JPH01245569A - Gap green light-emitting element and manufacture thereof - Google Patents

Gap green light-emitting element and manufacture thereof

Info

Publication number
JPH01245569A
JPH01245569A JP63071898A JP7189888A JPH01245569A JP H01245569 A JPH01245569 A JP H01245569A JP 63071898 A JP63071898 A JP 63071898A JP 7189888 A JP7189888 A JP 7189888A JP H01245569 A JPH01245569 A JP H01245569A
Authority
JP
Japan
Prior art keywords
layer
type
gaplpe
layers
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63071898A
Other languages
Japanese (ja)
Inventor
Kazutoshi Konno
今野 和俊
Kazumi Unno
海野 和美
Takayuki Ariyoshi
有吉 隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63071898A priority Critical patent/JPH01245569A/en
Publication of JPH01245569A publication Critical patent/JPH01245569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve the luminous efficiency of the title element without being affected by the crystallizability of an n-type GaP substrate by a method wherein the element is provided with the substrate, an N-type GaPLPE layer formed in a layer thickness deposited at a specified value or higher and 3 layers of an n(1)-type GaPLPE layer, an n(2)-type GaPLPE layer and a p-type GaPLPE layer, which are laminated in this order, and N is added to at least part of the intermediate layer among the above 3 layers. CONSTITUTION:An n-type GaPLPE layer 11 is formed on the upper surface of an n-type GaP substrate 101 in a layer thickness of 70mum or thicker. Moreover, the layer 11 is formed in such a way that its carrier concentration is within a range of 1X10<17>-15X10<17>cm<-3>. 3 layers of an n(1)-type GaPLPE layer 12, an N(2)-type GaPLPE layer 13 and a P-type GaPLPE layer 14 are laminated on the upper surface of the layer 11 in this order. The title element is constituted of the substrate 101, the layer 11 and the laminated layers, which are the GaPLPE layers and respectively have structures of an n(1)-type, an n(2)-type and a p-type, and moreover, N is added to at least part of the layer 13 which is the intermediate layer among these 3 layers. Moreover, each carrier concentration of the above 3 layers is exemplified as an example as follows: The carrier concentrations of the layers 12, 13 and 14 are respectively formed into 2-4X10<17>cm<-3>, 0.5-4X10<16>cm<-3> and 6-40X10<17>cm<-3>. That is, the carrier concentration of the layer 1 3, which is the intermediate layer, is smaller than that of any one of the layers to come into contact to this layer 13.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はGaP発光素子のエピタキシャル構造に係り、
特にGaP緑色発光素子に使用されるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an epitaxial structure of a GaP light emitting device,
In particular, it is used for GaP green light emitting devices.

(従来の技術) 従来のGaP発光素子の構造を第6図に断面図で示す。(Conventional technology) The structure of a conventional GaP light emitting device is shown in cross section in FIG.

第6図において、101はn型GaP基Fi(以下型を
省略しn−GaP基板の如く記す)でS、丁eまたはS
iがドープされてなり、その上面に、液体エピタキシャ
ル(以下、LPEと略称する)法により堆積形成された
n(1)−GaPLPE層102. n■−GaPLP
E層10:3. p−GaPLPE層104の3層がこ
の順に順次積層して形成されている。次に、発光素子の
厚さを揃えるために、ラッピングを施したのち、n型面
とp型面に夫々、AuGeまたはAuSx l^uBe
またはAuZnのAu合金を蒸着し、熱処理を施し、写
真蝕刻によってn電極105、p電極106の形成を達
成する。その後、ブレードダイサ等でチップ状に分割し
、GaP緑色発光崇子耳曵を得ている。
In FIG. 6, 101 is an n-type GaP base Fi (hereinafter referred to as n-GaP substrate, omitting the type), S, D, or S.
an n(1)-GaPLPE layer 102 doped with i and deposited on its upper surface by a liquid epitaxial (hereinafter abbreviated as LPE) method. n■-GaPLP
E layer 10:3. Three p-GaPLPE layers 104 are formed by stacking them in this order. Next, in order to make the thickness of the light emitting element uniform, after lapping, AuGe or AuSx l^uBe was applied to the n-type surface and the p-type surface, respectively.
Alternatively, the n-electrode 105 and the p-electrode 106 are formed by vapor depositing an Au alloy of AuZn, performing heat treatment, and photolithography. Thereafter, it was divided into chips using a blade dicer or the like to obtain GaP green light-emitting tines.

なお、前記GaP基板101上に積層形成された3層の
n■/ n Ciり / pのGaP層102.103
.104は、nQ)/p■/p■のGaP層であっても
よい。
Note that three layers of n/n Ci/p GaP layers 102 and 103 are laminated on the GaP substrate 101.
.. 104 may be a GaP layer of nQ)/p■/p■.

