JPS61248553A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS61248553A
JPS61248553A JP60088832A JP8883285A JPS61248553A JP S61248553 A JPS61248553 A JP S61248553A JP 60088832 A JP60088832 A JP 60088832A JP 8883285 A JP8883285 A JP 8883285A JP S61248553 A JPS61248553 A JP S61248553A
Authority
JP
Japan
Prior art keywords
electrode
layer
solid
electrons
sensitive part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60088832A
Other languages
Japanese (ja)
Inventor
Yoshinori Iida
義典 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60088832A priority Critical patent/JPS61248553A/en
Publication of JPS61248553A publication Critical patent/JPS61248553A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To obtain a high density solid-state image pickup device, by providing a first light sensitive part in a signal-charge reading part, and laminating a second light sensitive part having a different sensing wavelength region so that a common area is provided at neighboring picture elements of the first light sensitive part. CONSTITUTION:A line of Shottky diodes 3 is formed on a p-type Si substrate 1. A transfer gate electrode 5 of a vertical CCD 11 is formed through an insulating film 4. A transparent picture element electrode 7 is provided through an insulating layer 6. The surface is covered by an a-Si layer 8, which is sensitive to visible light. An ITO transparent electrode 9 is laminated. The a-Si 8 absorbs the visible light and generates a signal charge. Electrons are made to run to the electrode 7 by the electric field between the electrodes 9 and 7. The electrons are stored in an N<+> diode layer 10-2. Infrared light is inputted through the electrode 9 and reaches the Schottky diode 3 at the first light sensitive part. The generated holes are diffused in the substrate 1. The electrons are stored in a neighboring n<+> layer. The signal charge accumulated in the diodes 10-1 and 10-2 is transferred to an n<+> vertical CCD channel layer 2 by applying a positive pulse voltage to an electrode 5-1 or 5-2. The signal is read out. Four-phase negative CPphi1-phi4 are applied to the transfer electrodes.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は異なる感知波長領域を持つ感光部を同一半導体
基板上C:積層した固体撮像装[C関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state imaging device [C] in which photosensitive parts having different sensing wavelength ranges are stacked on the same semiconductor substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

今iヒ、固体撮像装置には多画素化すなわち画素の高密
度化の要求とともに多機能化が求められつつある。固体
撮像装置の多機能化の一方向として複数の波長領域の光
像を撮像する機能を持つ固体撮像装置を、前C二我々は
提案している(特願昭57−166563号)。しかし
、上記の固体撮像装置は同一基板上同一平面内に複数の
波長帯の感光部を設けたものであり、画素の高密度化に
は不適当であった。そこで、複数の波長帯の感光部を同
一平面内ではなく、積層状に形成した固体撮像装置の提
案を行なった(特願昭58−239382 )。
Nowadays, there is a growing demand for solid-state imaging devices to have more pixels, that is, higher pixel density, and to have more functions. As one way of increasing the functionality of solid-state imaging devices, we have proposed a solid-state imaging device having the function of capturing optical images in a plurality of wavelength regions (Japanese Patent Application No. 166563/1982). However, the solid-state imaging device described above has photosensitive parts for a plurality of wavelength bands on the same substrate and in the same plane, and is not suitable for increasing the density of pixels. Therefore, we proposed a solid-state imaging device in which photosensitive parts for a plurality of wavelength bands are formed not on the same plane but in a layered manner (Japanese Patent Application No. 58-239382).

上記の積層型固体撮像装置によれば、複数の波長領域の
撮像が可能でかつ、画素の高密度化にも十分対応可能な
固体撮像装置を得ることができる。
According to the above-described stacked solid-state imaging device, it is possible to obtain a solid-state imaging device that is capable of capturing images in a plurality of wavelength ranges and is fully compatible with increasing pixel density.

ところで、上記の積層構造固体撮像装置の一例として、
半導体基板上の感光部(第1の感光部)で、赤外光像の
撮像を行ない、半導体基板上C:積層形成した感光部(
第之の感光部)で、可視光像の撮像を行なう方式が考え
られる。
By the way, as an example of the above-mentioned stacked structure solid-state imaging device,
An infrared light image is captured by a photosensitive part (first photosensitive part) on the semiconductor substrate.
A method is conceivable in which a visible light image is captured using the photosensitive section (the second photosensitive section).

