JP3541775B2 - Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device - Google Patents

Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device Download PDF

Info

Publication number
JP3541775B2
JP3541775B2 JP2000090432A JP2000090432A JP3541775B2 JP 3541775 B2 JP3541775 B2 JP 3541775B2 JP 2000090432 A JP2000090432 A JP 2000090432A JP 2000090432 A JP2000090432 A JP 2000090432A JP 3541775 B2 JP3541775 B2 JP 3541775B2
Authority
JP
Japan
Prior art keywords
group iii
nitride semiconductor
iii nitride
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090432A
Other languages
Japanese (ja)
Other versions
JP2001284643A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000090432A priority Critical patent/JP3541775B2/en
Publication of JP2001284643A publication Critical patent/JP2001284643A/en
Application granted granted Critical
Publication of JP3541775B2 publication Critical patent/JP3541775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、珪素(Si)単結晶基板の表面上にリン化硼素(BP)系材料からなる緩衝層を介して設けられたIII族窒化物半導体層を具備するIII族窒化物半導体発光素子用ウェハとその製造方法、および該ウェハから製造されたIII族窒化物半導体層を発光部として利用する発光ダイオード或いはレーザーダイオード等のIII族窒化物半導体発光素子に関する。
【0002】
【従来の技術】
従来より、一般式AlXGaYInZN(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で表記されるIII族窒化物半導体は、青色帯或いは緑色帯などの短波長の可視光を出射する発光ダイオード(LED)やレーザーダイオード(LD)等の発光素子を構成するための材料として利用されている。近年では、上記のIII族窒化物半導体からなるpn接合型のダブルヘテロ(DH)構造の発光部を、珪素(Si)単結晶からなる基板上に形成する技術が知られている(特開平11−40850号公報)。この場合、基板として利用されるSi単結晶の面方位は{100}または{111}であるのがもっぱらである(特開平10−242586号公報)。
【0003】
さらに最近では、{100}面からなる表面を有するSi基板上にIII族窒化物半導体層を気相成長法により堆積する場合、リン化硼素(BP)系材料からなる結晶層を緩衝層として利用する技術が開示されている(特開平11−162848号公報)。閃亜鉛鉱結晶型のBP結晶(格子定数=4.538Å)は、格子定数を4.510Åとする立方晶の窒化ガリウム(GaN)との格子ミスマッチ(mismatch)度が約0.6%と矮小である。従って、緩衝層をBP結晶から構成すると、その上に結晶欠陥密度の低いGaN結晶層を形成するのに有利である。
【0004】
また特開平11−266006号公報には、Si単結晶基板上にBP系材料のひとつである窒化リン化硼素(BP1-XX、但し0≦X≦1)からなる緩衝層を介してGaN系III族窒化物半導体層を積層する技術が開示されている。窒素(N)の組成比を約6%とするBP0.940.06は立方晶のGaNと格子整合を果たすため、BP0.940.06からなる緩衝層を用いると、Si単結晶基板上に結晶欠陥の少ないGaNからなる半導体層を形成するのに有利である。
【0005】
【発明が解決しようとする課題】
しかし、基板であるSi単結晶(格子定数=5.4308Å)と、例えば閃亜鉛鉱結晶型のBPとの格子ミスマッチの大きさは約17%に達する(「日本結晶成長学会誌」、Vol.25,No.3(1998)、A28頁参照)。
そのため、Si単結晶基板上にBPからなる緩衝層を形成した場合、上記の格子ミスマッチに起因して{100}面を有するSi単結晶基板と該基板上に形成したBPからなる緩衝層との密着性が不充分となり、BP緩衝層がSi基板から剥離し易いという不具合が発生する。
【0006】
一方、III族窒化物半導体発光素子の一般的な平面形状は方形であるため、{111}面を有するSi単結晶を基板として利用した場合、[110]方向への劈開を利用して方形の発光素子を安定して形成することが困難になるという問題が生じる。そのため、{100}面を有するSi単結晶基板に代えて{111}面を有するSi単結晶を発光素子用の基板として利用するのは、発光素子の製造上好ましくない。
【0007】
本発明は、上記の従来技術の問題点を克服すべく成されたもので、劈開により簡易に方形の発光素子が形成できる{100}面からなる表面を有するSi単結晶基板上に、該基板との密着したBP系材料からなる緩衝層を形成し、さらに該緩衝層上にIII族窒化合物半導体層を形成して製造したIII族窒化物半導体発光素子用ウェハとその製造方法、および該ウェハから製造されたIII族窒化物半導体発光素子を提供することを目的とする。
【0008】
【課題を解決するための手段】
すなわち本願の発明は、珪素(Si)単結晶からなる基板と、該基板表面上に設けられたリン化硼素(BP)系材料からなる緩衝層と、該緩衝層上に設けられたIII族窒化物半導体層とを備えてなるIII族窒化物半導体発光素子用ウェハにおいて、前記基板が{100}面からなる表面を有し、かつ該表面に側壁を{111}面とする四角錐状の細孔が設けられていることを特徴とする。
上記の発明において、前記四角錐状の細孔の底面の一辺の長さ(W)が、10μm以上で500μm以下の範囲であることが望ましい。
また上記の発明において、前記四角錐状の細孔が、基板表面に等間隔で規則的に設けられていることが望ましい。
また本願の発明は、上記のIII族窒化物半導体発光素子用ウェハを用いて作製したIII族窒化物半導体発光素子である。
【0009】
また本願の別の発明は、珪素(Si)単結晶からなる基板と、該基板表面上に設けられたリン化硼素(BP)系材料からなる緩衝層と、該緩衝層上に設けられたIII族窒化物半導体層とを備えてなるIII族窒化物半導体発光素子用ウェハの製造方法において、{100}面からなる表面を有し、かつ該表面に側壁を{111}面とする四角錐状の細孔が設けられている前記Si単結晶の基板表面上に、気相成長法によりBP系材料からなる緩衝層を形成することを特徴とする。上記の発明においては、前記BP系材料からなる緩衝層上に、更に気相成長法によりIII族窒化物半導体層を形成することが望ましい。
さらに上記の発明においては、前期気相成長法が有機金属熱分解気相成長法(MOCVD法)であることが望ましい。
また上記の発明において、前記四角錐状の細孔をエッチングにより設けることが望ましい。
【0010】
【発明の実施の形態】
図1は、本発明に係わる{100}面を有するSi単結晶基板の平面模式図である。また、図2は図1に示すSi単結晶基板の破線A−A’に沿った断面図であり、特に細孔の断面形状を示す模式図である。
【0011】
図1を用いて説明すれば、本発明で基板として利用する{100}面からなる表面を有するSi単結晶基板10の特徴は、基板10の{100}面からなる表面11に、側壁12を{111}面とする四角錐状の細孔(ピット:pit)13が形成されていることにある。