(発明が解決しようとする課題) GaP緑色発光素子の発光効率(明るさ)は次の(i)
  エピタキシャル各層のキャリア濃度コントロール:
 o、s x to”〜I X 10” cx−3(i
i)  基板ウェーハのキャリア濃度(iii)  基
板ウェーハの結晶性に大きく依存する。
(Problem to be solved by the invention) The luminous efficiency (brightness) of the GaP green light emitting device is as follows (i)
Control of carrier concentration in each epitaxial layer:
o, s x to"~I x 10" cx-3(i
i) Carrier concentration of the substrate wafer (iii) It largely depends on the crystallinity of the substrate wafer.

特に基板ウェーハの結晶性との相関(これについてはこ
の項の後半で説明する)は強い。
In particular, the correlation with the crystallinity of the substrate wafer (this will be explained later in this section) is strong.

エピタキシャル層のエッチピット密度(以下lE、P、
D)と発光強度との相関図を第3図に示す。
Etch pit density of epitaxial layer (hereinafter referred to as lE, P,
A correlation diagram between D) and luminescence intensity is shown in FIG.

E、P、Dは結晶性に関する一つの指標である。E, P, and D are indicators regarding crystallinity.

また、引上法によって製造された基板ウェーハは結晶性
改善に種々制約があり、一般に結晶性が悪い。また、そ
の周辺部においては結晶性はさらに悪い(E、P、Dが
大である)ため、この部分で製造された緑色発光素子の
発光強度は弱くなる。
Furthermore, substrate wafers manufactured by the pulling method have various limitations on improving crystallinity, and generally have poor crystallinity. Furthermore, since the crystallinity is even worse in the peripheral area (E, P, and D are large), the emission intensity of the green light emitting element manufactured in this area becomes weak.

叙上により、 GaP緑色発光素子の性能向上には、い
かに良好な基板ウェーハを用いるかが問題となる。特に
基板ウェーハの周辺部での結晶性の改善が大きな課題で
ある。
As described above, the problem with improving the performance of GaP green light emitting devices is how to use a good substrate wafer. In particular, improving crystallinity around the periphery of the substrate wafer is a major challenge.

ところで、エピタキシャル層のp −n接合近傍のE、
P、Dは、基板に存在する結晶欠陥、例えばD −pi
t (深いピッ1)+5pit(浅いピッ1)等に顕著
に影響される。そのため、エピタキシャル層のE、P、
Dを低減させるためには、基板の結晶性を改善する必要
があるが、現在の技術では困難度が高い。従って、基板
の結晶性にあまり影響されず、p −n接合近傍のエピ
タキシャル層を良好な結晶性を備えて形成する技術を開
発することは、緑色発光素子の発光効率と品質を夫々向
上させるために緊急な課題となっている。
By the way, E near the p-n junction of the epitaxial layer,
P and D are crystal defects existing in the substrate, such as D-pi
It is significantly affected by t (deep pit 1) + 5 pit (shallow pit 1), etc. Therefore, E, P of the epitaxial layer,
In order to reduce D, it is necessary to improve the crystallinity of the substrate, but this is highly difficult with current technology. Therefore, it is important to develop a technology to form an epitaxial layer near the p-n junction with good crystallinity without being affected much by the crystallinity of the substrate, in order to improve the luminous efficiency and quality of green light-emitting devices. has become an urgent issue.

この発明は基板の結晶性に左右されることなく、発光効
率の高い緑色発光素子の構造とその製造方法を提供する
ことを目的とするものである。
An object of the present invention is to provide a structure of a green light-emitting element with high luminous efficiency and a method for manufacturing the same, regardless of the crystallinity of the substrate.

〔発明の構成〕[Structure of the invention]

(ili!題を解決するための手段) 本発明はGaP緑色発光素子とその製造方法に係り、 
GaP緑色発光素子は、液体封止チョクラルスキ法で成
長形成されたn −GaP基板と、前記n−GaP基板
上に液体エピタキシャル法により層厚70.以上堆積さ
せ形成されたn −GaPLPE層と、前記n −Ga
PLPE層上に形成されたn(1)/n■/p、または
n■/p■/p■の各GaPLPE層の3層をこの順に
具備し、前記3層の中間層には少なくともその一部にN
が添加されていることを特徴とするものであり、その製
造方法は、液体封止チョクラルスキ法でn−GaP基板
を成長形成する工程と、前記n −GaP基板上に液体
エピタキシャル法により層厚70μs以上にn−GaP
LPE層を堆積して形成する工程と、前記n−GaPL
PE層上に液体エピタキシャル法により、SiまたはT
eを添加してnO−GaPLPE層と、これに連続しN
を添加してnO−GaPLPE層と、Znを添加してp
 −GaPLPE層とを順次成長させる工程を含むもの
であり、また、液体封止チョクラルスキ法でn −Ga
P基板を成長形成する工程と、前記n−GaP基板上に
液体エピタキシャル法により層厚70μm以上にn −
GaPLPE層を堆積して形成する工程と、前記n−G
aPLPE層上に液体エピタキシャル法により、Siま
たはTeを添加してn(υ−GaPLPE層と、Nおよ
びCを同時に添加してP(1)−GaPLP[E層と、
これに連続しZnを添加してp(2) −GaPLEP
EMとを順次成長させる工程を含むものである。
(Means for Solving the Problem) The present invention relates to a GaP green light emitting device and a method for manufacturing the same.
The GaP green light-emitting device includes an n-GaP substrate grown using a liquid-sealed Czochralski method, and a layer having a thickness of 70. The n-GaPLPE layer deposited above and the n-Ga
Three GaPLPE layers of n(1)/n■/p or n■/p■/p■ formed on the PLPE layer are provided in this order, and at least one of the three layers is provided as an intermediate layer of the three layers. Part N
The manufacturing method includes a step of growing an n-GaP substrate using a liquid-sealed Czochralski method, and a layer thickness of 70 μs on the n-GaP substrate using a liquid epitaxial method. More than n-GaP
a step of depositing and forming an LPE layer; and a step of forming the n-GaPL layer.
Si or T is deposited on the PE layer by liquid epitaxial method.
e is added to form an nO-GaPLPE layer, followed by an N
The nO-GaPLPE layer is formed by adding Zn, and the p-GaPLPE layer is formed by adding Zn.
-GaPLPE layer, and also includes the steps of sequentially growing n-GaPLPE layers using the liquid-sealed Czochralski method.
A step of growing a P substrate and forming an n − layer with a thickness of 70 μm or more on the n-GaP substrate by liquid epitaxial method.
a step of depositing and forming a GaPLPE layer;
By liquid epitaxial method, Si or Te is added onto the aPLPE layer to form an n(υ-GaPLPE layer, and N and C are simultaneously added to form a P(1)-GaPLP[E layer,
Continuously adding Zn to this, p(2) -GaPLEP
This method includes a step of sequentially growing EM and EM.

(作 用) この発明は基板の結晶性が悪くとも、基板とGaP緑色
のエピタキシャル3層(n■/n■/Panω/P■/
p■)との間に結晶性の良いnエピタキシャル層を介在
させることによって、基板の結晶性に影響されない構造
の緑色発光素子を得ることができる。
(Function) Even if the crystallinity of the substrate is poor, this invention can be applied to the substrate and GaP green epitaxial three layers (n■/n■/Panω/P■/
By interposing an n epitaxial layer with good crystallinity between the substrate and the substrate, a green light-emitting element having a structure that is not affected by the crystallinity of the substrate can be obtained.

(実施例) 以下、本発明の一実施例のGaP緑色発光素子とその製
造方法につき図面を参照して説明する6−実施例のGa
P緑色発光素子を第1図aに断面図で示す。第1図aに
おいて、11はn −GaPLPE層でn −GaP基
板101の上面に層厚70μs以上に形成されたもので
ある。このn−GaPLPE [11の層厚は、層厚と
発光強度との相関を示す第2図の表に基づき決められた
ものである。また、このn −GaPLPE層11は、
層中1ア濃度がI X101×1017a++−3の範
囲内にあるように形成されている。
(Example) Hereinafter, a GaP green light emitting device according to an example of the present invention and a method for manufacturing the same will be explained with reference to the drawings.
A P-green light emitting device is shown in cross-section in FIG. 1a. In FIG. 1a, reference numeral 11 denotes an n-GaPLPE layer formed on the upper surface of the n-GaP substrate 101 to a thickness of 70 μs or more. The layer thickness of this n-GaPLPE [11] was determined based on the table in FIG. 2 showing the correlation between layer thickness and emission intensity. Moreover, this n-GaPLPE layer 11 is
The layer is formed so that the concentration of 1A in the layer is within the range of IX101×1017a++-3.

前記n−GaP基板上層11の上面にnO−GaPLP
Em12゜nOGaPLPE層13. p−GaPLP
EM14の3層がこの順に積層されたGaPLPE層で
n■/ n (2) / pなる構造の積層層を備え、
かつ、これらの中間層のnO−GaPLPE層13には
、少くともその一部にNが添加され構成されている特徴
がある。また、前記3層の各キャリア濃度は一例として
、nO−GaPLPE [12が2〜4×101101
7Cに、nO−GaPLPE層13が0.5〜4XIO
”a++−’に、p−GaPLPEW 14が6〜40
 X 10” cs−”に夫々に形成されている。すな
わち5中間層のnO−GaPLPE層13のキャリア濃
度はこれと接する層のいずれよりも小であることに特徴
がある。
nO-GaPLP on the upper surface of the n-GaP substrate upper layer 11.
Em12゜nOGaPLPE layer 13. p-GaPLP
The three layers of EM14 are GaPLPE layers laminated in this order, and have a laminated layer with a structure of n / n (2) / p,
Moreover, the nO-GaPLPE layer 13 as the intermediate layer is characterized in that at least a portion thereof is doped with N. Further, the carrier concentration of each of the three layers is, for example, nO-GaPLPE [12 is 2 to 4 × 101101
7C, the nO-GaPLPE layer 13 is 0.5 to 4XIO
“a++-” has 6 to 40 p-GaPLPEW 14
x 10"cs-" respectively. That is, the carrier concentration of the nO-GaPLPE layer 13, which is the fifth intermediate layer, is characterized in that it is lower than any of the layers in contact with it.

次に、この発明にがかるGaP緑色発光素子においては
、第1図すに示すように、n −GaPLPE層11の
上層中1層して形成されるGaPLPE層の3層を、n
O−GaPLPE層15. p(])  GaPLPE
層16.p■−GaPLPE層17をこの順にnα)/
p■/p■なる構造の積層層に構成されている。そして
、各層におけるキャリア濃度は一例として、nの−Ga
PLPE層15が2〜4×1011017Cに、ρ■−
GaPLPE層がI×4×10”Cjl+−’に、p 
(2) −G a P L P E層17が6〜40 
X 1017an −’に夫々形成されている。そして
、これらの中間層にNが添加されている点とこれに接す
る各層のいずれよりもキャリア濃度が小さい等の特徴は
前記n Q) / n■/p構造のものと変わらない。
Next, in the GaP green light emitting device according to the present invention, as shown in FIG.
O-GaPLPE layer 15. p(]) GaPLPE
Layer 16. p■-GaPLPE layer 17 in this order nα)/
It is composed of laminated layers having a p■/p■ structure. The carrier concentration in each layer is, for example, n-Ga
The PLPE layer 15 is 2 to 4×1011017C, ρ■-
GaPLPE layer is I×4×10”Cjl+-’, p
(2) -G a P L P E layer 17 is 6 to 40
X1017an-'. The features such as the addition of N to these intermediate layers and the lower carrier concentration than any of the layers in contact with these intermediate layers are the same as those of the nQ)/n■/p structure.

また、前記1面(基板)側にAuGe、 p面(LPE
層)側にAuggで夫々形成された電極105.106
を備える。
In addition, AuGe and p-plane (LPE) are formed on the first surface (substrate) side.
Electrodes 105 and 106 formed with Augg on the layer) side, respectively.
Equipped with.

次にこの発明にかかるn■/n■/P構造を有するGa
P緑色発光素子(第1図a)の製造方法につき説明する
。まず、(111)面を有し、S、 Te、 Si等の
いずれかのドープ剤によりドープされたn型GaP基板
101を用意し、このリン面側に層厚が約120μsの
n−GaPLPE層11を成層中1る。これには、−例
として1100℃のAr雰囲気中にて、 Ga、 Ga
Pおよび微量のTeを保持し溶解させた後、2℃/+a
inの速度で温度降下させながら750°Cまでの間で
エピタキシャル成長させることで達成される。ついで、
このn−GaPLPE層11を厚層中1011IIlに
するようにラッピングを施すとともに、そのキャリア濃
度を1.0〜15 、0 cm ’″3の範囲に入るよ
うにする。
Next, Ga having the n■/n■/P structure according to the present invention
A method for manufacturing the P green light emitting device (FIG. 1a) will be explained. First, an n-type GaP substrate 101 having a (111) plane and doped with a dopant such as S, Te, or Si is prepared, and an n-GaPLPE layer with a layer thickness of about 120 μs is formed on the phosphorus side. 11 during stratification. For example, in an Ar atmosphere at 1100°C, Ga, Ga
After retaining and dissolving P and a small amount of Te, 2°C/+a
This is achieved by epitaxial growth at a temperature of up to 750° C. while decreasing the temperature at a rate of in. Then,
This n-GaPLPE layer 11 is wrapped so that the thickness of the layer is 1011IIl, and the carrier concentration is set in the range of 1.0 to 15.0 cm''3.

次に、前記n −GaPLPE層11上に次にあげるG
aP緑色発光素子の3層を一連のエピタキシャル成長で
連続堆積させる。これにはn−GaPLPE層11を堆
層中1n型GaP基板101を石英製部品からなるボー
トにセットし、これをH2雰囲気中で一例の1000℃
でGa、 GaPを溶解させたものと接触させ、がっ、
SiまたはTeを添加して2℃/n+in、で降温、例
えば970℃まで降温させ、約25μa+厚のn O)
G a P L P E層12を成長堆積させる。次に
、アルゴンとNil、の混合雰囲気にして一例の930
℃まで降温させ、約15uM厚のn■GaPLPE層1
3を成長堆積させる。さらに、アルゴン雰囲気中でZn
をガス状に流しながら一例の800℃まで降温させ、約
25μI厚のp −GaPLPE層14を成長堆積させ
る。
Next, the following G
Three layers of an aP green light emitting device are deposited sequentially in a series of epitaxial growths. For this purpose, an n-GaPLPE layer 11 is deposited, a 1n-type GaP substrate 101 is set in a boat made of quartz parts, and this is heated to 1000° C. in an H2 atmosphere.
Contact with dissolved Ga and GaP,
Add Si or Te and lower the temperature at 2°C/n+in, for example, to 970°C, and form a layer of about 25 μa+ thick nO).
A G a P L P E layer 12 is grown and deposited. Next, an example of 930
The temperature was lowered to
3 is grown and deposited. Furthermore, Zn in an argon atmosphere
The temperature is lowered to, for example, 800° C. while flowing in a gaseous state, and a p-GaPLPE layer 14 having a thickness of about 25 μI is grown and deposited.

次に、厚さを揃えるためにn型GaP基板10】のGa
面(n −GaPLPE層11被着面と反対側の主面、
下面)側にラッピングを施し、n面側にAuGe層、9
面側にAuBe層を夫々蒸着させ、熱処理、写真蝕刻を
施してオーミック電極のn電極105. p電極106
を形成する。
Next, in order to make the thickness uniform, Ga of the n-type GaP substrate 10]
surface (principal surface opposite to the adhering surface of the n-GaPLPE layer 11,
Lapping is applied to the lower surface) side, and an AuGe layer is applied to the n-surface side, 9
An AuBe layer is deposited on each side, heat treated and photo-etched to form an ohmic n-electrode 105. p-electrode 106
form.

さらに、ブレードダイサにてチップ状に分割し、表面処
理を施しGaP緑色発光素子刊が得られる。
Furthermore, it is divided into chips using a blade dicer and subjected to surface treatment to obtain a GaP green light emitting device.

次に、この発明にかかるn■/p■/p■構造を有する
GaP緑色発光素子(第1図b)の製造方法につき、前
記n■/n■/p構造を有するGaP緑色発光素子の製
造方法と相違する部分を説明する6前記n −GaPL
PEWJl lを堆積したn型GaP基板101を石英
製部品を一部に組込んだカーボン製ボートにセットし、
これをI+2雰囲気中で一例の1000℃でGa。
Next, regarding the method for manufacturing a GaP green light emitting device having an n■/p■/p■ structure according to the present invention (FIG. 1b), the manufacturing method of the GaP green light emitting device having the n■/n■/p structure will be described. 6. Explaining the differences from the method of n-GaPL
An n-type GaP substrate 101 on which PEWJl was deposited was set in a carbon boat partially incorporating quartz parts.
Ga.

GaP を溶解させたものと接触させ、2℃/min、
で降温、例えば970℃まで降温させ、約25庫厚のn
ω−GaPLPIJJ 15を成長堆積させる6次に、
アルゴンとNHlおよびC11,の混合雰囲気にしてN
とCを添加して一例の930℃まで降温させ、約15μ
I厚のP■−GaPLPIJj16を成長堆積させる。
Contact with dissolved GaP, 2°C/min,
The temperature is lowered to, for example, 970℃, and the temperature is reduced to about 25℃.
6. Next, grow and deposit ω-GaPLPIJJ 15.
In a mixed atmosphere of argon, NH1 and C11
and C were added, the temperature was lowered to 930℃, and the temperature was about 15μ.
A layer of P■-GaPLPIJj16 having a thickness of I is grown and deposited.

さらに、アルゴン雰囲気中でZnをガス状に流しながら
一例の800°Cまで降温させ、約25μI厚のpQ−
GaPLPE層17を成長堆積させる。以降の工程は前
記nQ)/p■/p■構造を有するGaP緑色発光素子
の製造におけると同様にしてGaP緑色発光素子川が用
られる。
Furthermore, while flowing Zn gaseously in an argon atmosphere, the temperature was lowered to an example of 800°C, and a pQ-
A GaPLPE layer 17 is grown and deposited. In the subsequent steps, a GaP green light emitting device is used in the same manner as in the production of the GaP green light emitting device having the nQ)/p■/p■ structure.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、基板の結晶性の影響が改善され、平
均発光効率が第4図に示すように、30〜50%も向」
ニする顕著な効果がある。
According to this invention, the influence of the crystallinity of the substrate is improved, and the average luminous efficiency increases by 30 to 50%, as shown in FIG.
It has a remarkable effect.

次に、GaP基板が引上げ(LEC)法で形成されるの
で、特に基板周辺部における結晶性の影響に問題がある
6本発明によれば、この点が改善され、基板内の発光効
率のばらつきが第5図に示すように顕著に改善される。
Next, since the GaP substrate is formed by a pulling-up (LEC) method, there is a problem with the influence of crystallinity, especially in the peripheral area of the substrate6.According to the present invention, this point has been improved, and the variation in luminous efficiency within the substrate has been improved. is significantly improved as shown in FIG.

なお、上記第5図に示される発光効率で基板内のばらつ
きは基板毎の最大値/最小値の分布を集計したものであ
る。
Incidentally, the variation within the substrate in the luminous efficiency shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはいずれも夫々が本発明における実施例の
GaP緑色発光素子の断面図、第2図は本発明にかかる
GaP緑色発光素子についてn −GaPLPE層厚と
発光強度との相関を示す線図、第3図はGaP緑色発光
におけるn型GaP基板のH,P、Dと発光強度との相
関を示す線図、第4図は発光強度の分布を示す線図、第
5図は発光強度の基板内のばらつきを説明するための線
図、第6図は従来のGaP緑色発光素子の断面図である
。 101・・・n型GaP基板  1(1・GaP緑色発
光素子11− n −GaPLPE層  12−n(1
)  GaPLPE層13− n■−GaPLPE層 
14− p −GaPLPE層15− n■−GaP1
.PE層 16− pQ)  GaPL、PR層17−
pQ−GaPl、PE層 代理人 弁理士  井 上 −男 第  1  図 第2図 @3図 &生産数− 第4図 魔i/&数− 第 5 図 tol:n型(raP基板 toz:   ル(1)−師PLP 7:ノ、ytos
’、rti論 Io9:  F電輪 1oo:  Qap緑色’ie 党索’r第6図
FIGS. 1a and 1b are cross-sectional views of GaP green light-emitting devices according to examples of the present invention, and FIG. 2 shows the correlation between the n-GaPLPE layer thickness and emission intensity of the GaP green light-emitting device according to the present invention. Figure 3 is a diagram showing the correlation between H, P, D of an n-type GaP substrate and luminescence intensity in GaP green light emission, Figure 4 is a diagram showing the distribution of luminescence intensity, and Figure 5 is a diagram showing the correlation between luminescence intensity. FIG. 6, which is a diagram for explaining variations in luminous intensity within a substrate, is a cross-sectional view of a conventional GaP green light emitting device. 101...n-type GaP substrate 1(1.GaP green light emitting element 11-n-GaPLPE layer 12-n(1)
) GaPLPE layer 13-n■-GaPLPE layer
14-p-GaPLPE layer 15-n■-GaP1
.. PE layer 16- pQ) GaPL, PR layer 17-
pQ-GaPl, PE layer agent Patent attorney Inoue - Male No. 1 Fig. 2 @ Fig. 3 & Production number - Fig. 4 Magic i/& number - Fig. 5 tol: n type (raP substrate toz: le ( 1)-Master PLP 7:ノ,ytos
', rti theory Io9: F Denrin 1oo: Qap green 'ie party search'r Fig. 6

Claims (7)

【特許請求の範囲】[Claims] (1)液体封止チョクラルスキ法で成長形成されたn型
GaP基板と、前記n型GaP基板上に液体エピタキシ
ャル法により層厚70μμ以上堆積させ形成されたn型
GaPLPE層と、前記n型GaPLPE層上に形成さ
れたn(1)型/n(2)型/p型の各GaPLPE層
の3層をこの順に具備し、前記3層の中間層には少なく
ともその一部にNが添加されていることを特徴とするG
aP緑色発光素子。
(1) An n-type GaP substrate grown by a liquid-sealed Czochralski method, an n-type GaPLPE layer deposited on the n-type GaP substrate with a layer thickness of 70 μμ or more by a liquid epitaxial method, and the n-type GaPLPE layer It comprises three layers of n(1) type/n(2) type/p type GaPLPE layers formed on top in this order, and at least a part of the intermediate layer of the three layers is doped with N. G characterized by being
aP green light emitting device.
(2)液体封止チョクラルスキ法で成長形成されたn型
GaP基板と、前記n型GaP基板上に液体エピタキシ
ャル法により層厚70μm以上堆積させ形成されたn型
GaPLPE層と、前記n型GaPLPE層上に形成さ
れたn(1)型/p(1)型/p(2)型の各GaPL
PE層の3層をこの順に具備し、前記3層の中間層には
少なくともその一部にNが添加されていることを特徴と
するGaP緑色発光素子。
(2) an n-type GaP substrate grown by a liquid-sealed Czochralski method, an n-type GaPLPE layer deposited on the n-type GaP substrate to a thickness of 70 μm or more by a liquid epitaxial method, and the n-type GaPLPE layer Each n(1) type/p(1) type/p(2) type GaPL formed on
A GaP green light emitting device comprising three PE layers in this order, and at least a portion of an intermediate layer between the three layers is doped with N.
(3)n型GaP基板に接するn型GaPLPE層のキ
ャリア濃度が1×10^1^7〜15×10^1^7c
m^−^3の範囲にあることを特徴とする請求項1また
は2記載のGaP緑色発光素子。
(3) The carrier concentration of the n-type GaPLPE layer in contact with the n-type GaP substrate is 1×10^1^7 to 15×10^1^7c
The GaP green light emitting device according to claim 1 or 2, characterized in that the GaP green light emitting device is in the range of m^-^3.
(4)n型GaP基板に接するn型GaPLPE層にド
ナー不純物としてTeが添加されていることを特徴とす
る請求項1または2記載のGaP緑色発光素子。
(4) The GaP green light-emitting device according to claim 1 or 2, wherein Te is added as a donor impurity to the n-type GaPLPE layer in contact with the n-type GaP substrate.
(5)3層の中間層のキャリア濃度がこれと接する層の
いずれよりも小であることを特徴とする請求項1または
2記載のGaP緑色発光素子。
(5) The GaP green light-emitting device according to claim 1 or 2, wherein the carrier concentration of the three intermediate layers is lower than that of any of the layers in contact with the intermediate layer.
(6)液体封止チョクラルスキ法でn型GaP基板を成
長形成する工程と、前記n型GaP基板上に液体エピタ
キシャル法により層厚70μm以上にn型GaPLPE
層を堆積して形成する工程と、前記n型GaPLPE肩
上に液体エピタキシャル法により、SiまたはTeを添
加して第一のn型LPE層と、これに連続しNを添加し
て第二のn型LPE層と、Znを添加してp型LPE層
とを順次成長させる工程を含むGaP緑色発光素子の製
造方法。
(6) A step of growing an n-type GaP substrate using a liquid-sealed Czochralski method, and growing an n-type GaPLPE on the n-type GaP substrate to a layer thickness of 70 μm or more using a liquid epitaxial method.
A first n-type LPE layer is formed by adding Si or Te on the n-type GaPLPE shoulder by a liquid epitaxial method, and a second n-type LPE layer is formed by adding N continuously onto the n-type GaPLPE shoulder by a liquid epitaxial method. A method for manufacturing a GaP green light emitting device, including the steps of sequentially growing an n-type LPE layer and a p-type LPE layer with Zn added thereto.
(7)液体封止チョクラルスキ法でn型GaP基板を成
長形成する工程と、前記n型GaP基板上に液体エピタ
キシャル法により層厚70μm以上にn型GaPLPE
層を堆積して形成する工程と、前記n型GaPLPE層
上に液体エピタキシャル法により、SiまたはTeを添
加して第一のn型LPE層と、NおよびCを同時に添加
して第一のp型LPE層と、これに連続しZnを添加し
て第二のp型LPE層とを順次成長させる工程を含むG
aP緑色発光素子の製造方法。
(7) A step of growing an n-type GaP substrate using a liquid-sealed Czochralski method, and growing an n-type GaPLPE on the n-type GaP substrate to a layer thickness of 70 μm or more using a liquid epitaxial method.
A first n-type LPE layer is formed by adding Si or Te on the n-type GaPLPE layer by a liquid epitaxial method, and a first p-type LPE layer is formed by simultaneously adding N and C on the n-type GaPLPE layer. G-type LPE layer, which includes a step of sequentially growing a second p-type LPE layer by adding Zn thereto.
A method for manufacturing an aP green light emitting device.
JP63071898A 1988-03-28 1988-03-28 Gap green light-emitting element and manufacture thereof Pending JPH01245569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071898A JPH01245569A (en) 1988-03-28 1988-03-28 Gap green light-emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071898A JPH01245569A (en) 1988-03-28 1988-03-28 Gap green light-emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01245569A true JPH01245569A (en) 1989-09-29

Family

ID=13473813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071898A Pending JPH01245569A (en) 1988-03-28 1988-03-28 Gap green light-emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01245569A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302839A (en) * 1991-07-29 1994-04-12 Shin-Etsu Handotai Co., Ltd. Light emitting diode having an improved GaP compound substrate for an epitaxial growth layer thereon
JPH06151961A (en) * 1992-11-07 1994-05-31 Shin Etsu Handotai Co Ltd Substrate for gap-based light emitting element
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate
EP0654832A1 (en) * 1993-11-22 1995-05-24 Shin-Etsu Handotai Company Limited Method for producing a gallium phosphide epitaxial wafer
US5667842A (en) * 1993-10-27 1997-09-16 Minnesota Mining And Manufacturing Company Abrasive articles incorporating addition polymerizable resins and reactive diluents, and methods of making said abrasive articles
EP0685892A3 (en) * 1994-05-31 1998-04-01 Sharp Kabushiki Kaisha Method for producing light-emitting diode
WO2001033642A1 (en) * 1999-10-29 2001-05-10 Shin-Etsu Handotai Co., Ltd. Gallium phosphide luminescent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838692A (en) * 1971-09-10 1973-06-07
JPS599984A (en) * 1982-07-08 1984-01-19 Sanyo Electric Co Ltd Gallium phosphide green light emitting diode
JPS5923578A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Light emitting semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838692A (en) * 1971-09-10 1973-06-07
JPS599984A (en) * 1982-07-08 1984-01-19 Sanyo Electric Co Ltd Gallium phosphide green light emitting diode
JPS5923578A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Light emitting semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302839A (en) * 1991-07-29 1994-04-12 Shin-Etsu Handotai Co., Ltd. Light emitting diode having an improved GaP compound substrate for an epitaxial growth layer thereon
JPH06151961A (en) * 1992-11-07 1994-05-31 Shin Etsu Handotai Co Ltd Substrate for gap-based light emitting element
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate
US5667842A (en) * 1993-10-27 1997-09-16 Minnesota Mining And Manufacturing Company Abrasive articles incorporating addition polymerizable resins and reactive diluents, and methods of making said abrasive articles
EP0654832A1 (en) * 1993-11-22 1995-05-24 Shin-Etsu Handotai Company Limited Method for producing a gallium phosphide epitaxial wafer
US5571321A (en) * 1993-11-22 1996-11-05 Shin-Etsu Handotai Co., Ltd. Method for producing a gallium phosphide epitaxial wafer
EP0685892A3 (en) * 1994-05-31 1998-04-01 Sharp Kabushiki Kaisha Method for producing light-emitting diode
WO2001033642A1 (en) * 1999-10-29 2001-05-10 Shin-Etsu Handotai Co., Ltd. Gallium phosphide luminescent device

Similar Documents

Publication Publication Date Title
JPH01245569A (en) Gap green light-emitting element and manufacture thereof
JPH07326792A (en) Manufacture of light emitting diode
JP2719870B2 (en) GaP-based light emitting device substrate and method of manufacturing the same
JPH0897466A (en) Light emitting device
JP2817577B2 (en) GaP pure green light emitting element substrate
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JP2599088B2 (en) GaP red light emitting element substrate and method of manufacturing the same
JP3624451B2 (en) GaP epitaxial substrate for light emitting device
JPS63213378A (en) Manufacture of semiconductor light emitting element
JPH05110135A (en) Multilayer epitaxial crystalline structure
JPH0220077A (en) Manufacture of green-light emitting diode
JPH06151961A (en) Substrate for gap-based light emitting element
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JP3992117B2 (en) GaP light emitting device substrate
JPH1065211A (en) Light-emitting diode
US6890781B2 (en) Transparent layer of a LED device and the method for growing the same
JPH05335621A (en) Gallium phosphide green light emitting diode
JP3042566B2 (en) Manufacturing method of GaP-based light emitting device substrate
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
JP2000082841A (en) Epitaxial wafer and manufacture thereof
JPS599984A (en) Gallium phosphide green light emitting diode
JPS5918686A (en) Gallium phosphide light emitting diode
JP3340859B2 (en) Semiconductor light emitting device
JPH11186595A (en) Semiconductor light-emitting element and its manufacture
JPH098353A (en) Epitaxial wafer, production thereof and light emitting diode