このとき可視光像の撮像を行なう第2の感光部が、画素
電極のパターニング精度によってのみ、その大きさを制
限される事に対して、赤外光像の撮像な行なう第1の感
光部は垂直COD 、素子分離領域、可視撮像用の蓄積
ダイオード部、ゲート用ポリシリコン配線等により、そ
の感光領域の大きさが制限されてしまい、感光部面積と
画素離面積の比暑二重って定義されるフィルファクター
は10%前後?ニなってしまう。その結果、可視光の感
度に対して赤外光の感度が著しく低下してしまう。
At this time, the size of the second photosensitive section that captures the visible light image is limited only by the patterning accuracy of the pixel electrode, whereas the first photosensitive section that captures the infrared light image is The size of the photosensitive area is limited by the vertical COD, element isolation area, storage diode section for visible imaging, polysilicon wiring for the gate, etc., and is defined as the double ratio of the photosensitive area and pixel separation area. Is the fill factor around 10%? It becomes ni. As a result, the sensitivity to infrared light is significantly lower than the sensitivity to visible light.

〔発明の目的〕[Purpose of the invention]

本発明は異なる感知波長領域を持つ感光部を高密度(:
設けた固体撮像装置を提供することを目的とする。
The present invention combines photosensitive areas with different sensing wavelength ranges in a high density (:
An object of the present invention is to provide a solid-state imaging device.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に異なる感知波長領域を持つ第
1および第2の感光部を積層形成し、各感光部で蓄積さ
れた信号電荷を読み出すための信号電荷読み出し部を設
(すだ形で構成される固体撮像素子において、jllの
感光部と第2の感光部の画素数および画素ピッチが異な
るようC二して、積層型固体撮像装置を形成する。
The present invention involves laminating first and second photosensitive sections having different sensing wavelength regions on a semiconductor substrate, and providing a signal charge readout section for reading out signal charges accumulated in each photosensitive section. In the solid-state imaging device configured with C2, the number of pixels and the pixel pitch of the photosensitive portion of jll and the second photosensitive portion are changed to form a stacked solid-state imaging device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば異なる感知波長領域を持つ感光部を高密
度に設けてなおかつ高密度の固体撮像装置を得ることが
できる。
According to the present invention, it is possible to provide a high-density solid-state imaging device in which photosensitive portions having different sensing wavelength ranges are provided at a high density.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を用いて説明する。第1図は本発
明の一実施例であり、信号電荷読み出し部にインターラ
イン転送CCD (Inter 1ine Trahs
ferCCD :以後IT −CCDと呼ぶ)を用いた
固体撮像素子の構造説明図である。
Embodiments of the present invention will be described using the drawings. FIG. 1 shows an embodiment of the present invention, in which an interline transfer CCD (interline transfer CCD) is used in the signal charge readout section.
1 is a structural explanatory diagram of a solid-state image sensor using a ferCCD (hereinafter referred to as IT-CCD); FIG.