細孔13は、例えば水酸化ナトリウム(NaOH)水溶液または水酸化カリウム(KOH)水溶液等を用いる湿式エッチングにより形成できる。細孔13の代表的な形成方法として、例えば重量濃度が5%程度のNaOH水溶液を用いて、温度を85℃とし時間にして約5分間、Si単結晶基板10の表面11の湿式エッチングを行う方法がある。この方法は、基板10の導電形がn形またはp形にかかわらず用いることが出来る。或いは、重量濃度を約50%とするKOH水溶液を用いて65℃で約5分間、基板10の表面11をエッチングすることによっても、Si単結晶基板10の表面11に本発明の細孔13を形成することが出来る。
【0012】
細孔13をSi単結晶基板10の表面11に不規則に形成することもできるが、規則的に形成する方が後工程においてSi単結晶基板表面11上に均一なBP系材料からなる緩衝層を形成するためには好都合となる。
Si単結晶基板10の表面11に相互の間隔を一定とする規則的な細孔13を形成する手段として、Si単結晶基板10の表面11の所望の領域を二酸化珪素(SiO2)等の耐熱性かつ耐薬品性の被膜で部分的に被覆した後、例えばガスエッチング等による選択エッチングにより細孔13を形成する方法がある。このようなガスエッチングの場合、エッチングガスには塩化水素(HCl)等のハロゲン(halogen)を含む気体やそれと水素との混合ガス等が利用できる。
【0013】
上記の選択エッチングを利用した細孔13の形成方法を用いれば、被膜で被覆する領域の平面積を調整することにより、細孔13の底面13aの面積を調整できる。即ち、ほぼ正方形となる細孔13の底面13aの一辺の長さ(図1及び図2に記号”W”で表記する。)は、基板の表面11の被膜により被覆していない領域の大きさにより調整でき、被膜により被覆していない領域を同一の平面形状及び平面積で表面11に規則的に配列した基板の表面を選択エッチングすると、Wを一定とする細孔13をSi単結晶基板10の表面11に規則的に配置して形成することができる。
【0014】
前述のようにBP結晶と立方晶のGaN或いは立方晶の窒化アルミニウム(AlN)との格子ミスマッチ度は約1%以下と僅かである。また、BP結晶の{110}結晶面の格子面間隔(約3.21Å)は、六方晶ウルツ鉱結晶(wurtzite)型のGaN(a軸格子定数=3.18Å)あるいはAlN(a軸格子定数=3.11Å)の何れの格子定数にも近似している。従って、BP結晶からなる緩衝層は、その上に格子ミスマッチに起因する結晶欠陥の密度が低い良質のIII族窒化物半導体層を形成するのに有利に作用する。
一方、Si単結晶(格子定数=5.4308Å)とBP結晶との間には、約17%の大きさの結晶格子のミスマッチが存在する。しかし、Si単結晶の{111}面の間隔は約3.14Åであり、BP結晶の{110}結晶面の間隔(約3.19Å)とほぼ同等となるため、Si単結晶の{111}面からなる表面上では、良質のBP結晶層の形成が促進される。すなわち、Si単結晶の{111}面からなる表面には良質のBP結晶層を形成でき、その結果、Si単結晶基板とその上のBPからなる緩衝層との密着性を向上させることが可能となる。
【0015】
しかし、{111}面を有するSi単結晶は互いに直交する方向に劈開できず、方形の発光素子を製造するのに不便であり、一方{100}面を有するSi単結晶であれば互いに直交する[110]結晶方位に沿った劈開を利用して簡便に方形状のIII族窒化物半導体発光素子が形成できる。
そこで本発明では、Si単結晶基板の{100}面からなる表面に{111}面が露出した細孔を上記のようにして形成し、細孔の{111}面からなる側壁をもとに良質のBP結晶層を成長させることにより、劈開に依る発光素子の作製上の利点を損なうことなく、Si単結晶基板との密着性に優れたBP結晶からなる緩衝層を{100}面からなる表面を有するSi基板上に形成することが可能となる。その結果、{100}面からなる表面を有するSi基板上に上記の緩衝層を介して良質のIII族窒化物半導体層を形成することが可能となる。
【0016】
さらに本発明では、発光素子の製造に有利になるように、図1及び図2に示した細孔13の底面13aの一辺の長さ(W)の値を規定する。すなわち発光素子の製造には、以下で定める大きさの細孔13を形成した{100}面を有するSi単結晶を基板10として使用するのが有利である。
【0017】
{111}面を側壁12とする四角錘状の細孔13の深さ(図2に記号Dで示す。)は、細孔13の底面13aの一辺の長さWの増長に伴い増大する。すなわち、深さDと一辺の長さWとの間には、D=0.58×Wで近似される関係がある。
Wが極端に大きく、従って深さDが極端に大となると、細孔13をBP系材料からなる緩衝層で充分に埋没させるのが困難となる。細孔13が緩衝層により十分埋没されなくなると、緩衝層を形成した後も細孔13の表面に「窪み」が生ずる。このため、Si基板10の表面11上に形成したBP系材料からなる緩衝層の表面の平坦性は損なわれるものとなる。このように細孔13上と細孔13以外の表面上とで段差が生じている緩衝層上には、凹凸が無く表面の平坦性に優れるIII族窒化物半導体層が形成できないといった不具合を招く。細孔13を緩衝層により充分に埋め尽くすのに好適なWの値は、概ね500μm以下である。
【0018】
またWが10μm未満の場合、Dが浅くなるため細孔13は緩衝層で容易に埋没される。しかし、この場合のようにDが浅い細孔では、細孔の側壁をなすSi結晶の{111}面上に素早く成長するBP系材料からなる結晶により、細孔13が容易に埋め尽くされた上、更に緩衝層の形成の過程で細孔の側壁を構成する(1.1.−1)、(−1.1.−1)、(−1.−1.−1)、及び(1.−1.−1)面の各結晶面の垂直方向に優勢的に成長するBP系材料からなる結晶により、ピラミッド状の突起が形成される。このピラミッド状の突起により緩衝層の表面の平坦性は劣るものとなり、さらに緩衝層上に形成されるIII族窒化物半導体層も表面の平坦性に劣るものとなるという不都合が生じる。
従って、細孔13の底面13aの一辺の長さWの値は、10μm以上で500μm以下の範囲とするのが好適である。
【0019】
Wの大きさが上記のように規定された細孔は、Si基板の{100}面からなる表面上に一定の間隔をもって規則的に形成するのが好ましい。例えば、一辺の長さ(=L)を350μmとする正方形のIII族窒化物半導体発光素子を作製する場合、Wを20μmとする四角錐状の細孔を頂点13b(図2参照)の間隔が30μmとなるようにして、表面上に規則的に配列したS基板を用いることができる。このように規則的に配列された細孔の存在により、Si基板上に形成されたBP系材料からなる緩衝層とSi基板表面との密着の強度は均一に増大させることができる。また、細孔を規則的に配列することにより、例えばIII族窒化物半導体を利用するLEDにあっては、発光部から出射される発光の強度を均一に一様とすることができる。
【0020】
BP系材料からなる緩衝層とは、硼素(B)とリン(P)とを構成元素として含む結晶から構成される緩衝層をいう。すなわちBP系材料には、例えば窒化リン化硼素(BP1-XX、ただし0≦X<1)や砒化リン化硼素(BP1-YAsY、ただし0≦Y<1)も含まれる。
Si基板表面上に設けるBP系材料からなる緩衝層は、気相成長法により成長するのが好ましい。この緩衝層は、例えば三塩化硼素(BCl3)及び三塩化リン(PCl3)等を原料とするハロゲン系気相成長法(VPE法)や三塩化リンの代わりにホスフィン(PH3)をリン原料とするハイドライド(hydride)VPE法、或いはトリアルキル(trialkyl)硼素を硼素原料とする有機金属熱分解気相成長法(MOCVD法)等の気相成長手段をもって成長できる。また、MOCVD法と分子線エピタキシャル法(MBE法)とを複合したMO−MBE法によっても形成できる。
【0021】
BP系材料からなる緩衝層を、Si基板とGaN等のIII族窒化物半導体層と間の格子のミスマッチを緩和するための緩衝層として利用する場合には、該緩衝層の成長温度は、成長方法にかかわらずおよそ200℃以上で500℃以下の温度とするのが好ましい。さらにこの温度範囲でBP系材料からなる緩衝層をSi基板上に成長させた上に、より高温でBP系材料からなる緩衝層をもう一度成長し、2層構造の緩衝層を形成すると、結晶欠陥密度の少ないIII族窒化物半導体層を成長するのにより好適な緩衝層となる。
【0022】
【作用】
Si単結晶基板の{100}面からなる表面に{111}面が露出した細孔を形成し、細孔の{111}面からなる側壁をもとにして良質のBP結晶層をSi単結晶基板の表面に成長させると、Si単結晶基板との密着性に優れたBP結晶からなる緩衝層をSi基板上に形成することが出来る。
