JPS5940528A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5940528A
JPS5940528A JP15037382A JP15037382A JPS5940528A JP S5940528 A JPS5940528 A JP S5940528A JP 15037382 A JP15037382 A JP 15037382A JP 15037382 A JP15037382 A JP 15037382A JP S5940528 A JPS5940528 A JP S5940528A
Authority
JP
Japan
Prior art keywords
layers
source
depths
drain
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15037382A
Other languages
Japanese (ja)
Inventor
Hideto Goto
秀人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15037382A priority Critical patent/JPS5940528A/en
Publication of JPS5940528A publication Critical patent/JPS5940528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Abstract

PURPOSE:To obtain a short channel MOSFET by a method wherein deep connection layers are formed in the positions selfaligning with opening parts without changing depths of source.drain layers. CONSTITUTION:The source and the drain 15a, 15b of depths of 0.2mum degree are formed by ion implantation and annealing on a P type Si substrate according to the usual method. The openings 17a, 17b are formed, P ions are implanted 18a, 18b by more high energy, the more high dose quantity, and laser is applied. The layers 18a, 18b are molten by absorbing energy, epitaxial growth is executed continuously, and the connection layers 19a, 19b containing P are generated. Depths thereof depend upon intensity of the laser light, and the layers are formed by selfalignment with the windows 17a, 17b. Because the parts of the layers 15a, 15b not implanted with P ions are covered with an insulating film 16, and moreover annealng is finished and crystallinity is restored, absorption of the laser light is a little to generate to heat, and depths are not changed. Although displacement reaction layers 21a, 21b are generated at the contact parts of metal wirings 20a, 20b and the layers 19a, 19b, because they are covered by the layers 19a, 19b, leakage is not generated, and the highly reliable short channel IGFET can be obtained.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、@にイオン注入
とその後に行なわれる活性化に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and relates to ion implantation and subsequent activation.

従来、短いチャネル長を有する集積前IJtの高い絶縁
ゲート型(以下MOS型)電界効果半導体装置において
は、実効的なチャネル長であるゲート!棚の下のソース
、ドレイン両領域間の対向距離をできるだけ長くするた
めにゲート電極の下側へのソース、ドレイン領域の筐わ
りこみを最小にするへく、できるだけ浅い接合を有する
ソース、ドレイン領域が使用されている。この棟の浅い
接合を有するソース、ドレイン領域に対し、直接配線用
の金属層を接触すると、接続gハにおいて、ソース、ド
レイン領域の一部と金属層の置換反応にエフ、金属層が
ソース、ドレイン領域をつきぬける為にリーク電流が発
生する〇 このリークを防止する為の従来の方法ケ第1図(a) 
、 (b)に示す。
Conventionally, in insulated gate type (hereinafter MOS type) field effect semiconductor devices with a short channel length and high IJt before integration, the effective channel length of the gate! In order to make the opposing distance between the source and drain regions under the shelf as long as possible, the source and drain regions should have junctions as shallow as possible to minimize the intrusion of the source and drain regions into the housing below the gate electrode. It is used. When a metal layer for wiring is brought into direct contact with the source and drain regions having shallow junctions in this ridge, a substitution reaction between a part of the source and drain regions and the metal layer occurs at the connection g, and the metal layer is connected to the source and drain regions. A leakage current occurs because it penetrates the drain region. Conventional methods for preventing this leakage Figure 1 (a)
, shown in (b).

半導体基体lの表面に公知の選択酸化技術で厚いフィー
ルド酸化膜2とゲート酸化右奥3を成長し、多結晶シリ
コンによるゲート電極4才形成し、このゲート電極4を
マスクとして例えばヒ素ケイオン注入してソース、ドレ
イン領域5 a 、 5 b’ji=?J、ついで気相
成長膜6を形成し、接続用の開孔部7 a +7bを形
成する(第1図(a) )。
A thick field oxide film 2 and gate oxide layer 3 are grown on the surface of the semiconductor substrate 1 using a known selective oxidation technique, a gate electrode 4 made of polycrystalline silicon is formed, and using this gate electrode 4 as a mask, for example, silicon arsenic ions are implanted. Source and drain regions 5a, 5b'ji=? J. Next, a vapor phase growth film 6 is formed, and openings 7a+7b for connection are formed (FIG. 1(a)).

続いて、開孔部7a、7bk介して、半導体基体1内に
例えばリンを熱処理に+lニジ拡散して接続領域8a、
8bk形成し、次いで開孔ff1s7a17bを介して
、接続領域8 a t 8 bに接続、する<(ン属配
線領域9aa9bを形成する(第1図(b))。
Subsequently, through the openings 7a and 7bk, for example, phosphorus is diffused into the semiconductor substrate 1 through heat treatment to form the connection regions 8a and 7b.
8bk is formed, and then connected to the connection region 8a t 8b via the opening ff1s7a17b to form the interconnection region 9aa9b (FIG. 1(b)).

この従来例の嵌にソース、ドレイン領域5 a +5b
の不純物として拡散係数の小さいヒ素を、接続領域8a
、8bの不純物として拡散係数の大きいリンを使用する
と、例えば約950°α約6(1の熱処理で接続領域8
a、8bを形成することにより、約1.0μmの深さの
接続領域sa、8bを得、同時に約0.4μmの深さの
ソース、ドレイン領域5a、5bを得る事ができ、接続
領域8a。
In this conventional example, the source and drain regions 5a + 5b
Arsenic, which has a small diffusion coefficient, is used as an impurity in the connection region 8a.
, 8b, if phosphorus with a large diffusion coefficient is used as an impurity, for example, the connection region 8
By forming the connection regions sa and 8b with a depth of about 1.0 μm, it is possible to obtain the source and drain regions 5a and 5b with a depth of about 0.4 μm at the same time. .

8bは比較的深い接合を有し、かつ開孔部7a。8b has a relatively deep junction and an opening 7a.

7bと自己整合的に位置決めされている為に、開孔部の
周囲に拡がる為、金属配線領域9a、9bを形成した後
でも金属配線領域9a、9bが置換反応により半導体基
体1内に浸入する領域10a。
Since it is positioned in a self-aligned manner with 7b, it spreads around the opening, so even after the metal wiring regions 9a, 9b are formed, the metal wiring regions 9a, 9b penetrate into the semiconductor substrate 1 due to a substitution reaction. Area 10a.

10bl”l:、接続領域8a、8bに完全に覆われる
為にリークが発生しない〇 しかし、第1図(a) 、 (b)VC述べた従来例は
、熱処理により接続領域10a、10bを形成していた
為に、ソース、ドレイン領域5a、5bの不純物として
拡散係数の小さいヒ素を選んだとしてもやはり不純物分
布の再分布がおこり、ソース、ドレイン領域5 a 、
 51)を深くシ、従ってゲートを極4の下へのソース
、ドレイン領域5 a 、t 5 bノミわジこみを大
きくシ、実効チャネル長ケ短くし、素子の耐圧を低下さ
せ−Cいた。
10bl"l: No leakage occurs because the connection areas 8a and 8b are completely covered. However, in the conventional example described in FIGS. 1(a) and 1(b), the connection areas 10a and 10b are formed by heat treatment. Therefore, even if arsenic with a small diffusion coefficient is selected as the impurity for the source and drain regions 5a and 5b, redistribution of the impurity distribution still occurs, and the source and drain regions 5a and 5b
51) was deepened, and the gate was therefore greatly recessed in the source and drain regions 5a and t5b below the pole 4, the effective channel length was shortened, and the withstand voltage of the device was lowered.

例えば6σ記の熱部、(!ltケ行った場合、ソースド
レイン領域5 a + 51)の深さに約0.2μmか
ら約o、4μmまで深くなってしまう。
For example, the depth of the hot part in 6σ (in the case of !lt, the source/drain region 5 a + 51) increases from about 0.2 μm to about 0.4 μm.

本発明は、以上の欠点を除去し、ソース、ドレイン領域
の深さを変化させる事なく、開孔部と自己整合的な位置
に深い接F;?、領域を形成する事を一■能にするもの
である。
The present invention eliminates the above-mentioned drawbacks, and without changing the depth of the source and drain regions, has a deep contact F at a position self-aligned with the opening. , it is possible to form a region.

すなわち、本発明は浅い接合金41するノース、ドレイ
ン領域を有し、短いチャネル長を有するMO8型電界効
果半導体装置において、ソース、ドレイン領域と配線層
の間の接続部に〉いて、リーク’+lI流の発生を抑制
した+trt造を、ソース、ドレイン領域の不純物分布
を実質的VC変化することなく、得る事を目的とする。
That is, the present invention provides an MO8 type field effect semiconductor device having north and drain regions with a shallow junction metal 41 and a short channel length. The object of the present invention is to obtain a +trt structure in which the generation of current is suppressed without substantially changing the impurity distribution in the source and drain regions.

