JPS59228766A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS59228766A JPS59228766A JP58103802A JP10380283A JPS59228766A JP S59228766 A JPS59228766 A JP S59228766A JP 58103802 A JP58103802 A JP 58103802A JP 10380283 A JP10380283 A JP 10380283A JP S59228766 A JPS59228766 A JP S59228766A
- Authority
- JP
- Japan
- Prior art keywords
- diffused
- semiconductor device
- layers
- conductivity type
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000005684 electric field Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 description 8
- 230000005669 field effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体装置、詳しくはMO8O8電界効果半導
体金子する半導体装置の拡散層の構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a structure of a diffusion layer of a semiconductor device using an MO8O8 field effect semiconductor.
半導体装置の微細化が進むにつれて、MO8電界効果半
導体素子においてはゲート膜厚の減少。As the miniaturization of semiconductor devices progresses, the gate film thickness in MO8 field effect semiconductor devices decreases.
拡散層深さの減少によって耐圧が低下して来ているが、
出力端子においては数十ボルト程度の比較的高い電圧で
の動作が要求される事が多い。上記の要求に対する解決
策の1つが第1図に平面図を第2図に断面図を示したM
O8電界効果半導体素子である。選択酸化膜1α、ld
、1gの下には半導体基板表面の反転を防止する目的で
いわゆるストッパ拡散層2α、2b、3CL、3b、3
C力;形成されている。上記ストツノく拡散層と同時に
もしくは別に形成された選択酸化膜lb、lC及び1e
、1f下の拡散領域4a、4b、5a、5bを同じ導電
型の高不純物一度の拡散層6α、6b及び7a、7bと
接続してソース及びドレイン拡散層として使用する事に
より、萬不純物饋度の拡散層のみでドレイン拡散層を形
成したM OS電界効果半導体素子よフ耐圧を向上させ
る事が出来る。The withstand voltage is decreasing due to the decrease in the depth of the diffusion layer, but
The output terminal is often required to operate at a relatively high voltage of several tens of volts. One of the solutions to the above requirements is the M
It is an O8 field effect semiconductor device. Selective oxide film 1α, ld
, 1g are so-called stopper diffusion layers 2α, 2b, 3CL, 3b, 3 for the purpose of preventing the surface of the semiconductor substrate from inverting.
C force; formed. Selective oxide films lb, lc and 1e formed simultaneously with or separately from the above-mentioned diffusion layer
By connecting the diffusion regions 4a, 4b, 5a, 5b under , 1f with the high impurity diffusion layers 6α, 6b and 7a, 7b of the same conductivity type and using them as source and drain diffusion layers, the impurity concentration is It is possible to improve the breakdown voltage compared to a MOS field effect semiconductor device in which a drain diffusion layer is formed using only the diffusion layer.
しかし、上記の従来の改良されたMO8電界効果半導体
素子においては耐圧の向上は高年糸fi !Va C度
の拡散層6α、6b、7a、7bのジャンクション耐圧
がチャネル部のオフ耐圧より低くなって素子の耐圧が制
限されるためその値は拡散層が0.6μ程度の深さに形
成された素子においては30 Vを越えない。However, in the above-mentioned conventional improved MO8 field effect semiconductor device, the improvement in withstand voltage is high! The junction breakdown voltage of the VaC diffusion layers 6α, 6b, 7a, and 7b is lower than the off-breakdown voltage of the channel portion, which limits the breakdown voltage of the device. The voltage does not exceed 30 V for devices with high voltage.
本発明は上記の欠点を除去して微細化により低下する半
導体素子の耐圧を向上する事を月的とする。本発明の実
施例を第3図に平面図、第4図に断面図で示す。本発明
の実施例においては高不純物濃度の拡散層の周囲に切れ
目なくフィールド酸化膜下の拡散層領域を形成する事に
よってジャンクション耐圧を向上し、素子の耐圧を向上
させるものである。選択酸化膜11α、 11 d 、
11 gの下には半導体表面の反転を防止する目的で
いわゆるストッパ拡散層12a、12b及び13c 、
13b、13cが形成されて−る。上記ストッパ拡散層
と同時もしくは別工程において選択酸化膜11b、ll
C,lid、 11 eの下に拡散領域14α、 14
b 、 14c 、 15α。The objective of the present invention is to eliminate the above-mentioned drawbacks and improve the withstand voltage of semiconductor elements, which decreases due to miniaturization. An embodiment of the present invention is shown in a plan view in FIG. 3 and in a sectional view in FIG. In the embodiment of the present invention, the junction breakdown voltage is improved by forming a continuous diffusion layer region under the field oxide film around the high impurity concentration diffusion layer, thereby improving the breakdown voltage of the device. Selective oxide film 11α, 11d,
Below 11g, there are so-called stopper diffusion layers 12a, 12b and 13c for the purpose of preventing the semiconductor surface from inverting.
13b and 13c are formed. The selective oxide film 11b, ll is formed at the same time as the stopper diffusion layer or in a separate process.
Diffusion region 14α, 14 under C, lid, 11 e
b, 14c, 15α.
15b、15cを形成し、同一導電型の高不純物濃度の
拡散層16 a 、 16 b 、 17 a 、 1
7 bと各々接しソース及びドレイン拡散層を構成する
。図の実施例においてはドレイン拡散層16b、17a
を各々選択酸化膜下の拡散領域14b、14Cと]5α
、15bがと9囲み、実質的にドレイン拡散層における
電界集中を緩和する事によって耐圧を向上させている。15b, 15c are formed, and diffusion layers 16a, 16b, 17a, 1 of the same conductivity type and with high impurity concentration are formed.
7b, forming source and drain diffusion layers. In the illustrated embodiment, drain diffusion layers 16b, 17a
respectively with the diffusion regions 14b and 14C under the selective oxide film ]5α
, 15b are surrounded by and 9, and the withstand voltage is improved by substantially alleviating electric field concentration in the drain diffusion layer.
ソース拡散層においても同様の構造を採っても良い。A similar structure may also be adopted in the source diffusion layer.
以上実施例にさいては相補型半導体素子の両チャネルを
高耐圧化した構造を示したが、片方のチャネルであって
も良い事は言う丑でもない。In the above embodiments, a structure is shown in which both channels of the complementary semiconductor element have a high breakdown voltage, but it goes without saying that only one channel may be used.
また抵抗として使用する拡散層においても、選択酸化膜
化の同一導電型拡散層によってとシ囲む事によって高耐
圧化が可能である。Further, even in the diffusion layer used as a resistor, it is possible to increase the breakdown voltage by surrounding it with a diffusion layer of the same conductivity type formed into a selective oxidation film.
以上述べた様に本発明の半導体装置は集積度の高い素子
と同一工程で同一チップ上に形成できる比較的耐圧の高
い素子である事から液晶グラフィック表示素子等の駆動
用半導体装置等に特に優れた効果を示す。As described above, the semiconductor device of the present invention is an element with a relatively high breakdown voltage that can be formed on the same chip in the same process as a highly integrated element, so it is particularly suitable for driving semiconductor devices such as liquid crystal graphic display elements. This shows the effect of
第1図は従来の半導体装置の平面図。
第2図は従来の半導体装置の断面図。
第3図は本発明の半導体装置の平面図。
第4図は本発明の半導体装置の断面図。
1α〜1 g、 11α〜11 g・・・フィールド酸
化gμ2 a 〜b 、 3 a Nc 、12α〜b
、13α〜C・・・ストッパ拡散層 4α〜b、5α〜
b、14α〜C,15α〜C・・・拡散領域
6α〜b、7c〜b、16α〜b、17α〜b・・・高
濃度拡散層
以 上
出願人 株式会社諏訪精工舎
代理人 ・弁理士最 上 務
象
−299FIG. 1 is a plan view of a conventional semiconductor device. FIG. 2 is a sectional view of a conventional semiconductor device. FIG. 3 is a plan view of the semiconductor device of the present invention. FIG. 4 is a sectional view of the semiconductor device of the present invention. 1α~1g, 11α~11g...Field oxidation gμ2a~b, 3aNc, 12α~b
, 13α~C... stopper diffusion layer 4α~b, 5α~
b, 14α~C, 15α~C...Diffusion region 6α~b, 7c~b, 16α~b, 17α~b...High concentration diffusion layer or higher Applicant Suwa Seikosha Co., Ltd. Agent/Patent attorney Mogami Muse-299
Claims (1)
導電型領域を有する半導体装置において、第1導電型領
域に形成された第2導電型拡散領域の少なくとも1つが
、選択酸化法によって形成されたフィールド絶縁膜下の
第2導電型拡散領域によっ−てとフ囲まれた事を特徴と
する半導体装置。 2、前記フィールド絶縁膜下の第2導電型拡散領域は、
第2導電型領域のフィールド絶縁膜下の第24電型不純
物層と同時に形成されたものである事を特徴とする請求
の範囲第1項記載の半導体装置。[Claims] 1. In a semiconductor device having first and second conductivity type regions each having a main surface in a semiconductor substrate, at least one of the second conductivity type diffusion regions formed in the first conductivity type region 1. A semiconductor device characterized in that the semiconductor device is surrounded by a second conductivity type diffusion region under a field insulating film formed by a selective oxidation method. 2. The second conductivity type diffusion region under the field insulating film is
2. The semiconductor device according to claim 1, wherein the semiconductor device is formed simultaneously with the 24th conductivity type impurity layer under the field insulating film in the second conductivity type region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103802A JPS59228766A (en) | 1983-06-10 | 1983-06-10 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103802A JPS59228766A (en) | 1983-06-10 | 1983-06-10 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59228766A true JPS59228766A (en) | 1984-12-22 |
Family
ID=14363525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58103802A Pending JPS59228766A (en) | 1983-06-10 | 1983-06-10 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59228766A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0189208A2 (en) * | 1985-01-25 | 1986-07-30 | Nissan Motor Co., Ltd. | Mos transistor with higher withstand voltage |
US4990982A (en) * | 1987-08-25 | 1991-02-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device of high breakdown voltage |
US5043788A (en) * | 1988-08-26 | 1991-08-27 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with functional portions having different operating voltages on one semiconductor substrate |
-
1983
- 1983-06-10 JP JP58103802A patent/JPS59228766A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0189208A2 (en) * | 1985-01-25 | 1986-07-30 | Nissan Motor Co., Ltd. | Mos transistor with higher withstand voltage |
US4990982A (en) * | 1987-08-25 | 1991-02-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device of high breakdown voltage |
US5043788A (en) * | 1988-08-26 | 1991-08-27 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with functional portions having different operating voltages on one semiconductor substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4948748A (en) | Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill | |
US5808344A (en) | Single-transistor logic and CMOS inverters | |
JP3441330B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2609619B2 (en) | Semiconductor device | |
JPS59228766A (en) | Semiconductor device | |
US5264720A (en) | High withstanding voltage transistor | |
JPH02307271A (en) | Semiconductor device | |
KR20000019609A (en) | Semiconductor device and method for fabricating the same | |
JPH09283747A (en) | Lateral field effect transistor | |
JPS621264B2 (en) | ||
JPH05110075A (en) | Insulated gate type field effect transistor | |
JPH05198757A (en) | Integrated circuit | |
JPS63168051A (en) | Complementary soi lateral insulated gate rectifier | |
JPS5935477A (en) | Semiconductor device | |
DE10303643B3 (en) | Electrical connection of active semiconductor structures with the substrate, at a silicon-on-insulator semiconductor wafer, has a passage opening through the insulating layer for a metal filling covered by a layered stack | |
JPS6365706A (en) | Voltage dividing circuit | |
JPH0642532B2 (en) | Semiconductor integrated circuit device for voltage transformer circuit | |
JPS6126237A (en) | Semiconductor ic device | |
JPS5965453A (en) | Semiconductor device having multi-layer wiring | |
JPH03147359A (en) | Semiconductor | |
JPH04239178A (en) | Integrated circuit | |
JPH0456331A (en) | Semiconductor device | |
JPH06163895A (en) | Semiconductor device | |
JPS63302564A (en) | Semiconductor device | |
JPS6211788B2 (en) |