さらに、BP結晶からなる緩衝層は、その上に格子ミスマッチに起因する結晶欠陥の密度が低い良質のIII族窒化物半導体層を形成するのに有利に作用する。
【0023】
【実施例】
以下に本発明に係わるIII族窒化物半導体発光素子を製造した実施例を説明する。図3は、Si単結晶を基板として用い、III族窒化物半導体層を発光部として利用する本実施例に係わるLED100の平面模式図である。また、図4は図3に示すLED100の破線B−B’に沿った断面模式図である。
【0024】
LED100は、Si単結晶基板101とその表面上に気相成長法により順次形成した結晶層とを備えたエピタキシャルウェハから作製した。エピタキシャルウェハを構成するSi単結晶基板101および各結晶層は、以下のものである。
(1)<110>方向に2°傾斜した{100}面からなる表面に、底面の一辺の長さを約30μmとし、頂点の間隔を45μmと一定にして、湿式による選択エッチングにより形成された細孔109が規則的に配列されているアンチモン(Sb)がドープされたn形のSi単結晶からなる基板101。
(2)前記の基板101上に、トリエチルボラン((C253B)/ホスフィン(PH3)/水素(H2)を用いる常圧のMOCVD法により、350℃でPH3と(C253Bの供給比率(V/III比率)を約300に設定して成長させた、層厚を約15nmとするアンドープ(undope)でn形のリン化硼素(BP)からなる第一の緩衝層102。
(3)ジシラン(Si26)を珪素(Si)のドーピング原料とし、上記と同じMOCVD法により、BPからなる低温緩衝層102上に約1050℃で積層された、層厚を約100nmとしキャリア濃度が約2×1018cm-3である、Siがドープされたn形のBPからなる第二の緩衝層103。
(4)前記の第二の緩衝層103上に、トリメチルガリウム((CH33Ga)/アンモニア(NH3)/H2を用いる常圧のMOCVD法により1050℃で成長させた、層厚を約500nmとしキャリア濃度を約1×1018cm-3とする、Siをドープしたn形の窒化ガリウム(GaN)からなる下部クラッド層104。
(5)前記の下部クラッド層104上に、(CH33Ga/シクロペンタジエニルインジウム(I)(C55In(I))/NH3/H2を用いる常圧のMOCVD法により890℃で成長させた、平均的なインジウム(In)組成比を約0.12とする、In組成が相違する複数の相(phase)からなる多相構造からなる、層厚を約70nmとする窒化ガリウム・インジウム混晶(Ga0.88In0.12N)からなる発光層105。
(6)前記の発光層105上に、(CH33Ga/NH3/H2を用いる常圧のMOCVD法により1030℃で成長させた、層厚を約650nmとしキャリア濃度を約3×1017cm-3とする、p形の窒化ガリウム(GaN)からなる上部クラッド層106。
【0025】
Si単結晶基板101の表面上に、気相成長法により順次上記の結晶層を形成して作製したエピタキシャルウェハを用いて、LED100を作製した。LED100は、周知のフォトリソグラフィー(写真食刻)技術を利用して、上記のエピタキシャルウェハに次のp形およびn形のオーミック(Ohmic)電極107、108を形成して作製した。
(1)最表層の上部クラッド層106上に形成した、金(Au)からなる直径を約130μmとする円形のp形オーミック電極107。
(2)Si単結晶基板101の裏面の略全面に形成したアルミニウム(Al)からなるn形オーミック電極108。
次に、Si単結晶基板101の[110]方向の劈開性を利用して、p形およびn形のオーミック電極107、108が形成されたエピタキシャルウェハを一般的なスクライブ手段により個別のLEDに分割した。LEDの平面形状は一辺を約350μmとする正方形とした。
【0026】
このLEDについて、上記のp形オーミック電極107に金(Au)ワイヤを結線(ボンディング)し、ボンディング強度を測定して、Si単結晶基板101と第一の緩衝層102及び第二の緩衝層103との密着性を評価した。
ボンディング強度を測定するための一般的な引っ張り(pull)テストにおいて、本実施例にかかわるLEDの試料約500個では、5gの引っ張り荷重に対して、Si単結晶基板101の表面からの第一の緩衝層102および第二の緩衝層103の剥離はひとつも認められなかった。
【0027】
これに対して、Si単結晶基板の表面に本発明に係わる細孔を設けていない従来のLEDでは、同様の引っ張り荷重を5gとした引っ張りテストにおいて、20%の試料でSi単結晶基板と緩衝層との間での部分的な剥離が発生した。
【0028】
また、本実施例のLEDについて、p形およびn形オーミック電極107、108間に電流を流通させ、下記の特性を得た。
(イ)発光波長=456nm(ただし、順方向電流=20mA)
(ロ)発光輝度=1.2カンデラ(cd)(ただし、順方向電流=20mA)
(ハ)順方向電圧=3.8ボルト(V)(ただし、順方向電流=20mA)
(ニ)逆方向電圧=15V以上(ただし、逆方向電流=10μA)
【0029】
【発明の効果】
本発明によれば、{100}面を表面とするSi単結晶基板において、{111}面を側壁とする四角錐状の細孔を該表面に形成したので、該表面上に基板との密着性に優れるリン化硼素(BP)系材料からなる緩衝層を形成でき、さらに該緩衝層上に結晶性に優れたIII族窒化物半導体層を形成できる。このようにして作製した半導体発光素子用ウェハからは、劈開性を利用して簡易にIII族窒化物半導体発光素子を作製することができる。
【図面の簡単な説明】
【図1】本発明に係わる{100}面を有するSi単結晶基板の平面模式図。
【図2】図1に示すSi単結晶基板の破線A−A’に沿った断面図。
【図3】本発明の実施例に係わるLEDの平面模式図。
【図4】図3に示すLEDの破線B−B’に沿った断面模式図。
【符号の説明】
10 Si単結晶基板
11 表面
12 側壁
13 細孔
13a 細孔の底面
13b 細孔の頂点
W 細孔の底面の一辺の長さ
D 細孔の深さ
100 LED
101 Si単結晶基板
102 第一の緩衝層
103 第二の緩衝層
104 下部クラッド層
105 発光層
106 上部クラッド層
107 p形オーミック電極
108 n形オーミック電極
109 細孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a group III nitride semiconductor light emitting device having a group III nitride semiconductor layer provided on a surface of a silicon (Si) single crystal substrate via a buffer layer made of boron phosphide (BP) material. The present invention relates to a wafer, a method of manufacturing the same, and a group III nitride semiconductor light emitting device such as a light emitting diode or a laser diode using a group III nitride semiconductor layer manufactured from the wafer as a light emitting unit.
[0002]
[Prior art]
Conventionally, a group III nitride semiconductor represented by the general formula Al X Ga Y In Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) has a blue band or green band. It is used as a material for forming a light emitting element such as a light emitting diode (LED) or a laser diode (LD) that emits short wavelength visible light such as a band. In recent years, a technique has been known in which a light emitting portion having a pn junction type double hetero (DH) structure made of the above-mentioned group III nitride semiconductor is formed on a substrate made of silicon (Si) single crystal (Japanese Patent Laid-Open No. Hei 11 (1999)). -40850 publication). In this case, the plane orientation of the Si single crystal used as the substrate is usually {100} or {111} (Japanese Patent Application Laid-Open No. 10-242586).