不発明の特徴は、半導体基板にイオン注入し、しかる後
に注入部分に元エネルギー照射を行なう半導体装置の製
造方法にある。例えば、半導体基体の一生面に隣接し、
ゲーI・絶縁膜と、前記ゲー)!極の側面に隣接し、前
記半導体基体内に延在し、互いに離間されたソース及び
ドレイン領域と、前記ソース、ドレイン領域と接続され
、同型の不純物全含有し、かつ、前記ソース、ドレイン
領域より深い接合を有し、ilJ記半導体基体内に延在
する接続用領域′fr−有するMO3型電界効果半導体
装1gを製造するにあたり、前記ソース、ドレイン領域
ヲ覆う絶縁膜を貫通する開孔部を形成した後、前記開孔
部を介して、mJ記半導体基体内に前記ソース、ドレイ
ン領域と同型の不純物をイオン注入し、次いでレーザー
光、キセノンランプ元等の元エネルギーの照射により、
前記不純物を活性化することにより、前記ソースドレイ
ン領域の不純物分布を実質的に変更する、高温の処理を
使用することなく…I記接続用領域を形成し、欠いで前
記開孔部を介して、前記接続領域と電気的に接続された
、配線層頭載を形成する工程と?:含む半導体装置の製
造方法である。
The inventive feature resides in a method of manufacturing a semiconductor device in which ions are implanted into a semiconductor substrate and the implanted portion is then irradiated with original energy. For example, adjacent to the whole surface of the semiconductor substrate,
Ge I/insulating film and the above Ge)! a source and drain region adjacent to a side surface of the pole, extending within the semiconductor substrate and spaced apart from each other; In manufacturing an MO3 field effect semiconductor device 1g having a deep junction and a connection region extending within the semiconductor substrate, an opening penetrating the insulating film covering the source and drain regions is formed. After forming, ions of an impurity having the same type as the source and drain regions are implanted into the mJ semiconductor substrate through the opening, and then by irradiation with source energy such as a laser beam or a xenon lamp source,
By activating the impurity, the impurity distribution in the source/drain region is substantially changed without using a high temperature process. , a step of forming a wiring layer head electrically connected to the connection region; : A method of manufacturing a semiconductor device including:

次に、本発明の構成全第2図(a)〜(c)に示す実施
例に従って説明する。
Next, the entire structure of the present invention will be explained according to the embodiment shown in FIGS. 2(a) to 2(c).

半導体基体11の表面に公知の選択酸化技術により、厚
いフィールド酸化j模12及びゲート峻化膜13’を形
成し、次いで多結晶シリコンよジlるゲート′に極14
ケ形成し、続いて、ヒ素をイオン注入し、アニールする
ことにエリ、ソース1 ドレイン領域15a415bk
形成する。ソース、ドレイン領域の深さは、イオン注入
社・、アニ・−ル温度、注入エネルギーにより変化する
が、飼えぼ5X 1 d”個/ Cm2、のイオンをエ
ネルギー1501ceVで注入し900°Cで1時間ア
ニールした場合、約0.2μmの深さの接合ケ得る。続
いて気相成&によジ絶縁膜16を成長し、接続用の開孔
部17a。
A thick field oxide film 12 and a gate thickening film 13' are formed on the surface of the semiconductor substrate 11 by a known selective oxidation technique, and then a pole 14 is formed on the polycrystalline silicon gate.
Then, arsenic is ion-implanted and annealed to form the source 1 and drain regions 15a415bk.
Form. The depth of the source and drain regions varies depending on the ion implantation temperature and implantation energy, but ions of 5 x 1 d"/cm2 were implanted at an energy of 1501 ceV and 1 at 900°C. When annealing is performed for a certain period of time, a bond with a depth of about 0.2 μm can be obtained.Subsequently, a vapor phase insulating film 16 is grown, and an opening 17a for connection is formed.

17bを形成する。仄いで開孔部17a、17bを介し
てリン分イオン注入し注入領域18a。
17b is formed. Phosphorous ions are then implanted through the openings 17a and 17b to form an implanted region 18a.

18bk形成する。リンのイオン注入条件は例えばエネ
ルギー200 k e V、江〜1jlX 10”個/
(Tn2で行なわれる(第2図(a))。
Form 18bk. The ion implantation conditions for phosphorus are, for example, energy 200 k e V,
(This is done at Tn2 (Fig. 2(a)).

次いで第2図(b)に示す如く、半導体基体1内奮レー
ザ照射することによシイオン注入110城18a。
Next, as shown in FIG. 2(b), the semiconductor substrate 1 is irradiated with a laser beam to implant ions 110 and 18a.

18bVc光エネルギーを吸収して発熱させ、注入領域
18a 、18bを溶解させ膀いて連続的にエピタキシ
ャル成長させる事により、リンを含んだ接続領域19a
、19bを形成する。接続領域19a、19bの深さは
レーザー元の強さに依存するが、例えば1.5X10J
/m の強度の照射で約i、oμmの接続領域19a、
191)全開孔部17a、17blC対して自己整合的
に得ることができる。
By absorbing 18bVc light energy to generate heat, melting the implanted regions 18a and 18b and continuously epitaxially growing them, a connecting region 19a containing phosphorus is formed.
, 19b. The depth of the connection areas 19a and 19b depends on the strength of the laser source, but is, for example, 1.5X10J.
/m2 connection area 19a of about i,0 μm by irradiation with an intensity of
191) It can be obtained in a self-aligned manner with respect to the fully open hole portions 17a and 17blC.

リンイオン注入をされていないソース、ドレイン領域1
5a、15bは、絶縁膜16に憶われている為と、不純
物のヒ累が前工程で既にアニールされて、結晶性が回復
している為に、元の吸収が少く、発熱しない為に、レー
ザ照射の影響をほとんど受けず、深さは約0.2μmに
保たれる。この工程のレーザ照射は同様の元エネルギを
与えるキせノンランプ元等の照射でも同じ効果が期待で
きる。
Source and drain regions 1 without phosphorus ion implantation
5a and 15b are stored in the insulating film 16, and the accumulation of impurities has already been annealed in the previous process and the crystallinity has been restored, so the original absorption is small and no heat is generated. It is hardly affected by laser irradiation, and the depth is maintained at approximately 0.2 μm. As for the laser irradiation in this step, the same effect can be expected even if the laser irradiation is performed using a xenon lamp or the like that provides the same source energy.

続いて開孔部を介して金属配線層20a、20bを接続
領域19a、19bに接続することにエリ、ソース、ド
レイン領域15a、15bと金属配線層205L、20
bとの電気的導通を構成することができる第2図(c)
Subsequently, the metal wiring layers 20a, 20b are connected to the connection regions 19a, 19b through the openings, and the metal wiring layers 205L, 20 are connected to the source and drain regions 15a, 15b.
Figure 2 (c) where electrical continuity can be established with b.
.

金属配線層20a、20bと接続領域19a。Metal wiring layers 20a, 20b and connection region 19a.

19bとの接触部では、前述の置換反応により、金属配
線層19a 、19bが半導体基体1内部に浸入する領
域21a、21bが形成されるが、第2図(c)に図示
する如く、接続領域19a、19bで完全に覆われてい
る為にリーク電流は発生しない0 以上述べた様に本発明によれば金属配線領域とソース、
ドレイン領域の接触部に、ソースドレイン領域より深い
接続領域を、開孔部に対して自己整合的に、ソースドレ
イン領域の不純物分布を変える事なく形成することが可
能になる為、もってMO8型電界効果半導体装置の高信
頼性化、高集積化を実現するものである。
At the contact portion with 19b, regions 21a and 21b where the metal wiring layers 19a and 19b penetrate into the semiconductor substrate 1 are formed by the above-mentioned substitution reaction, but as shown in FIG. 19a and 19b, so no leakage current occurs.0 As described above, according to the present invention, the metal wiring area and the source,
Since it is possible to form a connection region deeper than the source/drain region at the contact portion of the drain region in a self-aligned manner with respect to the opening without changing the impurity distribution of the source/drain region, it is possible to reduce the MO8 type electric field. The present invention realizes high reliability and high integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)t−j各々従来の製造方法を
工程Jllf4に示す断面図、第2図(a)〜(c)は
各々不発明実施例の製造方法を工程JINに示す断面図
である。 なお図において1・・・・・・半導体基体、2・・・・
・・フィールド酸化膜、3・・・・・・ゲートm化71
%、/I・・・・・・ゲート11L極、5a15b・・
・・・・ソースドレイン1j上j域、6・・・・・・絶
縁膜、7a、7b・・・−・・開孔部、8a、8b・・
・・・・接紛領域、9a19b・・・・・・金属配lt
M領域、10a、10b・・・・・・金属浸入領域、1
1・・・・・・半導体基体、12・・・・・・フィール
ド酸化膜、13・・・・・・ゲート酸化膜、14・・・
・・・ゲート電極、15a、15b・・・・・・リース
、ドレイン領域、16・・・・・・絶縁膜、17 a 
e 17 b ・” ・”h孔部、18 a 、 18
 b −−イオン注入領域、19a 、19b−・・・
・・接続領域、20 a 、 20 b・−・−・金属
配線領域、21 a ) 21 b・・・・・・金属浸
入領域、である。 Z 7図(0)
Figures 1 (a) and (b) t-j are cross-sectional views showing the conventional manufacturing method at step Jllf4, and Figures 2 (a) to (c) each show the manufacturing method of the uninvented embodiment at step JIN. FIG. In the figure, 1...semiconductor substrate, 2...
...Field oxide film, 3...Gate mization 71
%, /I...Gate 11L pole, 5a15b...
...J region above source/drain 1j, 6...Insulating film, 7a, 7b...--Opening portion, 8a, 8b...
・・・・Connection area, 9a19b ・・・・Metal interconnection
M region, 10a, 10b...metal infiltration region, 1
DESCRIPTION OF SYMBOLS 1... Semiconductor base, 12... Field oxide film, 13... Gate oxide film, 14...
... Gate electrode, 15a, 15b ... Lease, drain region, 16 ... Insulating film, 17 a
e 17 b ・” ・”h hole, 18 a, 18
b --Ion implantation region, 19a, 19b-...
. . . Connection region, 20 a , 20 b . . . metal wiring region, 21 a ) 21 b . . . metal infiltration region. Z 7 figure (0)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に不純物をイオン注入し、しかる後に注入部
分に光エネルギー照射を行なうことを特徴とする半導体
装置の製造方法。−
1. A method of manufacturing a semiconductor device, comprising ion-implanting impurities into a semiconductor substrate, and then irradiating the implanted portion with light energy. −
JP15037382A 1982-08-30 1982-08-30 Manufacture of semiconductor device Pending JPS5940528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15037382A JPS5940528A (en) 1982-08-30 1982-08-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15037382A JPS5940528A (en) 1982-08-30 1982-08-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5940528A true JPS5940528A (en) 1984-03-06

Family

ID=15495570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15037382A Pending JPS5940528A (en) 1982-08-30 1982-08-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5940528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734383A (en) * 1984-11-22 1988-03-29 Hitachi, Ltd. Fabricating semiconductor devices to prevent alloy spiking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638868A (en) * 1979-09-06 1981-04-14 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638868A (en) * 1979-09-06 1981-04-14 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734383A (en) * 1984-11-22 1988-03-29 Hitachi, Ltd. Fabricating semiconductor devices to prevent alloy spiking

Similar Documents

Publication Publication Date Title
US3607449A (en) Method of forming a junction by ion implantation
JPH0412615B2 (en)
EP0097533B1 (en) A method of manufacturing a mis type semiconductor device
US3650019A (en) Methods of manufacturing semiconductor devices
JPH0115134B2 (en)
CA1112374A (en) Method for forming self-aligned field effect device by ion implantation
JP3165051B2 (en) Semiconductor element well formation method
JPS5940528A (en) Manufacture of semiconductor device
JP3211784B2 (en) Semiconductor device and manufacturing method thereof
JPS62104021A (en) Formation of silicon semiconductor layer
US20010018258A1 (en) Method for fabricating semiconductor device
JP2781989B2 (en) Method for manufacturing semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
JPS6317227B2 (en)
JPH0434942A (en) Manufacture of semiconductor device
JPH08274111A (en) Bipolar silicon transistor and its preparation
JPS6238869B2 (en)
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JP3525464B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH04196525A (en) Manufacture of semiconductor device
JPH0728036B2 (en) Method for manufacturing semiconductor device
JPS6161268B2 (en)
RU2102818C1 (en) Field-effect p-n transistor and its manufacturing process
JP2852241B2 (en) Semiconductor device and manufacturing method thereof
JPS6074536A (en) Manufacture of semiconductor device