(a)は垂直CODの転送方向に直交する方向の2画素
部分および転送方向C二沿う2画素部分、計4画素部分
の平面図、(b) (C)はそれぞれ(、)のA−A’
、B−B’断面図である。これを製造工程に沿って説明
すればP型半導体基板(1)上に信号電荷を読み出すた
めの垂直CODチャネルn+層(2)及び赤外光に感度
がある第1の感光部として、たとえばPtSi等の金属
シリナイドとシリコン基板C二よるショットキー・バリ
ア・ダイオード(3)のアレイを形成する。そして、こ
の半導体基板上にゲート絶縁層(4)を介して垂直CC
D (11)の転送ゲート電極(5)を形成する。次に
、この上(二絶縁層(6)を設け、さらにこの絶縁層(
6)上に透明電極(二よる画素電極(7)を設ける。次
(二可視光(二感度のある光導電膜として例えばa−8
l(アモルファス・シリコン)層(8)を全面に形成し
、最後に光導電膜(8)上に、ITO(IndizmT
inOxlda  )等(:よる透明電極(9)を全面
(:形成する。
(a) is a plan view of a total of 4 pixel parts, 2 pixel parts in the direction orthogonal to the transfer direction of vertical COD and 2 pixel parts along the transfer direction C2, (b) and (C) are A-A of (,), respectively. '
, is a BB' cross-sectional view. To explain this along the manufacturing process, a vertical COD channel n+ layer (2) for reading out signal charges on a P-type semiconductor substrate (1) and a first photosensitive portion sensitive to infrared light are made of, for example, PtSi. An array of Schottky barrier diodes (3) is formed by metal silinide such as and a silicon substrate C2. A vertical CC is then formed on this semiconductor substrate via a gate insulating layer (4).
Form the transfer gate electrode (5) of D (11). Next, a second insulating layer (6) is provided on top of this, and then this insulating layer (
6) A transparent electrode (two pixel electrodes (7) is provided on the pixel electrode (7).
An ITO (IndizmT) layer (8) is formed on the entire surface, and finally, an ITO (IndizmT) layer (8) is formed on the photoconductive film (8).
A transparent electrode (9) is formed on the entire surface (: inOxlda ), etc. (:).

こうして画素電極(7)とa−81層(8)と透明電極
(9)(;より可視光に感度を持つ第2の感光部に積層
された形で構成される。なお、画素電極(7)は絶縁層
(6)(二股(すられた接続孔を介して基板(1)のシ
ョットキー・バリア・ダイオード(3)(二隣接して形
成された蓄積ダイオードとなるn”li (tO−z 
) +=接続される。
In this way, the pixel electrode (7), the a-81 layer (8), and the transparent electrode (9) are laminated on the second photosensitive part that is more sensitive to visible light. ) is connected to the Schottky barrier diode (3) (n”li (tO− z
) +=Connected.

光導電膜であるa−8l層(8)は可視波長光(λ=0
.4〜0.7μm)を吸収し信号電荷を発生する。この
信号電荷(この場合は電子)は、前記透明電極(9)と
画素電極(7)間に形成された電界(二より画素電極(
7)へ走行し、蓄積ダイオード(10−2)(’:蓄積
する。
The a-8l layer (8), which is a photoconductive film, absorbs visible wavelength light (λ=0
.. 4 to 0.7 μm) and generate signal charges. This signal charge (electrons in this case) is generated by an electric field (two-pixel electrode (7) formed between the transparent electrode (9) and the pixel electrode (7)).
7), and the storage diode (10-2) (': accumulates.

また、赤外波長光(λ〉0.7μm)成分は、透明電極
(9)、a−8l層(8)、画素電極(7)および絶縁
層(6)を透過し、第1の感光部であるショットキー・
バリア・ダイオード(3)に到達し、金属シリナイド中
で電子−正孔対を生成し、正孔は基板(1)中(:拡散
し、信号電荷である電子がショットキー・バリア拳ダイ
オード(31I=隣接する蓄積ダイオードとなるn中層
(10−1)c蓄積する。
In addition, the infrared wavelength light (λ>0.7 μm) component passes through the transparent electrode (9), the A-8L layer (8), the pixel electrode (7), and the insulating layer (6), and passes through the first photosensitive area. Schottky
The electrons reach the barrier diode (3) and generate electron-hole pairs in the metal silinide, and the holes diffuse into the substrate (1). =N middle layer (10-1)c which becomes an adjacent storage diode accumulates.

2つの蓄積ダイオード(10−1)(10−2)(=蓄
積した信号電荷は、各々前記垂直COD転送電極(5−
1)あるいは(5−2)に正パルス電圧を印加して垂直
C(α)Df−デ、ヤ・ネルn+層(2)へ転送し読み
出される。この場合、信号電荷の垂直C+G11)ff
fヤ・ネルn”1ii(2)内での転送は、この転送電
極(5−1)(5−2)及び、これC:隣接して連続し
て形成した転送電極に4相の負クロックパルスφ1〜φ
4を印加して行なう。
Two storage diodes (10-1) (10-2) (=The accumulated signal charges are transferred to the vertical COD transfer electrode (5-
A positive pulse voltage is applied to 1) or (5-2) and the data is transferred to the vertical C(α)Df- layer (2) and read out. In this case, vertical C+G11)ff of signal charge
Transfer within the fya channel n"1ii (2) is performed using a 4-phase negative clock on the transfer electrodes (5-1) (5-2) and the transfer electrodes formed adjacently and continuously. Pulse φ1~φ
Perform this by applying 4.

以上の説明は第5図に示した従来構造と全く共通である
が、各々の部分の画素内での配置が異なっている。第5
図(a) (b) (c)は、第1図と同様1:(a)
は垂直CODの転送方向(−沿う2画素部分及び転送方
向(=直交する2画素部分、計4画素部分の平面図、(
b) (C)はそれぞれA−A’、 B−B’断面図で
ある。
The above description is completely the same as the conventional structure shown in FIG. 5, but the arrangement of each part within the pixel is different. Fifth
Figures (a) (b) (c) are similar to Figure 1 1: (a)
is a plan view of a 2 pixel part along the vertical COD transfer direction (- and a 2 pixel part perpendicular to the transfer direction, a total of 4 pixel parts, (
b) (C) are AA' and BB' cross-sectional views, respectively.

第1図C;示す本発明の実施例と、第5図(:示す従来
構造との差異は以下の2点である。
There are two differences between the embodiment of the present invention shown in FIG. 1C and the conventional structure shown in FIG.

1、第5図に示す従来構造では、各画素内において垂直
C(flEDf−f、=ヤネルn層(2)と、蓄積ダイ
オードn”Ji (10−1) (10−2)及び赤外
感光部テアルシせットキー・バリア・ダイオード(3)
の左右関係は一定である。(第6図)一方、第1図に示
す本発明の実施例では、各画素内(:おける垂直COD
チャネルn十層中層)と蓄積ダイオードn”m (10
−1) (10−2)及びショットキー−バリア・ダイ
オ−F (3)の左右関係は一定でなく垂直CODの転
送方向に直交する方向で一画素おきに、その左右関係は
反転する。
1. In the conventional structure shown in FIG. Portion key barrier diode (3)
The left-right relationship is constant. (FIG. 6) On the other hand, in the embodiment of the present invention shown in FIG.
Channel n (middle layer) and storage diode n”m (10
-1) The left-right relationship between (10-2) and Schottky barrier diode-F (3) is not constant, but is reversed every other pixel in the direction perpendicular to the vertical COD transfer direction.

(第2図) 2、第5図に示す従来構造では、各画素ととζ:独立し
たショットキー・バリア・ダイオード(3)を設けてい
る。一方、第1図に示す本発明の実施例では、垂直CO
Dの転送方向C:直交する方向で隣接する2画素(二共
通のショットキ・バリア6ダイオード(3)を設けてい
る。第1図1=示すよう(二、ひとつのショットキー・
バリア・ダイオード(3)C,2個の蓄積ダイオード(
10−1)を設は赤外光(;より発生した信号電荷を2
分割している。
(FIG. 2) 2. In the conventional structure shown in FIG. 5, an independent Schottky barrier diode (3) is provided for each pixel and ζ. On the other hand, in the embodiment of the present invention shown in FIG.
Transfer direction C of D: Two pixels adjacent in the orthogonal direction (two common Schottky barrier 6 diodes (3) are provided.
Barrier diode (3) C, two storage diodes (
10-1) is set up to capture the signal charge generated by infrared light (;
It is divided.

固体撮像装置の感度は、受光部の特性が同一であれば、
受光部の面積に比例し、従って画素サイズが等しければ
画素面積に対する受光部面積の占める割合(;比例する
。この画素面積に対する受光部面積の占める割合を一般
にフィル・ファクターあるいは開口率と呼び固体撮像装
置の特性を決める重要なパラメーターのひとつとしてい
る。
The sensitivity of a solid-state imaging device is as follows, if the characteristics of the light receiving part are the same:
It is proportional to the area of the light-receiving area, and therefore, if the pixel sizes are equal, the ratio of the area of the light-receiving area to the pixel area is proportional. It is considered one of the important parameters that determines the characteristics of the device.