[0003]
More recently, when a group III nitride semiconductor layer is deposited on a Si substrate having a {100} surface by a vapor phase growth method, a crystal layer made of a boron phosphide (BP) -based material is used as a buffer layer. (Japanese Patent Application Laid-Open No. H11-162848). The zinc-blende BP crystal (lattice constant = 4.538 °) has a lattice mismatch (mismatch) degree of about 0.6% with cubic gallium nitride (GaN) having a lattice constant of 4.510 °. It is. Therefore, when the buffer layer is made of BP crystal, it is advantageous to form a GaN crystal layer having a low crystal defect density thereon.
[0004]
Japanese Patent Application Laid-Open No. 11-266006 discloses that a buffer layer made of boron nitride phosphide (BP 1-X N x , where 0 ≦ X ≦ 1), which is one of BP-based materials, is provided on a Si single crystal substrate. A technique for laminating a GaN-based group III nitride semiconductor layer has been disclosed. Since BP 0.94 N 0.06 having a composition ratio of nitrogen (N) of about 6% achieves lattice matching with cubic GaN, using a buffer layer made of BP 0.94 N 0.06 causes crystal defects on the Si single crystal substrate. This is advantageous for forming a semiconductor layer composed of a small amount of GaN.
[0005]
[Problems to be solved by the invention]
However, the magnitude of the lattice mismatch between the substrate single crystal Si (lattice constant = 5.4308 °) and, for example, zinc-blende crystal-type BP reaches about 17% (“Journal of the Japan Society for Crystal Growth”, Vol. 25, No. 3 (1998), page A28).
Therefore, when the buffer layer made of BP is formed on the Si single crystal substrate, the buffer layer made of the BP formed on the Si single crystal substrate having the {100} plane and the BP formed on the substrate is caused by the lattice mismatch. Adhesion becomes insufficient, and the BP buffer layer is easily peeled off from the Si substrate.
[0006]
On the other hand, since the general planar shape of the group III nitride semiconductor light emitting device is a square, when a Si single crystal having a {111} plane is used as a substrate, a rectangular shape is formed by using cleavage in the [110] direction. There is a problem that it is difficult to stably form a light emitting element. Therefore, it is not preferable in terms of manufacturing a light emitting element to use a Si single crystal having a {111} plane as a substrate for a light emitting element instead of a Si single crystal substrate having a {100} plane.
[0007]
The present invention has been made in order to overcome the above-mentioned problems of the prior art. The present invention provides a method in which a rectangular light emitting element can be easily formed by cleavage, and the substrate is formed on a Si single crystal substrate having a {100} surface. A wafer for a group III nitride semiconductor light emitting device manufactured by forming a buffer layer made of a BP-based material in close contact with the substrate, and further forming a group III nitride compound semiconductor layer on the buffer layer, a method for manufacturing the same, and the wafer It is an object of the present invention to provide a group III nitride semiconductor light emitting device manufactured from the same.
