JPH0434942A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0434942A
JPH0434942A JP14070090A JP14070090A JPH0434942A JP H0434942 A JPH0434942 A JP H0434942A JP 14070090 A JP14070090 A JP 14070090A JP 14070090 A JP14070090 A JP 14070090A JP H0434942 A JPH0434942 A JP H0434942A
Authority
JP
Japan
Prior art keywords
type
layer
ions
implanted
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14070090A
Other languages
Japanese (ja)
Inventor
Shuichi Saito
修一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14070090A priority Critical patent/JPH0434942A/en
Publication of JPH0434942A publication Critical patent/JPH0434942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To accurately control an impurity concentration distribution and to suppress an increase in a leakage current by forming a gate oxide film on one conductivity type semiconductor substrate, forming an amorphous layer by ion implanting, and injecting one conductivity type impurity to a boundary between the amorphous layer and a crystalline region. CONSTITUTION:A field oxide film 2 is formed on a P-type silicon substrate 1, and a gate oxide film 3 is formed. Ge ions are implanted to form an amorphous silicon layer 4. B ions are implanted to form a P<+> type buried layer 5, and a P-type channel layer 6 is formed. A gate electrode 7 made of polysilicon is formed, and P-type ions are implanted to form an N-type low concentration layer 8 of an LDD structure. An insulating film made of PSG is deposited on the entire surface, and etched back to form a sidewall 9 made of PSG. P-type ions are implanted to form N<+> type source.drain 10. They are simultaneously heat treated. It is lamp-annealed for a short time. An interlayer insulating film is deposited, a contact hole is opened, and a metal wiring layer is formed to complete a device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にMOSデバ
イスの形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a MOS device.

〔従来の技術〕[Conventional technology]

現在MOSデバイス形成における不純物の導入は、主と
してイオン注入によって行なわれている。
Currently, impurity introduction in MOS device formation is mainly performed by ion implantation.

デバイスパターンの微細化にともない、ソースドレイン
接合深さが浅くなっているが、通常のイオン注入ではチ
ャネリングによるテールが生じて接合深さを浅くするこ
とができない。
With the miniaturization of device patterns, the depth of source-drain junctions has become shallower, but with normal ion implantation, a tail occurs due to channeling, making it impossible to reduce the depth of the junctions.

これに対処する方法として2重注入法が、例えばC,M
、LIM et a!、によりIEEE Electr
on Device Letters、 vol、9.
 no、11.1989. pp、594に掲載されて
いる。
As a way to deal with this, a double injection method is used, for example, C, M
, LIM et a! , by IEEE Electr
on Device Letters, vol, 9.
no, 11.1989. Published in pp. 594.

予めシリコンイオン注入により非晶質層を形成してから
キャリアとなるイオンを注入するというものである。
This method involves forming an amorphous layer in advance by implanting silicon ions, and then implanting ions to serve as carriers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ソース−トレイン形成工程において、2重注入を行なう
と、接合のところでリーク電流が増大するという問題が
ある。
When double implantation is performed in the source-train formation process, there is a problem in that leakage current increases at the junction.

また単結晶層にイオン注入すると、イオンが横方向に拡
がって、微細化が進むにつれてこの影響が無視できなく
なってきた。
Furthermore, when ions are implanted into a single crystal layer, the ions spread laterally, and as miniaturization progresses, this effect can no longer be ignored.

さらにMOSFETのLDD楕遣の低不純物濃度層の形
成においては、チャネリング成分のため浅い接合の形成
が困難である。
Furthermore, in forming a low impurity concentration layer for the LDD ellipse of a MOSFET, it is difficult to form a shallow junction due to channeling components.

