(分子
式:(CH33Ga)/PH3/NH3/H2系常圧MO
CVD法により950℃で成長させた。立方晶のn形G
aN0.970.03層のキャリア濃度は約8×1017cm-3
とし、層厚は約85nmとした。
On the B x Ga 1 -x P composition gradient buffer layer 202, a silicon (Si) -doped n-type gallium nitride phosphide having a phosphorus (P) composition ratio of 0.03 (= 3%) (composition formula) : Ga
N 0.97 P 0.03 ) layer was laminated as the lower cladding layer 204. The GaN 0.97 P 0.03 layer is made of trimethyl gallium (molecular formula: (CH 3 ) 3 Ga) / PH 3 / NH 3 / H 2 normal pressure MO.
It was grown at 950 ° C. by the CVD method. Cubic n-type G
The carrier concentration of the aN 0.97 P 0.03 layer is about 8 × 10 17 cm −3
And the layer thickness was about 85 nm.

【0054】下部クラッド層204上には、n形窒化ガ
リウム・インジウム(組成式GaXIn1-XN:0≦X≦
1)からなる発光層205を積層させた。発光層205
をなす珪素(Si)ドープGaXIn1-XN層は、(CH
33Ga/(CH33In/Si26/NH3/H2系常
圧MOCVD法により、850℃で成長させた。発光層
205の平均的なインジウム(In)組成比は0.10
とした。発光層205の層厚は約80nmとし、キャリ
ア濃度は約3×1018cm-3に設定した。
On the lower cladding layer 204, an n-type gallium indium nitride (composition formula: Ga X In 1 -X N: 0 ≦ X ≦
The light emitting layer 205 composed of 1) was laminated. Light emitting layer 205
(Si) -doped Ga x In 1 -x N layer
3 ) The film was grown at 850 ° C. by the atmospheric pressure MOCVD method based on 3 Ga / (CH 3 ) 3 In / Si 2 H 6 / NH 3 / H 2 . The average indium (In) composition ratio of the light emitting layer 205 is 0.10
And The thickness of the light emitting layer 205 was set to about 80 nm, and the carrier concentration was set to about 3 × 10 18 cm −3 .

【0055】Ga0.90In0.10N発光層205上には、
亜鉛(Zn)とマグネシウム(Mg)を共にドーピング
したp形窒化ガリウム混晶(GaN)層を上部クラッド
層206として積層した。
On the Ga 0.90 In 0.10 N light emitting layer 205,
A p-type gallium nitride mixed crystal (GaN) layer doped with both zinc (Zn) and magnesium (Mg) was laminated as the upper cladding layer 206.

【0056】上記のn形GaN0.970.03下部クラッド
層204、n形Ga0.90In0.10N発光層205、及び
p形GaN層からなる上部クラッド層206からpn接
合型ダブルヘテロ接合構造の発光部207を構成した。
図7に本実施例の積層構造体の断面構造を模式的に示
す。
The light emitting portion 207 having a pn junction type double hetero junction structure is formed from the n-type GaN 0.97 P 0.03 lower cladding layer 204, the n-type Ga 0.90 In 0.10 N light emitting layer 205, and the upper cladding layer 206 composed of the p-type GaN layer. Was configured.
FIG. 7 schematically shows a cross-sectional structure of the laminated structure of the present embodiment.

【0057】次ぎに、{111}−Si単結晶基板20
1の裏面を研磨して、基板の厚さを約350μmから約
150μmと薄くした。然る後、公知のフォトリソグラ
フィー技術と選択エッチング技術を利用して、n形Si
単結晶基板201の裏面の中央部に図8に示す如くの長
方形状の穿孔部209を設けた。穿孔部209の短辺の
長さは200μmとし、長辺は250μmとした。穿孔
部209は、塩素系の気体を用いたプラズマエッチング
手段を利用してSi単結晶201を除去して形成した。
穿孔部209の基板201裏面からの深さは約150μ
mであった。穿孔部209の底面209aには、面方位
を{111}とするSi単結晶を基板201として利用
することに依り得た{111}−BXGa1-XP緩衝層2
02の表面を露呈させた。穿孔部209を囲繞する様に
残置させたSi単結晶の上には、金(Au)からなるn
形オーミック電極208を設けた。
Next, the {111} -Si single crystal substrate 20
1 was polished to reduce the thickness of the substrate from about 350 μm to about 150 μm. Thereafter, using known photolithography technology and selective etching technology, n-type Si
A rectangular perforated portion 209 as shown in FIG. 8 was provided in the center of the back surface of the single crystal substrate 201. The length of the short side of the perforated portion 209 was 200 μm, and the length of the long side was 250 μm. The perforated portion 209 was formed by removing the Si single crystal 201 using plasma etching means using a chlorine-based gas.
The depth of the perforated portion 209 from the back surface of the substrate 201 is about 150 μm.
m. On the bottom surface 209 a of the perforated portion 209, a {111} -B X Ga 1 -X P buffer layer 2 obtained by using a Si single crystal having a plane orientation of {111} as the substrate 201.
02 was exposed. On the Si single crystal left so as to surround the perforated portion 209, n (gold) made of gold (Au)
An ohmic electrode 208 was provided.

【0058】上部クラッド層206の表面の略全面に
は、金(Au)と酸化ニッケル(NiO)との重層構造
の厚膜からなるp形オーミック電極210を形成した。
金被膜の厚さは約2μmとし、酸化ニッケルの厚さは約
0.5μmとした。
On almost the entire surface of the upper cladding layer 206, a p-type ohmic electrode 210 made of a thick film having a multilayer structure of gold (Au) and nickel oxide (NiO) was formed.
The thickness of the gold coating was about 2 μm, and the thickness of the nickel oxide was about 0.5 μm.

【0059】上記の如く構成したLED20のp形オー
ミック電極210側を支持体に導通させて接着した後、
穿孔部209を通過して外部に出射される発光の強度を
測定した。このマウント状態で一般的な積分球を利用し
て測定された発光強度は約16マイクロワット(μW)
となり、高発光強度のIII族窒化物半導体発光素子が提
供された。発光の中心波長は約470nmであり、発光
スペクトルの半値幅は約20nmとなった。順方向電圧
(Vf)は約3V(順方向電流=20mA)となった。
また、逆方向電圧は約15V(逆方向電流=10μA)
であった。
After bonding the p-type ohmic electrode 210 side of the LED 20 configured as described above to the support by conduction,
The intensity of light emitted through the perforated portion 209 and emitted to the outside was measured. Emission intensity measured using a general integrating sphere in this mounted state is about 16 microwatts (μW)
Thus, a group III nitride semiconductor light-emitting device having a high emission intensity was provided. The center wavelength of light emission was about 470 nm, and the half width of the light emission spectrum was about 20 nm. The forward voltage (Vf) was about 3 V (forward current = 20 mA).
The reverse voltage is about 15 V (reverse current = 10 μA)
Met.

【0060】[0060]

【発明の効果】本発明は、導電性の珪素(Si)単結晶
基板の表面上に、金属或いは半導体からなる中間層を介
して積層された、III族窒化物半導体から構成されるp
n接合型ヘテロ接合構造の発光部を少なくとも含み、該
単結晶基板の裏面に裏面電極と、表面側の発光部上に表
面電極とを備えてなるIII族窒化物半導体発光ダイオー
ドに於いて、単結晶基板裏面に部分的に単結晶基板を除
去して形成した穿孔部を設けると共に、穿孔部の周囲の
残置した導電性のSi単結晶基板上にオーミック電極を
配置してLEDを構成することとしたので、LEDとし
ての機械的強度を失うことなくSi単結晶基板に因る発
光の吸収を完全にまたは大幅に低減して、LEDの発光
を穿孔部を通過させて外部に取り出せるため、発光強度
に優れるIII族窒化物半導体LEDを提供できる。
According to the present invention, a p-type nitride semiconductor composed of a group III nitride semiconductor is laminated on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer composed of a metal or a semiconductor.
A group III nitride semiconductor light-emitting diode including at least a light-emitting portion having an n-junction heterojunction structure, a back electrode on the back surface of the single crystal substrate, and a front electrode on the light-emitting portion on the front surface side, Providing a perforated portion formed by partially removing the single crystal substrate on the back surface of the crystal substrate, and arranging an ohmic electrode on the remaining conductive Si single crystal substrate around the perforated portion to constitute an LED; Therefore, without completely losing the mechanical strength of the LED, the absorption of luminescence due to the Si single crystal substrate is completely or significantly reduced, and the luminescence of the LED can be extracted to the outside through the perforated portion. It is possible to provide a group III nitride semiconductor LED having excellent characteristics.

【0061】またこの場合、穿孔部の底面が中間層の結
晶面が露呈する様にSi単結晶を確実に除去するとき
は、穿孔部に於けるSi単結晶に因る発光の吸収を完全
に回避して、発光強度の低下を来さずに発光を外部に取
り出すことができるため、高発光強度のIII族窒化物半
導体LEDを提供できる。また穿孔部のSi単結晶を確
実に除去して、底面に中間層の{111}結晶面を露呈
させる構成としたときは、Si単結晶基板に因る発光の
吸収を回避できると共に、Si単結晶基板を除去したこ
とに因る発光部の支持力の低下を補完して、強固に保持
された発光部を備えた基板除去型のIII族窒化物半導体
LEDを提供できる。
In this case, when the Si single crystal is surely removed so that the crystal plane of the intermediate layer is exposed on the bottom surface of the perforated portion, the absorption of light emission caused by the Si single crystal in the perforated portion is completely eliminated. Since the light emission can be extracted to the outside without reducing the light emission intensity, it is possible to provide a group III nitride semiconductor LED with high light emission intensity. Further, when the single crystal of the perforated portion is reliably removed and the {111} crystal plane of the intermediate layer is exposed on the bottom surface, the absorption of light emitted by the single crystal silicon substrate can be avoided and the single crystal silicon can be avoided. It is possible to provide a substrate-removed group III nitride semiconductor LED having a light-emitting portion that is firmly held, by compensating for a decrease in the supporting force of the light-emitting portion caused by removing the crystal substrate.

【0062】特に、リン(P)を含むIII−V族化合物
半導体膜から中間層を構成する場合には砒素を構成元素
とするIII−V族半導体に比し、機械的強度もすぐれ、
また融点も極めてたかいところから、発光部を強固に支
持でき、且つ耐熱性に優れる中間層を備えたIII族窒化
物半導体LEDを構成できる。さらに中間層としてIII
族構成元素またはV族構成元素の組成に勾配を付した組
成勾配層とすることにより、Si単結晶と上層のIII族
窒化物半導体層の双方に格子整合する中間層を構成でき
るため、発光層との界面における格子不整合性に起因す
る結晶欠陥密度を減少できるため良好な結晶性のIII族
窒化物半導体層を得ることができ、高発光強度のIII族
窒化物半導体LEDがもたらされる。
In particular, when the intermediate layer is formed from a III-V compound semiconductor film containing phosphorus (P), the mechanical strength is superior to that of a III-V semiconductor containing arsenic as a constituent element.
In addition, since the melting point is extremely high, a group III nitride semiconductor LED having an intermediate layer that can firmly support the light emitting portion and has excellent heat resistance can be configured. III
By forming a composition gradient layer in which the composition of the group-constituting element or the group V-constituting element is graded, an intermediate layer lattice-matched to both the Si single crystal and the upper group III nitride semiconductor layer can be formed. Since the density of crystal defects caused by lattice mismatch at the interface with the semiconductor layer can be reduced, a group III nitride semiconductor layer having good crystallinity can be obtained, and a group III nitride semiconductor LED having high emission intensity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穿孔部の穿孔形状を例示する平面模式図であ
る。
FIG. 1 is a schematic plan view illustrating a perforated shape of a perforated portion.

【図2】穿孔部の穿孔形状を例示する平面模式図であ
る。
FIG. 2 is a schematic plan view illustrating a perforation shape of a perforation portion.

【図3】穿孔部の穿孔形状を例示する平面模式図であ
る。
FIG. 3 is a schematic plan view illustrating a perforation shape of a perforation portion.

【図4】穿孔部の穿孔形状を例示する平面模式図であ
る。
FIG. 4 is a schematic plan view illustrating a perforation shape of a perforation portion.

【図5】実施例1に記載のLEDの断面模式図である。FIG. 5 is a schematic sectional view of the LED described in Example 1.

【図6】実施例1に記載のLEDの裏面の構造を示す模
式図である。
FIG. 6 is a schematic diagram showing the structure of the back surface of the LED described in Example 1.

【図7】実施例2に記載のLEDの断面模式図である。FIG. 7 is a schematic sectional view of the LED described in Example 2.

【図8】実施例2に記載のLEDの裏面の構造を示す模
式図である。
FIG. 8 is a schematic diagram showing the structure of the back surface of the LED described in Example 2.

【符号の説明】[Explanation of symbols]

10、20 III族窒化物半導体LED 11、101、201 Si単結晶基板 11b 基板裏面 12 裏面電極 13 穿孔部 102 リン化硼素(BP)低温緩衝層 103 BP高温結晶層 202 組成勾配緩衝層 104、204 下部クラッド層 105、205 発光層 106、206 上部クラッド層 107、207 発光部 108、208 n形オーミック電極 109,209 穿孔部 109a、209a 穿孔部底面 110、210 p形オーミック電極 10, 20 Group III nitride semiconductor LED 11, 101, 201 Single crystal silicon substrate 11b Substrate back surface 12 Back surface electrode 13 Perforated portion 102 Boron phosphide (BP) low-temperature buffer layer 103 BP high-temperature crystal layer 202 Composition gradient buffer layer 104, 204 Lower cladding layer 105, 205 Light emitting layer 106, 206 Upper cladding layer 107, 207 Light emitting portion 108, 208 N-type ohmic electrode 109, 209 Perforated portion 109a, 209a Perforated portion bottom surface 110, 210 P-type ohmic electrode