[0008]
[Means for Solving the Problems]
That is, the invention of the present application provides a substrate made of silicon (Si) single crystal, a buffer layer made of a boron phosphide (BP) material provided on the surface of the substrate, and a group III nitride film provided on the buffer layer. A III-nitride semiconductor light-emitting device wafer comprising: a semiconductor layer; and a substrate having a {100} surface, and a quadrangular pyramid-shaped narrow surface having {111} side walls on the surface. A hole is provided.
In the above invention, it is preferable that the length (W) of one side of the bottom surface of the quadrangular pyramid-shaped pore is in a range of 10 μm or more and 500 μm or less.
Further, in the above invention, it is preferable that the quadrangular pyramid-shaped fine holes are regularly provided on the substrate surface at regular intervals.
Further, the invention of the present application is a group III nitride semiconductor light emitting device manufactured using the above-described wafer for a group III nitride semiconductor light emitting device.
[0009]
Another invention of the present application is directed to a substrate made of silicon (Si) single crystal, a buffer layer made of a boron phosphide (BP) -based material provided on the surface of the substrate, and a III layer provided on the buffer layer. A method of manufacturing a group III nitride semiconductor light emitting device wafer comprising: a group III nitride semiconductor layer, a quadrangular pyramid having a {100} surface and having a {111} side wall on the surface. A buffer layer made of a BP-based material is formed by a vapor phase growth method on the surface of the Si single crystal substrate provided with the pores described above. In the above invention, it is desirable to further form a group III nitride semiconductor layer on the buffer layer made of the BP-based material by a vapor phase growth method.
Further, in the above invention, it is desirable that the vapor phase epitaxy is an organometallic thermal decomposition vapor phase epitaxy (MOCVD).
Further, in the above invention, it is preferable that the quadrangular pyramid-shaped pores are provided by etching.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic plan view of a Si single crystal substrate having a {100} plane according to the present invention. FIG. 2 is a cross-sectional view of the Si single crystal substrate shown in FIG. 1 along the broken line AA ′, and is a schematic diagram particularly showing the cross-sectional shape of the pores.
[0011]
Referring to FIG. 1, the feature of a Si single crystal substrate 10 having a surface of {100} plane used as a substrate in the present invention is that a side wall 12 is formed on a surface 11 of the substrate 10 having a {100} plane. That is, a pyramid-shaped pore (pit) 13 having a {111} plane is formed.
The pores 13 can be formed by wet etching using, for example, an aqueous solution of sodium hydroxide (NaOH) or an aqueous solution of potassium hydroxide (KOH). As a typical method for forming the pores 13, for example, wet etching of the surface 11 of the Si single crystal substrate 10 is performed using an aqueous NaOH solution having a weight concentration of about 5% at a temperature of 85 ° C. for about 5 minutes. There is a way. This method can be used regardless of whether the conductivity type of the substrate 10 is n-type or p-type. Alternatively, the pores 13 of the present invention are formed on the surface 11 of the Si single crystal substrate 10 by etching the surface 11 of the substrate 10 at 65 ° C. for about 5 minutes using a KOH aqueous solution having a weight concentration of about 50%. Can be formed.
[0012]
Although the pores 13 can be formed irregularly on the surface 11 of the Si single crystal substrate 10, it is better to form the pores 13 uniformly on the surface 11 of the Si single crystal substrate in a later step. It is convenient to form
As a means for forming regular pores 13 having a constant distance between each other on the surface 11 of the Si single crystal substrate 10, a desired region of the surface 11 of the Si single crystal substrate 10 is heat-resistant such as silicon dioxide (SiO 2 ). There is a method in which the pores 13 are formed by selective etching such as, for example, gas etching after partially covering with a water-resistant and chemical-resistant film. In the case of such gas etching, a gas containing halogen (halogen) such as hydrogen chloride (HCl) or a mixed gas of hydrogen and hydrogen can be used as an etching gas.
[0013]
If the method of forming the pores 13 using the selective etching described above is used, the area of the bottom surface 13a of the pores 13 can be adjusted by adjusting the plane area of the region covered with the film. That is, the length of one side of the bottom surface 13 a of the pore 13 which is substantially square (denoted by the symbol “W” in FIGS. 1 and 2) is the size of the region not covered by the coating on the surface 11 of the substrate. By selectively etching the surface of a substrate in which regions not covered by a film are regularly arranged on the surface 11 in the same plane shape and plane area, the pores 13 having a constant W are formed in the Si single crystal substrate 10. And can be formed by regularly arranging them on the surface 11.
[0014]
As described above, the degree of lattice mismatch between the BP crystal and cubic GaN or cubic aluminum nitride (AlN) is as small as about 1% or less. Further, the lattice spacing (about 3.21) of the {110} crystal plane of the BP crystal is a hexagonal wurtzite crystal type GaN (a-axis lattice constant = 3.18) or AlN (a-axis lattice constant). = 3.11Å). Therefore, the buffer layer made of a BP crystal advantageously acts on forming a high-quality group III nitride semiconductor layer having a low density of crystal defects due to lattice mismatch.
On the other hand, there is a crystal lattice mismatch of about 17% between the Si single crystal (lattice constant = 5.4308 °) and the BP crystal. However, the spacing between the {111} planes of the Si single crystal is about 3.14, which is almost equal to the spacing between the {110} crystal planes (about 3.19) of the BP crystal. The formation of a high-quality BP crystal layer is promoted on the surface composed of planes. That is, a high quality BP crystal layer can be formed on the surface of the {111} plane of the Si single crystal, and as a result, the adhesion between the Si single crystal substrate and the BP buffer layer thereon can be improved. It becomes.
[0015]
However, Si single crystals having {111} planes cannot be cleaved in directions orthogonal to each other, which is inconvenient for manufacturing a rectangular light emitting device. On the other hand, Si single crystals having {100} planes are orthogonal to each other. [110] A rectangular group III nitride semiconductor light emitting device can be easily formed by utilizing cleavage along the crystal orientation.
