JPS5952873A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS5952873A
JPS5952873A JP57164497A JP16449782A JPS5952873A JP S5952873 A JPS5952873 A JP S5952873A JP 57164497 A JP57164497 A JP 57164497A JP 16449782 A JP16449782 A JP 16449782A JP S5952873 A JPS5952873 A JP S5952873A
Authority
JP
Japan
Prior art keywords
shift register
vertical shift
signal charge
electrode
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57164497A
Other languages
Japanese (ja)
Inventor
Shigehiro Miyatake
茂博 宮武
Tadami Nagagawa
永川 忠示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57164497A priority Critical patent/JPS5952873A/en
Publication of JPS5952873A publication Critical patent/JPS5952873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To increase the maximun quantity of signal charge of a vertical shift register as well as to expand the dynamic range of the titled device by a method wherein the transfer of charge is controlled by the extended part of one of the two layer shift register transistors and a photo diode and the shift register of the extended part of the other electrode are separated by forming a channel stop on the substrate region located directly below said extended part. CONSTITUTION:A channel stop region 14, which is located between the n type layer 3 of a photo diode and the n type layer 2 of a vertical shift register, is widely formed, and a transfer gate region 15 is provided in such a shape that it is formed in the region located directly below electrodes 7 and 9. Clock pulses phi'1, phi2, phi'3 and phi4 are applied to electrodes, 7, 8, 9 and 10. The clock pulses phi'1 and phi'3 are binary pulses of VL and VH. When the clock pulse phi2 or phi4 is VH, the signal charge accumulated on a photo diode 3 passes the transfer gate region 15 and transfered to a vertical shift register 2. On the other hand, when phi2 and phi4 are VL or VI, the signal charge in the shift register is transferred from the lower part to the upper part.

Description

【発明の詳細な説明】 く技術分野〉 本発明はCCD(Charge Coupled De
vice :電荷転送装置)を用いた固体撮像装置に関
し、特にインターライン転送方式CCDの最大信号電荷
量を増大させる技術に関するものである0〈従来技術〉 近年、固体撮像装置の開発は目ざましい進展をみせ、固
体撮像装置を用いたカラービデオカメラは実用化段階を
むかえつつある。固体撮像装置の方式には大きく分けて
XYアドレス方式とCCD方式の2種があり、特にCC
D方式は本質的に出力容量が小さいため$、4の点て有
利なことから研究に力が注がれている。CCD方式の中
でも受光部にpn接合ホトダイオードを用いたインター
ライン転送方式は、青感度が高く、またモザイク状カラ
ーフィルタが使用可能なため高解像度が得られることか
ら固体撮像装置の主流となりつつある。
[Detailed Description of the Invention] Technical Field> The present invention is based on a CCD (Charge Coupled Detailed Description).
0 <Prior art> In recent years, the development of solid-state imaging devices has made remarkable progress. Color video cameras using solid-state imaging devices are approaching the stage of practical use. There are two main types of solid-state imaging devices: the XY address method and the CCD method.
Since the D method essentially has a small output capacity, research is being focused on it because it is advantageous in terms of $4. Among the CCD systems, the interline transfer system, which uses a pn junction photodiode in the light receiving section, is becoming the mainstream for solid-state imaging devices because it has high blue sensitivity and can use mosaic color filters to provide high resolution.

しかしながらインターライン転送方式では受光部と転送
部か併存するため、これらの面積か制約を受け、最大信
号電荷量が小さくそれ故ダイナミックレンジが狭いとい
う欠点がある。
However, in the interline transfer method, since the light receiving section and the transfer section coexist, the areas of these sections are restricted, and the drawback is that the maximum signal charge amount is small and the dynamic range is therefore narrow.

まず第1図に、pn接合ホトダイオードを受光部に用い
たインターライン転送方式CCD固体撮像装置の従来例
を示す0ここで(a)は平面図、(bXc)(d)はそ
れぞれ■−■1n−n<m−を方向の断面図である。す
なわちp基板1上に、垂直シフトレジスタ用埋め込みチ
ャネルとしてn型層2が形成され、該n型層2と所定間
隔離間させて、ホトダイオードとなるpn接合を形成す
るためのn型層3が形成されている。同一半導体チップ
に垂直シフトレジスタは複数列形成され、またひとつの
垂直シフトレジスタに対して複数個のホトダイオードが
形成されることにより二次元撮像装置が構成される。
First, Fig. 1 shows a conventional example of an interline transfer type CCD solid-state imaging device using a pn junction photodiode in the light receiving part. Here, (a) is a plan view, and (bXc) and (d) are respectively ■-■1n -n<m- is a cross-sectional view in the direction. That is, an n-type layer 2 is formed on a p-substrate 1 as a buried channel for a vertical shift register, and an n-type layer 3 is formed at a predetermined distance from the n-type layer 2 to form a pn junction that becomes a photodiode. has been done. A two-dimensional imaging device is constructed by forming a plurality of columns of vertical shift registers on the same semiconductor chip, and forming a plurality of photodiodes for one vertical shift register.