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 導電性の珪素(Si)単結晶基板の表面
上に、金属或いは半導体からなる中間層を介して積層さ
れた、III族窒化物半導体から構成されるpn接合型ヘ
テロ接合構造の発光部を少なくとも含み、該単結晶基板
の裏面に裏面電極と、表面側の発光部上に表面電極とを
備え、かつ上記単結晶基板裏面の裏面電極以外の領域の
Si単結晶基板を除去して形成した穿孔部が設けられて
いることを特徴とするIII族窒化物半導体発光ダイオー
ド。
1. A pn-junction heterojunction structure composed of a group III nitride semiconductor laminated on a surface of a conductive silicon (Si) single crystal substrate via an intermediate layer composed of a metal or a semiconductor. At least a light emitting portion, a back electrode on the back surface of the single crystal substrate, a front electrode on the light emitting portion on the front side, and removing the Si single crystal substrate in a region other than the back electrode on the back surface of the single crystal substrate. A group III nitride semiconductor light-emitting diode, characterized in that a perforated portion formed by forming is provided.
【請求項2】 Si単結晶基板の裏面電極が、連続した
一体の金属被膜電極である請求項1に記載のIII族窒化
物半導体発光ダイオード。
2. The group III nitride semiconductor light emitting diode according to claim 1, wherein the back electrode of the Si single crystal substrate is a continuous and integral metal film electrode.
【請求項3】 Si単結晶基板の裏面電極が、穿孔部の
外周に連続した一体の金属被膜電極として構成された請
求項1または2に記載のIII族窒化物半導体発光ダイオ
ード。
3. The group III nitride semiconductor light emitting diode according to claim 1, wherein the back electrode of the Si single crystal substrate is formed as an integral metal film electrode continuous with the outer periphery of the perforated portion.
【請求項4】 穿孔部の底面が、上記の中間層である請
求項1ないし3のいずれか1項に記載のIII族窒化物半
導体発光ダイオード。
4. The group III nitride semiconductor light emitting diode according to claim 1, wherein the bottom surface of the perforated portion is the intermediate layer.
【請求項5】 中間層が、リン(P)を含むIII−V族
化合物半導体膜から構成したものである請求項4に記載
のIII族窒化物半導体発光ダイオード。
5. The group III nitride semiconductor light emitting diode according to claim 4, wherein the intermediate layer is formed of a group III-V compound semiconductor film containing phosphorus (P).
【請求項6】 中間層がMN1-XX(式中、Mは硼素以
外のIII族元素を示し、Xは0<X≦1の範囲であ
る。)から構成したものである請求項4または5に記載
のIII族窒化物半導体発光ダイオード。
6. An intermediate layer comprising MN 1-X P X (where M represents a Group III element other than boron, and X is in the range of 0 <X ≦ 1). 6. The group III nitride semiconductor light-emitting diode according to 4 or 5.
【請求項7】 中間層がBX1-XP(式中、Mは硼素以
外のIII族元素を示し、Xは0<X≦1の範囲であ
る。)から構成したものである請求項4または5に記載
のIII族窒化物半導体発光ダイオード。
7. The intermediate layer according to claim 1, wherein B X M 1-X P (where M represents a Group III element other than boron, and X is in the range of 0 <X ≦ 1). Item 6. The group III nitride semiconductor light emitting diode according to item 4 or 5.
【請求項8】 中間層が、III族構成元素またはV族構
成元素の濃度に勾配を付して組成勾配層としたものであ
る請求項7に記載のIII族窒化物半導体発光ダイオー
ド。
8. The group III nitride semiconductor light emitting diode according to claim 7, wherein the intermediate layer is formed as a composition gradient layer by giving a gradient to the concentration of a group III constituent element or a group V constituent element.
【請求項9】 導電性のSi単結晶基板に低温緩衝層、
高温緩衝層からなる中間層を設け、続いてpn接合型へ
テロ接合構造の下部クラッド層、発光層および上部クラ
ッド層からなる発光部を設ける前または該発光部を設け
た後に、Si単結晶基板裏面を中空筒状に穿孔して穿孔
部を設けるとともに、残ったSi単結晶基板裏面に第1
導電形電極、上部クラッド層上面に第2導電形電極を設
けることを特徴とするIII族窒化物半導体発光ダイオー
ドの製造方法。
9. A low-temperature buffer layer on a conductive Si single crystal substrate,
A single-crystal Si substrate is provided before or after providing a light emitting part comprising a lower cladding layer, a light emitting layer and an upper cladding layer of a pn junction type heterojunction structure provided with an intermediate layer comprising a high temperature buffer layer. The back surface is pierced into a hollow cylindrical shape to provide a pierced portion, and a first surface is formed on the back surface of the remaining Si single crystal substrate.
A method for manufacturing a group III nitride semiconductor light-emitting diode, comprising: providing a conductive type electrode and a second conductive type electrode on an upper surface of an upper cladding layer.
【請求項10】 低温緩衝層がMOCVD手段により2
50〜550℃で成長させた層であり、高温緩衝層がM
OCVD手段により750〜1200℃で成長させた、
請求項9に記載のIII族窒化物半導体発光ダイオードの
製造方法。
10. The low-temperature buffer layer is formed by MOCVD means.
A layer grown at 50 to 550 ° C.
Grown at 750-1200 ° C. by OCVD means,
A method for manufacturing a group III nitride semiconductor light emitting diode according to claim 9.
【請求項11】 導電性のSi単結晶基板に組成勾配緩
衝層からなる中間層を設け、続いてpn接合型へテロ接
合構造の下部クラッド層、発光層および上部クラッド層
からなる発光部を設ける前または該発光部を設けた後に
Si単結晶基板裏面を中空筒状に穿孔して穿孔部を設け
るとともに、残ったSi単結晶基板裏面に第1導電形電
極、上部クラッド層上面に第2導電形電極を設けること
を特徴とするIII族窒化物半導体発光ダイオードの製造
方法。
11. An intermediate layer made of a composition gradient buffer layer is provided on a conductive Si single crystal substrate, and subsequently, a light-emitting portion consisting of a lower clad layer, a light-emitting layer, and an upper clad layer having a pn junction type hetero-junction structure is provided. Before or after providing the light emitting portion, the back surface of the Si single crystal substrate is perforated in a hollow cylindrical shape to form a perforated portion, and the first conductive type electrode is provided on the back surface of the remaining Si single crystal substrate, and the second conductive material is provided on the upper surface of the upper cladding layer. A method for manufacturing a group III nitride semiconductor light emitting diode, comprising providing a shaped electrode.
【請求項12】 導電性のSi単結晶基板の面方位を
{111}とした請求項9ないし11のいずれか1項に
記載のIII族窒化物半導体発光ダイオードの製造方法。
12. The method for manufacturing a group III nitride semiconductor light emitting diode according to claim 9, wherein the plane orientation of the conductive Si single crystal substrate is {111}.
【請求項13】 Si単結晶基板の表面に中間層を設け
た後、前記Si単結晶基板の裏面を研削して該基板の厚
さを300〜80μmとし、次いでオーミック電極を敷
設する領域以外の部分の単結晶基板を除去して穿孔部を
設ける請求項9ないし12のいずれか1項に記載のIII
族窒化物半導体発光ダイオードの製造方法。
13. After providing an intermediate layer on the surface of the Si single crystal substrate, grinding the back surface of the Si single crystal substrate to a thickness of 300 to 80 μm, and then excluding the region other than the region where the ohmic electrode is laid. The III according to any one of claims 9 to 12, wherein a perforated portion is provided by removing a part of the single crystal substrate.
A method for manufacturing a group III nitride semiconductor light emitting diode.
JP2001043142A 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode Expired - Fee Related JP3577463B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001043142A JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode
TW90133184A TW523940B (en) 2001-02-20 2001-12-31 III-Group Nitrides Semiconductor Luminescence Diode and Method for preparing the same
US10/076,425 US6541799B2 (en) 2001-02-20 2002-02-19 Group-III nitride semiconductor light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043142A JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode

Publications (2)

Publication Number Publication Date
JP2002246645A true JP2002246645A (en) 2002-08-30
JP3577463B2 JP3577463B2 (en) 2004-10-13

Family

ID=18905357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043142A Expired - Fee Related JP3577463B2 (en) 2001-02-20 2001-02-20 III-nitride semiconductor light emitting diode

Country Status (2)

Country Link
JP (1) JP3577463B2 (en)
TW (1) TW523940B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303277A (en) * 2004-03-15 2005-10-27 Showa Denko Kk Compound semiconductor light-emitting diode
JP2007184346A (en) * 2006-01-05 2007-07-19 Kyocera Corp Light emitting element and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191227B2 (en) 2007-02-21 2008-12-03 昭和電工株式会社 Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
DE102007020979A1 (en) * 2007-04-27 2008-10-30 Azzurro Semiconductors Ag A nitride semiconductor device having a group III nitride layer structure on a group IV substrate surface of at most twofold symmetry
TWI458141B (en) * 2007-12-31 2014-10-21 Epistar Corp A light-emitting device having a thinned structure and the manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303277A (en) * 2004-03-15 2005-10-27 Showa Denko Kk Compound semiconductor light-emitting diode
JP2007184346A (en) * 2006-01-05 2007-07-19 Kyocera Corp Light emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
TW523940B (en) 2003-03-11
JP3577463B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP4135550B2 (en) Semiconductor light emitting device
JP3952210B2 (en) Nitride-based semiconductor device and manufacturing method thereof
JP3700872B2 (en) Nitride III-V compound semiconductor device and method for manufacturing the same
JP4119501B2 (en) Semiconductor light emitting device
US6541799B2 (en) Group-III nitride semiconductor light-emitting diode
JP3753793B2 (en) Group 3 nitride compound semiconductor light emitting device
JP2005244207A (en) Nitride gallium based compound semiconductor luminous element
WO2005029588A1 (en) Nitride semiconductor device and method for manufacturing same
KR101000276B1 (en) Semiconductor light emiitting device
JP3772707B2 (en) Method for manufacturing group 3 nitride compound semiconductor light emitting device
JP3725382B2 (en) Semiconductor device manufacturing method and semiconductor light emitting device manufacturing method
JP3646655B2 (en) Group III nitride semiconductor light emitting diode
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JP5384783B2 (en) Reverse-polarized light-emitting region for semiconductor light-emitting devices
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP4329166B2 (en) Group III nitride semiconductor optical device
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JP4374720B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP4313478B2 (en) AlGaInP light emitting diode
TW200541115A (en) Group Ⅲ nitride semiconductor light-emitting device
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
JP3975763B2 (en) Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode
JP3723314B2 (en) Semiconductor light emitting device
JP2002246643A (en) Group iii nitride semiconductor light emitting element and manufacturing method thereof
JP4286983B2 (en) AlGaInP light emitting diode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees