JPS5965453A - Semiconductor device having multi-layer wiring - Google Patents

Semiconductor device having multi-layer wiring

Info

Publication number
JPS5965453A
JPS5965453A JP17507082A JP17507082A JPS5965453A JP S5965453 A JPS5965453 A JP S5965453A JP 17507082 A JP17507082 A JP 17507082A JP 17507082 A JP17507082 A JP 17507082A JP S5965453 A JPS5965453 A JP S5965453A
Authority
JP
Japan
Prior art keywords
wiring layer
voltage
insulating film
layer
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17507082A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeda
信行 池田
Fumio Yanagihara
柳原 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP17507082A priority Critical patent/JPS5965453A/en
Publication of JPS5965453A publication Critical patent/JPS5965453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make free the interface between an insulating film and semiconductor from influence of coupling in electricalfield due to the upper wiring layer by providing a plurality of wiring layers on the surface of a semiconductor substrate through an insulating film and setting the lower wiring layer to a potential lower than the inverted potential. CONSTITUTION:A thick silicon dioxide film 12 is formed on a silicon substrate 11 by selective oxidation method, source regions 13, 15, drain regions 14, 16 are formed by the selective diffusion method with such film used as the isolating region, and a first wiring layer 19 and a second wiring layer 20 of the conductive polycrystalline silicon are insulatingly formed on the silicon dioxide film 12 through an inter-layer insulating film 21. The first wiring layer 19 is placed in contact with the silicon substrate 11 so that it is in the same potential as the silicon substrate 11 and is kept at a voltage lower than the inverted voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路、とりわけ、MO8集積回路で
広く用いられる多層配線を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor integrated circuits, particularly to semiconductor devices having multilayer wiring widely used in MO8 integrated circuits.

従来例の構成とその問題点 M(1)S集積回路(以下、MC)SICと略称する)
では、素子゛相互間を結ぶ配線が多層構造に形成され、
また、その配−は、しはしば、素子間を分離する厚い絶
縁膜上に設けられる。
Conventional configuration and its problems M(1)S integrated circuit (hereinafter referred to as MC)
In this case, the wiring connecting elements is formed in a multilayer structure,
Moreover, the wiring is often provided on a thick insulating film that separates the elements.

第1図aは、通常のhiUsIcの要部を概要的に示す
平面図、同図すはそのx−X断面図であシ、シリコン基
板1の表面部に設けられる厚い絶縁膜2を分離領域とし
て、その両側にMQS)ランジスタのソース領域3,6
、ドレイン領域4,6が拡散形成され、また、それらに
関係する絶縁ゲート電極7,8が設けられている。そし
て、厚い絶縁膜2上には、アルミニウムまたは導電性多
結晶シリコンを用いて配線層9を配設し、この配線層9
が電源あるいは信号受授の伝送線に利用される。
FIG. 1a is a plan view schematically showing the main parts of a normal hiUsIc, and the figure is a cross-sectional view taken along the line XX. As, on both sides of MQS) transistor source regions 3, 6
, drain regions 4, 6 are diffused and associated insulated gate electrodes 7, 8 are provided. Then, on the thick insulating film 2, a wiring layer 9 is provided using aluminum or conductive polycrystalline silicon.
is used for power supply or transmission lines for signal reception.

ところで、厚い絶縁膜2の直下には、チャネル層と呼ば
れる導電領域、いわゆる反転層が誘起され易く、これが
画素子間の電気的結合を生じて、信号リーク現象の要因
になるため、このチャネル層形成を防止するチャネルス
トッパと呼ばれる領域10が設けられる。このチャネル
ストッパ10は、たとえば、厚い絶縁膜9を選択的に形
成する際に、基板シリコン1と同種の導電性を与える高
濃度不純物が拡散導入されるような工程と釦み合わされ
て形成される。ところが、このチャネルストッパ10の
機能が不十分な場合、たとえば、同領域10の不純物濃
度が低いとき、あるいは絶縁膜2の厚みか不十分である
ときには信号リーク現象を誘発することがある。このた
め、絶縁膜2の厚さはできるだけ厚く、また、チャネル
ストッパ1oの不純物濃度は高くするという傾向を選択
することになる。しかしながら、このような傾向の選択
は、素子間分離領域の占有面積を増大したシ、あるいは
、MO8I’Cの耐圧特性の低下をもたらす要因にもな
るので好ましくない。
By the way, a conductive region called a channel layer, a so-called inversion layer, is easily induced directly under the thick insulating film 2, and this causes electrical coupling between pixel elements and causes signal leakage. A region 10, called a channel stop, is provided which prevents formation. This channel stopper 10 is formed, for example, when selectively forming the thick insulating film 9, in combination with a process in which high-concentration impurities that provide the same type of conductivity as the substrate silicon 1 are diffused and introduced. . However, if the function of the channel stopper 10 is insufficient, for example, if the impurity concentration in the region 10 is low, or if the insulating film 2 is insufficiently thick, a signal leak phenomenon may occur. For this reason, the tendency is to make the thickness of the insulating film 2 as thick as possible and to make the impurity concentration of the channel stopper 1o high. However, selection of such a tendency is not preferable because it increases the occupied area of the element isolation region or causes a decrease in the breakdown voltage characteristics of MO8I'C.

発明の目的 本発明は上述の従来例にみられた問題点の解消をはかる
ものであり、主として、素子間分離領域上に配線層を形
成して、直下の絶縁膜と半導体との界面に電界の影響を
与えないような多層配線構造布する半導体装置を提供す
るものである。
Purpose of the Invention The present invention aims to solve the problems seen in the above-mentioned conventional example, and mainly forms a wiring layer on the isolation region between the elements and creates an electric field at the interface between the insulating film and the semiconductor directly below. It is an object of the present invention to provide a semiconductor device having a multilayer wiring structure that does not have the influence of

発明の構成 本発明は半導体基板の表面部に、絶縁膜を介して、複数
の配線層をそなえ、下層側の配線層を反転層形成電位よ
り低電位に保持してなる多層配線を有する半導体装置で
あり、下層側の配線層を反転電位より低電位にすること
によって、これに積ね合わせて設けられる上層側の配線
層による電界的結合の影響が絶縁膜と半導体との界面に
及ばなくなり、半導体装置の電気的特性が顕著に安定化
される。
Structure of the Invention The present invention provides a semiconductor device having a multilayer interconnection formed by providing a plurality of interconnection layers on the surface of a semiconductor substrate via an insulating film, and holding the lower interconnection layer at a lower potential than an inversion layer formation potential. By setting the lower wiring layer at a potential lower than the inversion potential, the influence of electric field coupling due to the upper wiring layer stacked thereon will not affect the interface between the insulating film and the semiconductor. The electrical characteristics of the semiconductor device are significantly stabilized.

実施例の説明 第2図aに本発明実施例装置の平面図、および同図すに
そのY−Y断面図を概要的に示す。この装置は、シリコ
ン基板11上の所定部に選択酸化法により厚い二酸化シ
リコン膜12を形成し、これを分離領域としてその両側
部分にソース領域13.15、ドレイン領域14.16
を、通常の選択拡散法により形成し、まだ、ソースとド
レンとの間には、それらに関係する絶縁ゲート電極17
.18をそれぞれ設けている。そして、厚い二酸化シリ
コン膜12上には導電性多結晶シリコンによる第1の配
線層19および第2の配線層20を、層間絶縁膜21を
介して、互いに絶縁して設け、第1の配線層19は外部
接続oJ能な電極接続部を有するものとする。なお、同
図中、22はチャネルストッパであシ、その形成方法は
従来例の場合と同様である。
DESCRIPTION OF THE EMBODIMENTS FIG. 2a schematically shows a plan view of an apparatus according to an embodiment of the present invention, and a sectional view taken along the line Y-Y in the figure. In this device, a thick silicon dioxide film 12 is formed on a predetermined portion of a silicon substrate 11 by selective oxidation, and this is used as an isolation region, and a source region 13.15 and a drain region 14.16 are formed on both sides of the film.
is formed by the usual selective diffusion method, and there is still an insulated gate electrode 17 between the source and drain related to them.
.. 18 are provided for each. Then, on the thick silicon dioxide film 12, a first wiring layer 19 and a second wiring layer 20 made of conductive polycrystalline silicon are provided so as to be insulated from each other via an interlayer insulating film 21. Reference numeral 19 has an electrode connection part that can be connected to the outside. In addition, in the same figure, 22 is a channel stopper, and its formation method is the same as that of the conventional example.

第3図は本発明実施例装置の電気的特性を示すもので、
横軸(X軸)に第1の配線層19への印加電圧Viをと
り、縦軸(Y軸)に第2の配線層20への印加電圧でチ
ャネル層・の形成される電圧(以下、反転電圧と呼ぶ)
v■を表わしている。
FIG. 3 shows the electrical characteristics of the device according to the present invention.
The horizontal axis (X-axis) represents the voltage Vi applied to the first wiring layer 19, and the vertical axis (Y-axis) represents the voltage at which the channel layer is formed by the voltage applied to the second wiring layer 20 (hereinafter referred to as (called reversal voltage)
It represents v■.

第3図によると、第1の配線層19への印加電圧が零、
すなわちvI=0であれば、第2の配線層2oの反転電
圧Vnは、第1の配線層19のシールド効果により、第
1の配線層19への印加電圧Vl のみによる通常の反
転電圧Vi  よりも、かなり高電圧1でチャネル層が
誘起されないことがわかる。また、第1の配線層19へ
の印加電圧vIを零から順次増加させていくと、この印
加電圧Viが小さい範囲では第2の配線層20への印加
電圧による反転電圧■…は一定値を示し、第1の配線層
19への印加電圧Vlがそれ自身による反転電圧Viに
接近するにしたがって、第2の配線層20への印加電圧
による反転電圧VBも低下していく。
According to FIG. 3, when the voltage applied to the first wiring layer 19 is zero,
In other words, if vI=0, the inversion voltage Vn of the second wiring layer 2o is higher than the normal inversion voltage Vi caused by only the voltage Vl applied to the first wiring layer 19 due to the shielding effect of the first wiring layer 19. It can also be seen that the channel layer is not induced at a fairly high voltage 1. Furthermore, when the voltage vI applied to the first wiring layer 19 is increased sequentially from zero, the reversal voltage . As the voltage Vl applied to the first wiring layer 19 approaches its own inversion voltage Vi, the inversion voltage VB caused by the voltage applied to the second wiring layer 20 also decreases.

なお、第1の配線層19への印加電圧が負電圧の場合も
、第2の配線層20’への印加電圧による反転電圧Vn
は、■I=○のレベルでフラットに推移する。経験によ
れば、本実施例装置で、厚い二酸化シリコン膜12の膜
厚を0.8μmとして、第1の配線層19への印加電圧
■■による反転電圧Viは、リーク電流1μへの基準値
でみて、15■であったが、第1の配線層19への印加
電圧V■を零(VI−0)とし、第2の配線層20への
印加電圧による反転電圧vIlは約75Vになシ、チャ
ネル層形式に対する抑止効果が顕著にみられた。
Note that even when the voltage applied to the first wiring layer 19 is a negative voltage, the inversion voltage Vn due to the voltage applied to the second wiring layer 20'
changes flatly at the level of ■I=○. According to experience, in the device of this embodiment, when the thickness of the thick silicon dioxide film 12 is 0.8 μm, the reversal voltage Vi due to the voltage applied to the first wiring layer 19 is the reference value for a leakage current of 1 μm. However, when the voltage V■ applied to the first wiring layer 19 is set to zero (VI-0), the inversion voltage vIl due to the voltage applied to the second wiring layer 20 becomes approximately 75V. A significant deterrent effect on channel layer formats was observed.

さらに、本実施例によれば、第3図から明らかなように
、第1の配線層19への印加電圧Vlが、それ自身によ
るチャネル層形成の反転′電圧Vi よシ低い範囲、す
なわちVi未滴の低い印加電圧範囲であれば、第2の配
線層20への印加電圧による反転電圧は十分に高められ
る。実際には、第1の配線層19を、シリコン基板11
と同電位になるように、シリコン基板11に接触さぜる
のが最良であり、との」:うにすれば、外部電源を印加
するだめの接続部が不要になる利点もある。
Furthermore, according to this embodiment, as is clear from FIG. If the voltage applied to the droplet is in a low range, the reversal voltage due to the voltage applied to the second wiring layer 20 can be sufficiently increased. Actually, the first wiring layer 19 is formed on the silicon substrate 11.
It is best to touch the silicon substrate 11 so that the potential is the same as that of the silicon substrate 11. If this is done, there is also the advantage that there is no need for a connecting part for applying external power.

発明の効果 以上に実施例で詳しく説明したように、本発明によれば
、絶縁分離領域となる厚い絶縁膜上に複数の配線層をそ
なえ、下層側の配線層を反転層形成電圧、いわゆる反転
電圧より低電位に保持しているから、上層側の配線層に
対しては、従来の反転電圧にくらべて、数倍の高電圧ま
で印加電圧を高めることができる。これは、寸だ、選択
酸化法によって形成される絶縁分離膜を従来はど厚くし
なくても、所望の高反転電圧が確保できることにもなる
から、高集積化にも有利である。さらに、使用するプロ
セスも、通常の二層多結晶シリコンプロセスまたはアル
ミニウム二層配線の形成工程をそのまま利用することが
できるので、特別に複雑な工程を要しない。
As explained in more detail in the embodiments than the effects of the invention, according to the present invention, a plurality of wiring layers are provided on a thick insulating film serving as an insulating isolation region, and the lower wiring layer is connected to an inversion layer forming voltage, so-called inversion. Since the potential is held lower than the voltage, the voltage applied to the upper wiring layer can be increased to a voltage several times higher than the conventional inversion voltage. This is advantageous for high integration because a desired high inversion voltage can be ensured without increasing the thickness of the insulating isolation film formed by selective oxidation. Further, the process used can be a normal two-layer polycrystalline silicon process or a process for forming two-layer aluminum wiring, so no particularly complicated process is required.

なお、本発明は、MO3ICにおけるトランジスタ間の
電気配線として効果的な場合を例示したが、抵抗、コン
デンサを含む素子間分離領域に適用することも可能であ
る。
Although the present invention has been exemplified as being effective as electrical wiring between transistors in MO3IC, it can also be applied to isolation regions between elements including resistors and capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは、従来の電極配線形成の平面図及び断面
図、第2図a、bは、本発明による電極配線形成の平面
図及び断面図、第3図は、本発明による装置の電気的特
性図である。 11・・・・・半導体基板、13.16・・・・・・ソ
ース領域、14.16・・・ ドレイン領域、17.1
8・・・・・・ゲート領域、12・・・・・厚膜酸化膜
領域、19・・・・・・第1の配線層、20・・・・・
・第2の配線層、21・・・・・層間絶縁膜、22・・
・・・・チャネルストッパ領域。
1A and 1B are a plan view and a sectional view of conventional electrode wiring formation, FIGS. 2A and 2B are a plan view and a sectional view of electrode wiring formation according to the present invention, and FIG. 3 is an apparatus according to the present invention. FIG. 11... Semiconductor substrate, 13.16... Source region, 14.16... Drain region, 17.1
8...Gate region, 12...Thick film oxide film region, 19...First wiring layer, 20...
・Second wiring layer, 21... Interlayer insulating film, 22...
...Channel stopper area.

Claims (1)

【特許請求の範囲】 成電位より低電位に保持してなる多層配線を有する半導
体装置。 (2)下層側の配線層が半導体基板と同電位に保持され
た特許請求範囲第1項に記載の多層配線を有する半導体
装置。 (3)複数の配線層が半導体基板上の素子間分離絶縁膜
上に設けられた特許請求の範囲第1項に記載の多層配線
を有する半導体装置。
[Scope of Claim] A semiconductor device having multilayer wiring held at a potential lower than a forming potential. (2) A semiconductor device having a multilayer wiring according to claim 1, wherein the lower wiring layer is held at the same potential as the semiconductor substrate. (3) A semiconductor device having multilayer wiring according to claim 1, wherein a plurality of wiring layers are provided on an element isolation insulating film on a semiconductor substrate.
JP17507082A 1982-10-05 1982-10-05 Semiconductor device having multi-layer wiring Pending JPS5965453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17507082A JPS5965453A (en) 1982-10-05 1982-10-05 Semiconductor device having multi-layer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17507082A JPS5965453A (en) 1982-10-05 1982-10-05 Semiconductor device having multi-layer wiring

Publications (1)

Publication Number Publication Date
JPS5965453A true JPS5965453A (en) 1984-04-13

Family

ID=15989699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17507082A Pending JPS5965453A (en) 1982-10-05 1982-10-05 Semiconductor device having multi-layer wiring

Country Status (1)

Country Link
JP (1) JPS5965453A (en)

Similar Documents

Publication Publication Date Title
JPH0612799B2 (en) Stacked semiconductor device and manufacturing method thereof
JPH02271657A (en) Double active layer cmos inverter
JPS5965453A (en) Semiconductor device having multi-layer wiring
US3590342A (en) Mos integrated circuit with regions of ground potential interconnected through the semiconductor substrate
JPS5890755A (en) Semiconductor device
JPH05110075A (en) Insulated gate type field effect transistor
JPH0945767A (en) Semiconductor integrated circuit device and its manufacture
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPS5935452A (en) Semiconductor integrated circuit device
JPS59228766A (en) Semiconductor device
JP2993041B2 (en) Complementary MOS semiconductor device
JPS63204628A (en) Semiconductor integrated circuit device
JPS62250664A (en) Semiconductor integrated circuit
JPS5952861A (en) Semiconductor integrated circuit device
JPH0750739B2 (en) Multilayer wiring structure of semiconductor integrated circuit
JPS63215076A (en) Semiconductor integrated circuit device
JPS5916421B2 (en) SOS CMOS inverter
JPH03112151A (en) Active layer stacked element
JPS58194356A (en) Semiconductor integrated circuit device
JPS6135557A (en) Semiconductor device
JPH03222456A (en) Element isolation structure of semiconductor device
JPH02210849A (en) Semiconductor device
JPS63192249A (en) Semiconductor integrated circuit device
JPS5839035A (en) Semiconductor integrated circuit device
JPS59115555A (en) Semiconductor integrated circuit