第1図と第5図における、赤外開口率すなわちショット
キー・バリア・ダイオード(3)面積の画素面積の比を
比較する。第1図においては、2画素内でショットキー
・バリア・ダイオード(3)を共有し、信号電荷を2分
割しているため、実質的な開口率はショットキー・バリ
ア・ダイオード1個の面積と、2画素分の面積の比とな
る。第1図のようにショットキー・バリア・ダイオード
(3)を2@素で共有することζ:より、素子分離領域
0の占める面積を、ショットキー・バリア・ダイオード
化することになるため、赤外開口率は向上する。
The infrared aperture ratio, that is, the ratio of the Schottky barrier diode (3) area to the pixel area in FIG. 1 and FIG. 5 will be compared. In Figure 1, the Schottky barrier diode (3) is shared between two pixels and the signal charge is divided into two, so the actual aperture ratio is equal to the area of one Schottky barrier diode. , is the ratio of the areas of two pixels. By sharing the Schottky barrier diode (3) with 2 elements as shown in Figure 1, the area occupied by the element isolation region 0 is converted into a Schottky barrier diode. The external aperture ratio improves.

また第5図の構造では可視光信号電荷用蓄積ダイオード
(10−2)と隣接画素の垂直CODチャネルn+層(
2)の間隔が狭いために、半導体装置の製造工程上での
最小加工幅の制約から、両者の間の領域に素子分離領域
(Lりおよびショットキー・バリア・ダイオード(3)
を形成することが不可能であったが、第1図の構造とす
ることで、隣接画素の可視光信号電荷用蓄積ダイオード
(10−2)間の領域C二もりヨツトキー・バリア・ダ
イオード(3)を形成することが可能となり、さら監:
赤外開口率は向上する。
Furthermore, in the structure shown in FIG. 5, the visible light signal charge storage diode (10-2) and the vertical COD channel n+ layer of the adjacent pixel (
2) is narrow, and due to constraints on the minimum processing width in the semiconductor device manufacturing process, element isolation regions (L and Schottky barrier diodes (3)) are placed in the region between the two.
However, by adopting the structure shown in Fig. 1, a Yotsky barrier diode (3 ), and further supervision:
The infrared aperture ratio is improved.

その結果、赤外感度の高い固体撮像装置を得ることが可
能となる。
As a result, it becomes possible to obtain a solid-state imaging device with high infrared sensitivity.

ところで、第1図の構造の場合、同一のショットキー・
バリア・ダイオード(3)を共有する2画素l二おいて
は全く同一の赤外光信号電荷が読み出されるため、水平
方向の赤外解像度が1/2に低下してしまう。しかしな
がら、同一被写体の赤外光像と可視光像な同時C二撮像
、表示すれば実質的には可視光像が支配的であり、赤外
光像の解像度の低下は実用上問題C二はならない。
By the way, in the case of the structure shown in Figure 1, the same Schottky
Since exactly the same infrared light signal charge is read out in the two pixels l2 that share the barrier diode (3), the infrared resolution in the horizontal direction is reduced to 1/2. However, when an infrared light image and a visible light image of the same subject are simultaneously captured and displayed, the visible light image is essentially dominant, and the decrease in resolution of the infrared light image is a practical problem for C2. No.

また、第1図の構造によれば、一般(二は可視光信号電
荷用蓄積ダイオード(10−2)の水平方向のピッチが
一定ではなくなるが、積m構造型の固体撮像装置におい
ては、受光部が画素電極(7)によって定義されるため
、可視光像の撮像特性は、第5図1=示す従来構造の場
合と同一の特性が得られる。
Furthermore, according to the structure shown in FIG. 1, the pitch in the horizontal direction of the visible light signal charge storage diode (10-2) is not constant; Since the area is defined by the pixel electrode (7), the imaging characteristics of visible light images are the same as those of the conventional structure shown in FIG.

以上の説明ζ二おいズは第1図(;示すように、水平方
向に隣接する2画素(ニジヨツトキー・バリア・ダイオ
ード(3)を共有させたが、第3図に示すように垂直方
向に隣接する2画素にショットキー・バリア・ダイオー
ドを共有させる方法も可能である。
In the above explanation, It is also possible to share a Schottky barrier diode between two pixels.

第3図の構造では垂直CODを最低でも3相駆動する必
要があるため垂直CCDゲートφ1〜φ3を用いた3層
ゲート電極構造となっている。この場合、垂直方向の赤
外解像度が従来構造の1/2となるが、水平方向の赤外
解像度は従来構造と変わらない。
In the structure shown in FIG. 3, since it is necessary to drive the vertical COD in at least three phases, a three-layer gate electrode structure using vertical CCD gates φ1 to φ3 is adopted. In this case, the infrared resolution in the vertical direction is 1/2 that of the conventional structure, but the infrared resolution in the horizontal direction is the same as that of the conventional structure.

さらに、第1図と第3図の構造を組み合わせて第4図の
構造とすることも可能である。第4図の構造では、垂直
方向及び水平方向に隣接する4画素にショットキー・バ
リア・ダイオード(3)を共有させ開口率の大幅な向上
を可能としている。
Furthermore, it is also possible to obtain the structure shown in FIG. 4 by combining the structures shown in FIGS. 1 and 3. In the structure shown in FIG. 4, four pixels adjacent in the vertical and horizontal directions share a Schottky barrier diode (3), making it possible to significantly improve the aperture ratio.

また、以上の説明においては信号電荷読み出し部にIT
−CODを用いたが、例えばX−Yアドレス型MOS 
、ラインーアドレス型CPD (Charge Pri
mimgDevice ) 、電荷掃き寄せ素子C8D
 (Charge 8weepDevice ) 、そ
の他の信号電荷読み出しができるものであれば、本発明
(二適用することができる。
In addition, in the above explanation, the signal charge readout section is
-COD was used, but for example, X-Y address type MOS
, line-address type CPD (Charge Pri
mimgDevice), charge sweeping element C8D
(Charge 8weepDevice), the present invention can be applied to any device that can read out signal charges.

さら(二、以上の実施例では可視光感光部としてa−8
1層、赤外光感光部としてPt8l−8i Vヨツトキ
ー・バリア・ダイオードを用いたが、a−8l層の替り
(二5e−A8−Ta 、Zn5e−ZrCd’reな
どで代表される光導電膜を用いることができ−Pt&5
のmtx&aP4.βl。
Furthermore (2. In the above embodiments, a-8 is used as the visible light sensitive part.
A Pt8l-8i V Yotsky barrier diode was used as the first layer and the infrared light sensitive part, but instead of the a-8l layer (a photoconductive film typified by two 5e-A8-Ta, Zn5e-ZrCd're, etc.) can be used -Pt&5
mtx&aP4. βl.

14[iiP、t 2g、li;Ji5 l J、tT
FB % 14 T i S i 1などの金属シリナ
イドな用いることができる。
14 [iiP, t 2g, li; Ji5 l J, tT
Metal silicides such as FB % 14 T i S i 1 can be used.

また以上の説明は、第1の感光部が赤外光検知、第2の
感光部が可視光検知の場合(:ついて行なったが、同様
の撮像はX像、紫外線などを含めた、複数波長領域の組
み合わせζ二も適用される。
The above explanation is based on the case where the first photosensitive section detects infrared light and the second photosensitive section detects visible light. The region combination ζ2 is also applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は、本発明の一実施
例(二おける感光セルの構造を説明するための図、第5
図及び第6図は従来構造を説明するための図である。 1・−φ型シリコン基板 2・・・垂直CODチャネルn+層 3・・・ショットキー・バリア・ダイオード4.6−−
・絶縁層 5−1 、5−2・・・転送ゲート電極7・・・画素電
極    9・−a−81層9・・・透明電極 10−1.10−2−・・蓄積ダイオードn+層11・
−垂直CCD     12・−素子分離領域13・・
・水平CCD     14・−蓄積部15・・・プリ
アンプ 代理人 元理士 則 近 憲 佑(ばか1名)第1図 第2図 第3図 第4図 第5図
1, 2, 3, and 4 are diagrams for explaining the structure of a photosensitive cell according to an embodiment of the present invention (Fig. 5).
This figure and FIG. 6 are diagrams for explaining the conventional structure. 1.-φ type silicon substrate 2...Vertical COD channel n+ layer 3...Schottky barrier diode 4.6--
・Insulating layers 5-1, 5-2...Transfer gate electrode 7...Pixel electrode 9.-a-81 layer 9...Transparent electrode 10-1.10-2-...Storage diode n+ layer 11・
- Vertical CCD 12 - Element isolation region 13...
・Horizontal CCD 14・-Storage unit 15...Preamplifier representative Nori Chika Kensuke (1 idiot) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  基板上に信号電荷読出し部と第1の感光部を隣接して
設け、この上に感知波長領域の異なる第2の感光部が積
層形成された積層型の固体撮像装置において、前記第1
の感光部を隣接する画素間で共通にした事を特徴とする
固体撮像装置。
In a stacked solid-state imaging device in which a signal charge readout section and a first photosensitive section are provided adjacent to each other on a substrate, and a second photosensitive section having a different sensing wavelength region is layered thereon, the first
A solid-state imaging device characterized in that a photosensitive portion is shared between adjacent pixels.
JP60088832A 1985-04-26 1985-04-26 Solid-state image pickup device Pending JPS61248553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088832A JPS61248553A (en) 1985-04-26 1985-04-26 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088832A JPS61248553A (en) 1985-04-26 1985-04-26 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS61248553A true JPS61248553A (en) 1986-11-05

Family

ID=13953915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088832A Pending JPS61248553A (en) 1985-04-26 1985-04-26 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS61248553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621200A1 (en) * 1987-09-29 1989-03-31 Toshiba Kk SEMICONDUCTOR MONOLITHIC TYPE TAKING APPARATUS
EP0605898A1 (en) * 1993-01-01 1994-07-13 Canon Kabushiki Kaisha Solid-state image pickup device
JP2010251772A (en) * 2002-06-13 2010-11-04 Panasonic Corp Semiconductor device, and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621200A1 (en) * 1987-09-29 1989-03-31 Toshiba Kk SEMICONDUCTOR MONOLITHIC TYPE TAKING APPARATUS
EP0605898A1 (en) * 1993-01-01 1994-07-13 Canon Kabushiki Kaisha Solid-state image pickup device
US5453611A (en) * 1993-01-01 1995-09-26 Canon Kabushiki Kaisha Solid-state image pickup device with a plurality of photoelectric conversion elements on a common semiconductor chip
EP0809298A1 (en) * 1993-01-01 1997-11-26 Canon Kabushiki Kaisha Solid-state image pickup device
US5801373A (en) * 1993-01-01 1998-09-01 Canon Kabushiki Kaisha Solid-state image pickup device having a plurality of photoelectric conversion elements on a common substrate
JP2010251772A (en) * 2002-06-13 2010-11-04 Panasonic Corp Semiconductor device, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS60130274A (en) Solid-state image pickup device
US7217983B2 (en) Photoelectric conversion film-stacked type solid-state imaging device
US7515187B2 (en) Photoelectric conversion film-stacked type solid-state imaging device
JPH06204450A (en) Solid-state image pickup device
JP2597600B2 (en) Solid-state imaging device
JPH0463473A (en) Solid state image sensor
KR960001182B1 (en) Solid state image pick-up device
JPS61248553A (en) Solid-state image pickup device
JP2007259417A (en) Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
JPH0712079B2 (en) Solid-state image sensor
JPH0130306B2 (en)
JP2002252341A (en) Solid-state imaging device
JPH11195779A (en) Color linear image sensor and method for driving the same
JP2922688B2 (en) Infrared solid-state image sensor
JPS63185058A (en) Solid-state image sensor
JPS61226955A (en) Solid-state image pickup device
JPS6255961A (en) Solid state image pick-up device
JPH05243546A (en) Solid-state image sensing device
JP2003258235A (en) Solid-state imaging device
JPH03246971A (en) Charge-coupled device and solid-state image sensing device using same
JPS5870685A (en) Solid-state image pickup device
JPH0831585B2 (en) Solid-state imaging device
JPH033269A (en) Ccd image pickup element
JP3084108B2 (en) Infrared solid-state image sensor
JPH0424872B2 (en)