Therefore, in the present invention, the pores having the {111} faces exposed are formed as described above on the {100} faces of the Si single crystal substrate, and the pores are formed on the basis of the {111} side walls of the pores. By growing a high-quality BP crystal layer, a buffer layer made of a BP crystal having excellent adhesion to a Si single crystal substrate can be formed from a {100} plane without deteriorating the advantage of manufacturing a light-emitting element by cleavage. It can be formed on a Si substrate having a surface. As a result, a high-quality group III nitride semiconductor layer can be formed on the Si substrate having the surface of the {100} plane via the buffer layer.
[0016]
Further, in the present invention, the value of the length (W) of one side of the bottom surface 13a of the pore 13 shown in FIGS. That is, in the manufacture of the light emitting device, it is advantageous to use, as the substrate 10, a Si single crystal having a {100} plane in which the pores 13 having the sizes defined below are formed.
[0017]
The depth (shown by the symbol D in FIG. 2) of the quadrangular pyramid-shaped pore 13 having the {111} plane as the side wall 12 increases as the length W of one side of the bottom surface 13a of the pore 13 increases. That is, there is a relationship between the depth D and the length W of one side, which is approximated by D = 0.58 × W.
If W is extremely large and thus the depth D is extremely large, it is difficult to sufficiently bury the pores 13 with the buffer layer made of a BP-based material. When the pores 13 are not sufficiently buried by the buffer layer, “dents” are generated on the surface of the pores 13 even after the buffer layer is formed. Therefore, the flatness of the surface of the buffer layer made of the BP-based material formed on the surface 11 of the Si substrate 10 is impaired. As described above, on the buffer layer in which a step is formed between the pores 13 and the surface other than the pores 13, a problem occurs that a group III nitride semiconductor layer having no unevenness and excellent surface flatness cannot be formed. . The value of W suitable for sufficiently filling the pores 13 with the buffer layer is approximately 500 μm or less.
[0018]
When W is less than 10 μm, the pores 13 are easily buried in the buffer layer because D becomes shallow. However, in pores having a shallow D as in this case, the pores 13 were easily filled with a crystal made of a BP-based material that rapidly grew on the {111} plane of the Si crystal forming the sidewalls of the pores. In addition, (1.1.-1), (-1.1.-1), (-1.1.1.-1), and (1) constituting the side walls of the pores in the process of forming the buffer layer Pyramidal projections are formed by a crystal made of a BP-based material that grows predominantly in the direction perpendicular to each crystal plane of the .-1.-1) plane. Due to the pyramid-shaped protrusions, the flatness of the surface of the buffer layer becomes inferior, and further, the group III nitride semiconductor layer formed on the buffer layer also becomes inferior in the flatness of the surface.
Therefore, it is preferable that the value of the length W of one side of the bottom surface 13a of the pore 13 be in the range of 10 μm or more and 500 μm or less.
[0019]
It is preferable that the pores having the size of W defined as described above are regularly formed at regular intervals on the surface formed of the {100} plane of the Si substrate. For example, when fabricating a square group III nitride semiconductor light emitting device having a side length (= L) of 350 μm, square pyramid-shaped pores having W of 20 μm have apexes 13b (see FIG. 2) at intervals. An S substrate that is regularly arranged on the surface so as to have a thickness of 30 μm can be used. Due to the presence of the regularly arranged pores, the strength of adhesion between the buffer layer formed of the BP-based material formed on the Si substrate and the surface of the Si substrate can be uniformly increased. In addition, by regularly arranging the pores, for example, in an LED using a group III nitride semiconductor, the intensity of light emitted from the light emitting unit can be made uniform.
[0020]
The buffer layer made of a BP-based material refers to a buffer layer made of a crystal containing boron (B) and phosphorus (P) as constituent elements. That is, the BP-based material also includes, for example, boron nitrided phosphide (BP 1-X N X , where 0 ≦ X <1) and boron arsenide (BP 1-Y As Y , where 0 ≦ Y <1). .
The buffer layer made of a BP-based material provided on the surface of the Si substrate is preferably grown by a vapor phase growth method. This buffer layer is formed by, for example, halogen-based vapor phase epitaxy (VPE) using boron trichloride (BCl 3 ) or phosphorus trichloride (PCl 3 ) as a raw material, or phosphine (PH 3 ) instead of phosphorus trichloride. It can be grown by a vapor phase growth method such as a hydride VPE method using a raw material, or a metal organic chemical vapor deposition (MOCVD) method using a trialkyl boron as a boron raw material. Further, it can also be formed by the MO-MBE method which combines the MOCVD method and the molecular beam epitaxial method (MBE method).
[0021]
When a buffer layer made of a BP-based material is used as a buffer layer for mitigating a lattice mismatch between a Si substrate and a group III nitride semiconductor layer such as GaN, the growth temperature of the buffer layer depends on the growth temperature. Regardless of the method, it is preferable to set the temperature to about 200 ° C. or more and 500 ° C. or less. Further, a buffer layer made of a BP-based material is grown on the Si substrate in this temperature range, and a buffer layer made of the BP-based material is grown again at a higher temperature to form a buffer layer having a two-layer structure. It becomes a more suitable buffer layer for growing a low-density group III nitride semiconductor layer.
[0022]
[Action]
A pore having an exposed {111} plane is formed on a {100} plane of the Si single crystal substrate, and a good quality BP crystal layer is formed on the basis of the sidewall of the {111} plane of the Si single crystal substrate. When grown on the surface of the substrate, a buffer layer made of BP crystal having excellent adhesion to the Si single crystal substrate can be formed on the Si substrate.
Further, the buffer layer made of a BP crystal advantageously acts on forming a high-quality group III nitride semiconductor layer having a low density of crystal defects caused by lattice mismatch.
[0023]
【Example】
Hereinafter, an example in which a group III nitride semiconductor light emitting device according to the present invention is manufactured will be described. FIG. 3 is a schematic plan view of the LED 100 according to the present embodiment using a single crystal Si as a substrate and using a group III nitride semiconductor layer as a light emitting unit. FIG. 4 is a schematic cross-sectional view of the LED 100 shown in FIG. 3 along the broken line BB ′.
[0024]
The LED 100 was manufactured from an epitaxial wafer provided with a Si single crystal substrate 101 and a crystal layer sequentially formed on the surface thereof by a vapor deposition method. The Si single crystal substrate 101 and each crystal layer constituting the epitaxial wafer are as follows.
(1) Formed by wet selective etching on a surface consisting of a {100} plane inclined by 2 ° in the <110> direction, with the length of one side of the bottom being approximately 30 μm and the interval between vertices being constant at 45 μm. A substrate 101 made of an n-type Si single crystal doped with antimony (Sb) in which pores 109 are regularly arranged.