上記n型層2とn型層3は基板のままのトランスファゲ
ート領域5により接続している。n型層2、n型層3.
トランスファゲート領域5以外の部分には、高濃度p型
層によるチャネルストップ4が形成されている。一方シ
リコン基板上は絶縁聴悟で覆われ、その上部に垂直シフ
トレジスタ用の電極7.8.9.10がポリシリコンに
より形成されている。電極7と9は第1層目のポリシリ
コンとして、電極8とIOは第2層目のポリシリコンと
して形成され、異なる層のポリシリコン間は絶縁膜11
で分離されている。電極7.8.9.10は垂直シフト
レジスタ用n型層2の上部を覆い、更にトランスファゲ
ート領域5の上部も覆っている。
The n-type layer 2 and the n-type layer 3 are connected by a transfer gate region 5 which remains in the substrate. n-type layer 2, n-type layer 3.
In a portion other than the transfer gate region 5, a channel stop 4 made of a highly doped p-type layer is formed. On the other hand, the silicon substrate is covered with an insulating layer, and electrodes 7, 8, 9, and 10 for vertical shift registers are formed on top of the insulating layer using polysilicon. Electrodes 7 and 9 are formed as a first layer of polysilicon, electrodes 8 and IO are formed as a second layer of polysilicon, and an insulating film 11 is formed between the polysilicon layers of different layers.
separated by. The electrodes 7.8.9.10 cover the top of the vertical shift register n-type layer 2 and also cover the top of the transfer gate region 5.

マタ垂直シフトレジスタ用n型層2とトランスファケー
ト領域5の上部は遮光のためにAt12で覆われている
The upper portions of the vertical shift register n-type layer 2 and the transfer region 5 are covered with At 12 for light shielding.

電極+0.7.8.9には第2図に示すクロックパルス
φ1.φ2.φ3.φ4がそれぞれ印加される。このク
ロックパルスφ1〜φ4は、VL”I”Hの3レベルを
もつ信号であり、■お父はVlのときには垂直シフトレ
ジスタ内の信号電荷か第1図(a)の下から上へと転送
される。一方■11のときには、ホトダイオード3に蓄
積した信号電荷が、トランスファゲート領域5を通って
垂直シフトレジスタ2に転送される。
The clock pulse φ1. shown in FIG. 2 is applied to the electrode +0.7.8.9. φ2. φ3. φ4 is applied respectively. These clock pulses φ1 to φ4 are signals with three levels, VL"I"H, and when the clock pulses are VL, the signal charge in the vertical shift register is transferred from the bottom to the top in Figure 1 (a). be done. On the other hand, in case (11), the signal charge accumulated in the photodiode 3 is transferred to the vertical shift register 2 through the transfer gate region 5.

この方式ではクロックパルスの振幅が■1から■Hであ
るにも拘らず、垂直シフトレジスタの最大信号電荷量は
VLとvlのレベル差で、またホトダイオードの最大信
号電荷量は■1と■1(のレベル差で決定され効率が悪
い。
In this method, although the amplitude of the clock pulse is from ■1 to ■H, the maximum signal charge of the vertical shift register is the level difference between VL and vl, and the maximum signal charge of the photodiode is between ■1 and ■1. (It is determined by the level difference between

〈発明の目的〉 本発明は上記従来の固体撮像装置の問題点を解消するた
めになされたもので、垂直シフトレジスタの最大信号電
荷量を増大させ、ダイナミックレンジを拡げた固体撮像
装置を提供するものである。
<Object of the Invention> The present invention has been made to solve the problems of the conventional solid-state imaging device described above, and provides a solid-state imaging device in which the maximum signal charge amount of the vertical shift register is increased and the dynamic range is expanded. It is something.

〈実施例〉 以下本発明の詳細を実施例を用いて説明する。<Example> The details of the present invention will be explained below using examples.

第3図は本発明を適用した一実施例を示す固体撮像装置
の構成図である。ここで(a)は平面図、(b)(c)
(d)はそれぞれI−I’、 II−II’、 lll
−111′j5向の断面図である。第3図と前述の第1
図の違いは、第1図(d)及び第3図(d)の比較から
明らかなように、従来の基板構造ではホトダイオードの
n型層3がほぼ同じ寸法でトランスファゲート領域5に
連続して垂直シフトレジスタのn型層2に達しているが
、第3p(d)に示す実施例では、ホトダイオードのn
型層3と垂直シフトレジスタのn型層2の間に位置して
トランスファゲート領域15に接しているチャネルスト
ップ14の領域を拡げて形成し、トランスファゲート領
域15を電極7と電極9の直下に限った形状とする。
FIG. 3 is a configuration diagram of a solid-state imaging device showing an embodiment to which the present invention is applied. Here (a) is a plan view, (b) (c)
(d) are II-I', II-II', lll, respectively
It is a sectional view taken in the -111'j5 direction. Figure 3 and above-mentioned 1st
The difference between the figures is that in the conventional substrate structure, the n-type layer 3 of the photodiode has approximately the same dimensions and is continuous with the transfer gate region 5, as is clear from the comparison between FIG. 1(d) and FIG. 3(d). It reaches the n-type layer 2 of the vertical shift register, but in the embodiment shown in 3rd p(d), the n-type layer 2 of the photodiode
The region of the channel stop 14 located between the type layer 3 and the n-type layer 2 of the vertical shift register and in contact with the transfer gate region 15 is expanded and formed, and the transfer gate region 15 is formed directly under the electrode 7 and the electrode 9. It has a limited shape.

電極10.7.8.9には例えば第4図に示すクロック
パルス−1,φ2.φ糾φ4が印加される。第4図と前
述の第2図の違いはクロックパルスφ1とφ6がVLと
VI(の2値パルスである点てあり、V/は■ より大
きい電圧であり、■□と同電圧であ■ っても、異なる電圧であっても良い。
For example, the clock pulses -1, φ2, . . . shown in FIG. φ4 is applied. The difference between Fig. 4 and the above-mentioned Fig. 2 is that the clock pulses φ1 and φ6 are binary pulses of VL and VI (V/ is a voltage larger than ■, and is the same voltage as ■□. However, the voltage may be different.

すなわちクロックパルスφ2又はφ4がV1□のときに
、ホトダイオード3に蓄積した信号電荷が、トランスフ
ァゲート領域15を通って垂直シフトレジスタ2へ転送
される。一方φ2とφ4がVL又はVlのときには垂直
シフトレンスタ内の信号電荷が第3図(a)の下から上
へと転送される。このときクロックパルスφ;とφ6は
■1、とV1′1間を振幅するが、これらのクロックパ
ルスか印加される電極8とlOの直下のホトタイオード
と垂直ンフトレジスタの間にはチャネルトップ14が存
在するためホトダイオード内に蓄積されている信号電荷
には影響を与えない。また垂直シフトレジスタ内を信号
電荷が転送されている間のφ1と弓の振幅が■、とV/
と大きいため垂直シフトレジスタの最大信号電荷量が増
大する。
That is, when the clock pulse φ2 or φ4 is V1□, the signal charge accumulated in the photodiode 3 is transferred to the vertical shift register 2 through the transfer gate region 15. On the other hand, when φ2 and φ4 are VL or Vl, the signal charges in the vertical shift lens are transferred from the bottom to the top in FIG. 3(a). At this time, the clock pulses φ; and φ6 have amplitudes between ■1 and V1'1, but the channel top 14 is located between the photodiode directly below the electrode 8 and lO to which these clock pulses are applied, and the vertical shift register. Since it exists, it does not affect the signal charge accumulated in the photodiode. Also, while the signal charge is being transferred in the vertical shift register, the amplitude of φ1 and the bow are ■, and V/
Since this is large, the maximum signal charge amount of the vertical shift register increases.

く効果〉 以上のように本発明を適用することにより転送部の最大
信号電荷量を増大させダイナミックレンジを拡けること
が可能となる。
Effects> As described above, by applying the present invention, it is possible to increase the maximum signal charge amount of the transfer section and widen the dynamic range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のインターライン転送方式固体撮像装置の
構造図、第2図はそのクロックパルスのタイミング図、
第3図は本発明を適用したインターライン転送方式固体
撮像装置の構造図、第4図はそのタロツクパルスのタイ
ミング図である。 l・・p基板、2・・・n型層、3・・n型層、14・
・・チャネルトップ、15・・・トランスファゲート領
域。 6・・・絶縁膜、 7.8.9.10・・ポリシリコン
電極。 11・絶縁膜、12・・遮光用At (G) −さ −7 第1図 359− (C) (
Figure 1 is a structural diagram of a conventional interline transfer type solid-state imaging device, Figure 2 is a timing diagram of its clock pulses,
FIG. 3 is a structural diagram of an interline transfer type solid-state imaging device to which the present invention is applied, and FIG. 4 is a timing chart of tarock pulses thereof. l...p substrate, 2...n type layer, 3...n type layer, 14...
...Channel top, 15...Transfer gate region. 6... Insulating film, 7.8.9.10... Polysilicon electrode. 11. Insulating film, 12.. At for light shielding (G) -S-7 Fig. 1 359- (C) (