本発明の目的は、不純物濃度分布を高精度で制御し、か
つリーク電流の増大を抑制する半導体装1の製造方法を
提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device 1 that controls impurity concentration distribution with high precision and suppresses an increase in leakage current.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、一導電型の半導体基
板の表面にゲート酸化膜を形成したのち、イオン注入に
より前記半導体基板の表面に非晶質層を形成する工程と
、該非晶質層と前記半導体基板の単結晶領域との境界面
に、一導電型の不純物を導入する工程と、ポリシリコン
からなるゲート電極を形成したのち絶縁物からなるサイ
ドウオールを形成する工程と、熱処理により一括アニー
ルする工程とを含んでいる。
The method for manufacturing a semiconductor device of the present invention includes the steps of: forming a gate oxide film on the surface of a semiconductor substrate of one conductivity type, and then forming an amorphous layer on the surface of the semiconductor substrate by ion implantation; A step of introducing an impurity of one conductivity type into the interface between the semiconductor substrate and the single crystal region of the semiconductor substrate, a step of forming a gate electrode made of polysilicon, and then a step of forming a side wall made of an insulator, and a step of forming a side wall made of an insulator, The process includes an annealing process.

〔作用〕 はじめにフィールド酸化膜およびゲート酸化膜が形成さ
れたP型シリコン基板の全面に4族元素をイオン注入し
て非晶質化する。
[Operation] First, a group 4 element is ion-implanted into the entire surface of a P-type silicon substrate on which a field oxide film and a gate oxide film have been formed to make it amorphous.

ここで空乏層が非晶質層の境界に達しないようにしてい
る。
Here, the depletion layer is prevented from reaching the boundary of the amorphous layer.

臨界注入量は1×1014/cm2でありゲート酸化膜
が劣化する恐れはない。
The critical implantation dose is 1.times.10.sup.14/cm.sup.2, so there is no risk of deterioration of the gate oxide film.

つぎにチャネル、LDD、ソース−ドレインのイオン注
入を行なうので、低ドース(注入量)領域における活性
化率低下の問題が解決する。
Next, ion implantation for the channel, LDD, and source-drain is performed, so the problem of decreased activation rate in the low dose (implantation amount) region is solved.

また不純物が導入される領域が非晶質になっているので
、マスクを通しての不純物の導入におけるチャネリング
が起らず、テールの問題や横方向の拡がりも小さくでき
る。
Furthermore, since the region into which impurities are introduced is amorphous, channeling does not occur when impurities are introduced through a mask, and tail problems and lateral spread can be reduced.

すべてのイオン注入が終ってから一括して熱処理を行な
っているため、不純物の再分布も軽減される。
Since heat treatment is performed all at once after all ion implantations are completed, redistribution of impurities is also reduced.

〔実施例〕〔Example〕

本発明の一実施例について、第1図(a)〜(C)を参
照して説明する。
An embodiment of the present invention will be described with reference to FIGS. 1(a) to (C).

はじめに第1図(a)に示すように、LOCO8法によ
りP型シリコン基板1に厚さ800nmのフィールド酸
化膜2を形成し、熱酸化により厚さ7nmのゲート酸化
膜3を形成する。
First, as shown in FIG. 1(a), a field oxide film 2 with a thickness of 800 nm is formed on a P-type silicon substrate 1 by the LOCO8 method, and a gate oxide film 3 with a thickness of 7 nm is formed by thermal oxidation.

つぎにGeイオンを150keVおよび110keVで
I Xl014 / c m 2注入して、非晶質シリ
コン層4を形成する。
Next, Ge ions are implanted at IXl014/cm2 at 150 keV and 110 keV to form an amorphous silicon layer 4.

つぎにBイオンを110keVでlXl0”7cm2注
入してP+型埋込層5を形成する。
Next, B ions are implanted at 110 keV to a depth of 1X10''7 cm2 to form a P+ type buried layer 5.

つぎにBイオンを30keVでlX10”lXl013
/am2注入してP型チャネル層6を形成する。
Next, B ions are applied at 30 keV to lX10"lXl013
/am2 is implanted to form a P-type channel layer 6.