(2) On the substrate 101, at a temperature of 350 ° C. and at a temperature of 350 ° C., PH 3 and ((C 2 H 5 ) 3 B) / phosphine (PH 3 ) / hydrogen (H 2 ) are applied by MOCVD at normal pressure. It is made of undoped n-type boron phosphide (BP) having a layer thickness of about 15 nm and grown by setting the supply ratio (V / III ratio) of C 2 H 5 ) 3 B to about 300. First buffer layer 102.
(3) Disilane (Si 2 H 6 ) is used as a doping material of silicon (Si), and is stacked at about 1050 ° C. on the low-temperature buffer layer 102 made of BP by the same MOCVD method as described above. A second buffer layer 103 made of Si-doped n-type BP having a carrier concentration of about 2 × 10 18 cm −3 .
(4) A layer thickness grown on the second buffer layer 103 at 1050 ° C. by a normal pressure MOCVD method using trimethylgallium ((CH 3 ) 3 Ga) / ammonia (NH 3 ) / H 2. A lower cladding layer 104 made of Si-doped n-type gallium nitride (GaN) having a thickness of about 500 nm and a carrier concentration of about 1 × 10 18 cm −3 .
(5) Atmospheric pressure MOCVD using (CH 3 ) 3 Ga / cyclopentadienyl indium (I) (C 5 H 5 In (I)) / NH 3 / H 2 on the lower cladding layer 104 A multi-phase structure composed of a plurality of phases having different In compositions, with an average indium (In) composition ratio of about 0.12, and a layer thickness of about 70 nm. Light-emitting layer 105 made of gallium nitride-indium mixed crystal (Ga 0.88 In 0.12 N).
(6) On the light emitting layer 105, grown at 1030 ° C. by normal pressure MOCVD using (CH 3 ) 3 Ga / NH 3 / H 2 , the layer thickness is about 650 nm, and the carrier concentration is about 3 × An upper cladding layer 106 made of p-type gallium nitride (GaN) having a thickness of 10 17 cm -3 .
[0025]
The LED 100 was manufactured using an epitaxial wafer manufactured by sequentially forming the above crystal layers on the surface of the Si single crystal substrate 101 by a vapor growth method. The LED 100 was manufactured by forming the following p-type and n-type ohmic electrodes 107 and 108 on the above-described epitaxial wafer by using a well-known photolithography (photolithography) technique.
(1) A circular p-type ohmic electrode 107 made of gold (Au) and having a diameter of about 130 μm, formed on the uppermost cladding layer 106.
(2) An n-type ohmic electrode 108 made of aluminum (Al) formed on substantially the entire back surface of the Si single crystal substrate 101.
Next, utilizing the cleavage property of the Si single crystal substrate 101 in the [110] direction, the epitaxial wafer on which the p-type and n-type ohmic electrodes 107 and 108 are formed is divided into individual LEDs by a general scribe means. did. The planar shape of the LED was a square with one side of about 350 μm.
[0026]
With respect to this LED, a gold (Au) wire is connected (bonded) to the p-type ohmic electrode 107, the bonding strength is measured, and the Si single crystal substrate 101, the first buffer layer 102, and the second buffer layer 103 are measured. Was evaluated for adhesion.
In a general pull test for measuring the bonding strength, in the case of about 500 LED samples according to the present embodiment, the first load from the surface of the Si single crystal substrate 101 with respect to a tensile load of 5 g was measured. No peeling of the buffer layer 102 and the second buffer layer 103 was observed.
[0027]
On the other hand, in the conventional LED in which the pores according to the present invention are not provided on the surface of the Si single crystal substrate, in the same tensile test in which the tensile load was set to 5 g, 20% of the sample was compared with the buffer with the buffer. Partial delamination between the layers occurred.
[0028]
Further, with respect to the LED of this example, current was passed between the p-type and n-type ohmic electrodes 107 and 108, and the following characteristics were obtained.
(A) Emission wavelength = 456 nm (however, forward current = 20 mA)
(B) Emission luminance = 1.2 candela (cd) (however, forward current = 20 mA)
(C) Forward voltage = 3.8 volts (V) (however, forward current = 20 mA)
(D) Reverse voltage = 15 V or more (However, reverse current = 10 μA)
[0029]
【The invention's effect】
According to the present invention, in a Si single crystal substrate having a {100} plane as a surface, quadrangular pyramid-shaped pores having a {111} plane as a side wall are formed on the surface. A buffer layer made of a boron phosphide (BP) -based material having excellent properties can be formed, and a group III nitride semiconductor layer having excellent crystallinity can be formed on the buffer layer. From the semiconductor light emitting device wafer thus manufactured, a group III nitride semiconductor light emitting device can be easily manufactured by utilizing the cleavage property.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a Si single crystal substrate having a {100} plane according to the present invention.
FIG. 2 is a cross-sectional view of the Si single crystal substrate shown in FIG. 1 along the broken line AA ′.
FIG. 3 is a schematic plan view of an LED according to an embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view of the LED shown in FIG. 3 along the broken line BB ′.