Claims (1)

【特許請求の範囲】[Claims] l)同一半導体基板にpn接合ホトダイオードが所定ピ
ッチで配列され、該ホトダイオードに近接させてCCD
(電荷結合装置)によるシフトレジスタが設けられてな
る固体撮像装置において、シフトレジスタの信号電荷を
転送するために一部が重ねて形成された2層のシフトレ
ジスタ電極を設け、一方のシフトレジスタ電極の延在部
はホトダイオードとシフトレジスタ間のトランスファゲ
ート領域上に位置して電荷の転送を制御し、他方のシフ
トレジスタ電極の延在部は直下の基板領域にチャネルス
トップが形成されてホトダイオードとシフトレジスタ間
を分離し、上記一方のシフトレジスタ電極には低、中、
高の3値パルスを、他方のシフトレジスタ電極には低、
高の2値のパルスを印加することを特徴とする固体撮像
装置。
l) Pn junction photodiodes are arranged at a predetermined pitch on the same semiconductor substrate, and a CCD is placed close to the photodiodes.
In a solid-state imaging device equipped with a shift register based on a charge-coupled device (charge-coupled device), two layers of shift register electrodes are provided that are partially overlapped in order to transfer signal charges of the shift register, and one shift register electrode The extended part of the shift register electrode is located on the transfer gate region between the photodiode and the shift register to control charge transfer, and the extended part of the other shift register electrode is located on the transfer gate region between the photodiode and the shift register with a channel stop formed in the substrate region directly below. The registers are separated, and one of the shift register electrodes has low, medium,
A high ternary pulse is applied to the other shift register electrode, and a low,
A solid-state imaging device characterized by applying a high binary pulse.
JP57164497A 1982-09-20 1982-09-20 Solid state image pickup device Pending JPS5952873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164497A JPS5952873A (en) 1982-09-20 1982-09-20 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164497A JPS5952873A (en) 1982-09-20 1982-09-20 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPS5952873A true JPS5952873A (en) 1984-03-27

Family

ID=15794278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164497A Pending JPS5952873A (en) 1982-09-20 1982-09-20 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS5952873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268578A (en) * 1989-04-10 1990-11-02 Toshiba Corp Driving method for solid-state image pickup device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875382A (en) * 1981-07-20 1983-05-07 Sony Corp Solid-state image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875382A (en) * 1981-07-20 1983-05-07 Sony Corp Solid-state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268578A (en) * 1989-04-10 1990-11-02 Toshiba Corp Driving method for solid-state image pickup device

Similar Documents

Publication Publication Date Title
JPS6157181A (en) Solid-state image pickup device
JPS60146583A (en) Solid-state image pickup device
JPS62124771A (en) Solid-state image pickup device
JPS5916472A (en) Solid-state image pickup device
JPS6156583A (en) Solid-state image pickup device
JPS5952873A (en) Solid state image pickup device
JPS58161367A (en) Charge coupling element and solid-state image pickup element therewith
JPS61114663A (en) Solid-state image pickup device
JPS61174765A (en) Solid image pickup device
JPS59202662A (en) Solid-state image pickup device
JPS60244068A (en) Buried channel charge coupled device
JPS6079773A (en) Solid-state image pickup device
JPH0212967A (en) Solid state image sensor
JPH03246971A (en) Charge-coupled device and solid-state image sensing device using same
JPS61248553A (en) Solid-state image pickup device
JPS6327057A (en) Solid stage image sensing device
JPS58142682A (en) Solid-state image pickup element
JPH03246952A (en) Charge-coupled device
JP2917371B2 (en) Solid-state imaging device
JPH0316477A (en) Solid-state image pickup device
JPS62181465A (en) Ccd solid-state image pickup element
JPS5851673A (en) Solid-state image pickup device
JPS6320865A (en) Solid-state image sensing device
JPS61244062A (en) Solid-state image pickup device
JPS6314468A (en) Change transfer type solid-state imaging device