つぎに第1図(b)に示すように、ポリシリコンからな
るゲート電極7を形成し、Pイオンを4゜keVでlX
10”〜lXl014/cm”注入してLDD構造(7
)N型低濃度層8を形成する。
Next, as shown in FIG. 1(b), a gate electrode 7 made of polysilicon is formed, and P ions are irradiated with 1X at 4°keV.
The LDD structure (7
) An N-type low concentration layer 8 is formed.

つぎに第1図(c)に示すように、全面にPSGからな
る絶縁膜を堆積し、RIE法によりエッチバックしてP
SGからなるサイドウオール9を形成する。
Next, as shown in FIG. 1(c), an insulating film made of PSG is deposited on the entire surface, and etched back by RIE method.
A sidewall 9 made of SG is formed.

つぎにPイオンを70keVで5X10”/c■2注入
してN+型ソース−ドレイン10を形成する。
Next, P ions are implanted at 5.times.10"/c.sub.2 at 70 keV to form an N+ type source-drain 10.

イオン注入が終ってから、−括して熱処理を行ない非晶
質層4を再結晶化すると同時に、不純物層の活性化を行
なう。
After the ion implantation is completed, a heat treatment is performed to recrystallize the amorphous layer 4 and at the same time activate the impurity layer.

ここでは900〜1000℃で、2〜30秒間の、短時
間ランプアニールを実施した。
Here, short-time lamp annealing was performed at 900 to 1000°C for 2 to 30 seconds.

そのあと層間絶縁膜を堆積し、コンタクトホールを開口
して、金属配線層を形成してデバイスが完成する。
After that, an interlayer insulating film is deposited, contact holes are opened, and metal wiring layers are formed to complete the device.

本実施例では非晶質シリコン層4を形成するどきGeイ
オンを用いたが、SiイオンやSnイオンなどの4族イ
オンでも良い、イオンの質量が大きいほど非晶質化のた
めの臨界ドースが減り、より有効である。
In this example, Ge ions were used to form the amorphous silicon layer 4, but group 4 ions such as Si ions and Sn ions may also be used. less and more effective.

本実施例では非晶質シリコン層4を形成してから、P″
″型埋込層5を形成し、P型チャネル層6を形成したが
、この順序を変更することもできる。
In this embodiment, after forming the amorphous silicon layer 4,
Although the "" type buried layer 5 is formed and the P type channel layer 6 is formed, this order can also be changed.

〔発明の効果〕〔Effect of the invention〕

不純物を導入する領域が非晶質化されているため、チャ
ネル層およびソース−ドレイン層においてチャネリング
に起因するテールは観測されなかった。
Since the region into which impurities are introduced is amorphous, no tail due to channeling was observed in the channel layer and source-drain layer.

イオン注入時の加速エネルギーを低くすることにより、
さらに浅い不純物層を形成することができる。
By lowering the acceleration energy during ion implantation,
An even shallower impurity layer can be formed.

チャネリング成分がなくなって不純物の横方内拡がりも
小さくなり、微細パターンデバイスの形成に有効である
ことがわかった。
It was found that channeling components are eliminated and the lateral inward spread of impurities is reduced, making it effective for forming fine pattern devices.

低濃度層における活性化率も改善され、はぼ100%近
い値が得られることがわかった。
It was found that the activation rate in the low concentration layer was also improved and a value close to 100% was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例を示す断面図
である。 1・・・P型シリコン基板、2・・・フィールド酸化膜
、3・・・ゲート酸化膜、4・・・非晶質シリコン層、
5・・・P+型埋込層、6・・・P型チャネル層、7・
・・ゲート電極、8・・・N型低濃度層、9・・・サイ
ドウオール、10・・・N+型ソース−ドレイン。
FIGS. 1(a) to 1(C) are cross-sectional views showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 3... Gate oxide film, 4... Amorphous silicon layer,
5...P+ type buried layer, 6...P type channel layer, 7.
...Gate electrode, 8...N type low concentration layer, 9... Side wall, 10... N+ type source-drain.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板の表面にゲート酸化膜を形成し
たのち、イオン注入により前記半導体基板の表面に非晶
質層を形成する工程と、該非晶質層と前記半導体基板の
単結晶領域との境界面に、一導電型の不純物を導入する
工程と、ポリシリコンからなるゲート電極を形成したの
ち絶縁物からなるサイドウォールを形成する工程と、前
記3工程終了後熱処理する工程とを含むことを特徴とす
る半導体装置の製造方法。
After forming a gate oxide film on the surface of a semiconductor substrate of one conductivity type, forming an amorphous layer on the surface of the semiconductor substrate by ion implantation, and connecting the amorphous layer and the single crystal region of the semiconductor substrate. The process includes a step of introducing impurities of one conductivity type into the interface, a step of forming a gate electrode made of polysilicon and then forming a sidewall made of an insulator, and a step of heat-treating after the completion of the three steps. A method for manufacturing a featured semiconductor device.
JP14070090A 1990-05-30 1990-05-30 Manufacture of semiconductor device Pending JPH0434942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14070090A JPH0434942A (en) 1990-05-30 1990-05-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14070090A JPH0434942A (en) 1990-05-30 1990-05-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0434942A true JPH0434942A (en) 1992-02-05

Family

ID=15274705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14070090A Pending JPH0434942A (en) 1990-05-30 1990-05-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0434942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879996A (en) * 1996-09-18 1999-03-09 Micron Technology, Inc. Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
US6198135B1 (en) 1998-01-21 2001-03-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having electrostatic discharge protection element and manufacturing method thereof
US6696341B1 (en) 1998-01-21 2004-02-24 Renesas Technology Corp. Method of manufacturing a semiconductor device having electrostatic discharge protection element
JP2004153246A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
KR100855281B1 (en) * 2002-03-06 2008-09-01 매그나칩 반도체 유한회사 Method for fabricating semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879996A (en) * 1996-09-18 1999-03-09 Micron Technology, Inc. Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
US6787883B1 (en) * 1996-09-18 2004-09-07 Micron Technology, Inc. Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
US6198135B1 (en) 1998-01-21 2001-03-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having electrostatic discharge protection element and manufacturing method thereof
US6696341B1 (en) 1998-01-21 2004-02-24 Renesas Technology Corp. Method of manufacturing a semiconductor device having electrostatic discharge protection element
KR100855281B1 (en) * 2002-03-06 2008-09-01 매그나칩 반도체 유한회사 Method for fabricating semiconductor device
JP2004153246A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US7696049B2 (en) Method to manufacture LDMOS transistors with improved threshold voltage control
JPH10178104A (en) Method of manufacturing cmosfet
KR970053087A (en) Transistor manufacturing method of semiconductor device
KR100574172B1 (en) Method for fabricating semiconductor device
JPH0434942A (en) Manufacture of semiconductor device
JP2700320B2 (en) Method for manufacturing semiconductor device
JPH11145457A (en) Vertical field effect transistor
JP2781989B2 (en) Method for manufacturing semiconductor device
JPS63142866A (en) Manufacture of insulated gate field-effect transistor
JP2544806B2 (en) Method for manufacturing semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
KR20040054919A (en) Method of manufacturing a semiconductor device
KR100251989B1 (en) Method for manufacturing semiconductor device
KR100313941B1 (en) Method for Manufacturing of semiconductor device
JPS6142960A (en) Manufacture of semiconductor device
KR100531120B1 (en) Fabricating method of semiconductor device
KR0167664B1 (en) Method of fabricating semiconductor device
KR100531105B1 (en) Fabricating method of semiconductor device
JP3525464B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR0152936B1 (en) Method of fabricating semiconductor device
KR100370118B1 (en) Method for manufacturing well in semiconductor device
JP2608627B2 (en) Method for manufacturing semiconductor device
KR101004811B1 (en) Method for manufacturing Transistor
KR101001637B1 (en) Method of manufacturing semiconductor device
KR20040001792A (en) Method for forming of semiconductor device