[Explanation of symbols]
Reference Signs List 10 Si single crystal substrate 11 Surface 12 Side wall 13 Pores 13a Pores bottom 13b Apex of pores W Length of one side of the bottom of pores D Depth of pores 100 LED
101 Si single crystal substrate 102 First buffer layer 103 Second buffer layer 104 Lower cladding layer 105 Light emitting layer 106 Upper cladding layer 107 p-type ohmic electrode 108 n-type ohmic electrode 109 pore

Claims (8)

珪素(Si)単結晶からなる基板と、該基板表面上に設けられたリン化硼素(BP)系材料からなる緩衝層と、該緩衝層上に設けられたIII族窒化物半導体層とを備えてなるIII族窒化物半導体発光素子用ウェハにおいて、前記基板が{100}面からなる表面を有し、かつ該表面に側壁を{111}面とする四角錐状の細孔が設けられていることを特徴とするIII族窒化物半導体発光素子用ウェハ。A substrate made of silicon (Si) single crystal; a buffer layer made of a boron phosphide (BP) -based material provided on the surface of the substrate; and a group III nitride semiconductor layer provided on the buffer layer In the group III nitride semiconductor light emitting device wafer, the substrate has a surface of {100} plane, and the surface is provided with quadrangular pyramid-shaped pores having side walls of {111} plane. A wafer for a group III nitride semiconductor light emitting device, characterized in that: 前記四角錐状の細孔の底面の一辺の長さ(W)が、10μm以上で500μm以下の範囲であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子用ウェハ。2. The group III nitride semiconductor light emitting device wafer according to claim 1, wherein a length (W) of one side of a bottom surface of the quadrangular pyramid-shaped pore is in a range from 10 μm to 500 μm. 3. 前記四角錐状の細孔が、基板表面に等間隔で規則的に設けられていることを特徴とする請求項1または2に記載のIII族窒化物半導体発光素子用ウェハ。3. The group III nitride semiconductor light emitting device wafer according to claim 1, wherein the quadrangular pyramid-shaped pores are regularly provided on a substrate surface at regular intervals. 4. 珪素(Si)単結晶からなる基板と、該基板表面上に設けられたリン化硼素(BP)系材料からなる緩衝層と、該緩衝層上に設けられたIII族窒化物半導体層とを備えてなるIII族窒化物半導体発光素子用ウェハの製造方法において、{100}面からなる表面を有し、かつ該表面に側壁を{111}面とする四角錐状の細孔が設けられている前記Si単結晶の基板表面上に、気相成長法によりBP系材料からなる緩衝層を形成することを特徴とするIII族窒化物半導体発光素子用ウェハの製造方法。A substrate made of silicon (Si) single crystal; a buffer layer made of a boron phosphide (BP) -based material provided on the surface of the substrate; and a group III nitride semiconductor layer provided on the buffer layer The method for manufacturing a wafer for a group III nitride semiconductor light-emitting device, comprising: a surface having a {100} plane, and a quadrangular pyramid-shaped pore having a side wall of a {111} plane is provided on the surface. A method for manufacturing a wafer for a group III nitride semiconductor light emitting device, comprising forming a buffer layer made of a BP-based material on a surface of the Si single crystal substrate by a vapor phase growth method. 前記BP系材料からなる緩衝層上に、更に気相成長法によりIII族窒化物半導体層を形成することを特徴とする請求項4に記載のIII族窒化物半導体発光素子用ウェハの製造方法。The method for manufacturing a group III nitride semiconductor light emitting device wafer according to claim 4, wherein a group III nitride semiconductor layer is further formed on the buffer layer made of the BP-based material by a vapor phase growth method. 前記気相成長法が有機金属熱分解気相成長法(MOCVD法)であることを特徴とする請求項4または5に記載のIII族窒化物半導体発光素子用ウェハの製造方法。The method of manufacturing a group III nitride semiconductor light emitting device wafer according to claim 4 or 5, wherein the vapor phase growth method is a metal organic chemical vapor deposition (MOCVD) method. 前記四角錐状の細孔をエッチングにより設けることを特徴とする請求項4乃至6に記載のIII族窒化物半導体発光素子用ウェハの製造方法。The method according to claim 4, wherein the quadrangular pyramid-shaped pores are provided by etching. 請求項1乃至3に記載のIII族窒化物半導体発光素子用ウェハを用いて作製したIII族窒化物半導体発光素子。A group III nitride semiconductor light emitting device manufactured using the group III nitride semiconductor light emitting device wafer according to claim 1.
JP2000090432A 2000-03-29 2000-03-29 Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device Expired - Fee Related JP3541775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090432A JP3541775B2 (en) 2000-03-29 2000-03-29 Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090432A JP3541775B2 (en) 2000-03-29 2000-03-29 Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001284643A JP2001284643A (en) 2001-10-12
JP3541775B2 true JP3541775B2 (en) 2004-07-14

Family

ID=18606039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090432A Expired - Fee Related JP3541775B2 (en) 2000-03-29 2000-03-29 Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3541775B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465499B2 (en) 2002-01-28 2008-12-16 Showa Denko K.K. Boron phosphide-based semiconductor device, production method thereof, light-emitting diode and boron phosphide-based semiconductor layer
JP4117156B2 (en) 2002-07-02 2008-07-16 日本電気株式会社 Method for manufacturing group III nitride semiconductor substrate
JP2007266577A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Nitride semiconductor device and manufacturing method thereof
KR100793443B1 (en) 2006-09-22 2008-01-11 (주)하이쏠라 Substrate structure for semiconductor device based on nitride and method of manufacturing the same
JP2008141187A (en) * 2006-11-09 2008-06-19 Matsushita Electric Ind Co Ltd Nitride semiconductor laser device
US8129205B2 (en) 2010-01-25 2012-03-06 Micron Technology, Inc. Solid state lighting devices and associated methods of manufacturing
CN104638081A (en) * 2015-01-20 2015-05-20 中国科学院半导体研究所 Silicon-based GaN luminescent device based on crystalline silicon photovoltaic technology and preparation method of silicon-based GaN luminescent device
CN108493310B (en) * 2018-05-29 2020-04-14 华灿光电(浙江)有限公司 Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001284643A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP4160000B2 (en) Light emitting diode and manufacturing method thereof
US8330173B2 (en) Nanostructure having a nitride-based quantum well and light emitting diode employing the same
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
JP4882351B2 (en) Semiconductor laminated substrate, manufacturing method thereof, and light emitting device
JP2001148357A (en) Iii-n-based compound semiconductor device
KR100682873B1 (en) Semiconductor emitting device and manufacturing method for the same
JP3541775B2 (en) Group III nitride semiconductor light emitting device wafer, method of manufacturing the same, and group III nitride semiconductor light emitting device
JPH11354842A (en) Gan semiconductor light emitting element
KR101028585B1 (en) Hetero-substrate, ?-nitride semiconductor devices using the same and manufacturing method of thereof
JP2000252219A (en) PRODUCTION OF GaN SUBSTRATE
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JP3772816B2 (en) Gallium nitride crystal substrate, method for manufacturing the same, gallium nitride semiconductor device, and light emitting diode
TW200541115A (en) Group Ⅲ nitride semiconductor light-emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4329166B2 (en) Group III nitride semiconductor optical device
JP4374720B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP4583523B2 (en) III-V nitride semiconductor light emitting device and method for manufacturing the same
KR20080030042A (en) Light emitting diode of a nanorod array structure having a nitride-baseed multi quantum well
JP3577463B2 (en) III-nitride semiconductor light emitting diode
US10763395B2 (en) Light emitting diode element and method for manufacturing same
JP2002170988A (en) Nitride semiconductor light emitting element and its light emitting device
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JP2005251922A (en) Semiconductor light emitting device
JP7075840B2 (en) Group III nitride semiconductor light emitting diode and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees