JPS5929136B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5929136B2
JPS5929136B2 JP3482776A JP3482776A JPS5929136B2 JP S5929136 B2 JPS5929136 B2 JP S5929136B2 JP 3482776 A JP3482776 A JP 3482776A JP 3482776 A JP3482776 A JP 3482776A JP S5929136 B2 JPS5929136 B2 JP S5929136B2
Authority
JP
Japan
Prior art keywords
insulating film
film
semiconductor substrate
etching
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3482776A
Other languages
Japanese (ja)
Other versions
JPS52117554A (en
Inventor
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3482776A priority Critical patent/JPS5929136B2/en
Publication of JPS52117554A publication Critical patent/JPS52117554A/en
Publication of JPS5929136B2 publication Critical patent/JPS5929136B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に半導体装置
を精度よく形成するための自己整合方式を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and in particular provides a self-alignment method for forming a semiconductor device with high precision.

従来バイポーラの高速論理ICにおいては、スイッチン
グ速度を速くするためにベース、エミッタの占有面積を
小さくすることが行なわれている。
In conventional bipolar high-speed logic ICs, the areas occupied by the base and emitter have been reduced in order to increase the switching speed.

しかし占有面積を小さくすると電極導出のためのコンタ
クト孔は必然的に小さくなる。通常の写真蝕亥肢術では
マスク内およびマスク間の「マスクずれ」が存在し、上
記コンタクト孔を数μ以下にすることは困難であつた。
この制約を克服し、高速論理ICにおいて必要とされる
エミッタ寸法を数μ以下にする対策としてエミッタ拡散
開孔をそのまゝ電極導出用のコンタクト孔として利用す
るいわゆるウオシユドエミツタ方式がある。しかしnp
nトランジスタのエミッタ拡散に用いられる不純物は一
般にリン旧であるため、このリンの拡散にあたつて絶縁
被膜のSiO2と反応してリンガラスを形成する。そし
てリンガラスはSiO2に比しエッチング速度が大きい
ため、拡散のための開孔がのちのエッチングのとき横方
向に拡大しやすい。このため電極形成にあたりベース・
エミッタ間が短絡されやすく、製品歩留を低下するとい
う重大な欠点があつた。本発明は半導体装置の上記従来
の製造方法の欠点を除去するためになされたもので、ウ
オツシユドエミツタ方式の欠点に改良した自己整合方式
による半導体装置の製造方法に提供する。
However, if the occupied area is reduced, the contact hole for leading out the electrode will inevitably become smaller. In conventional photographic surgery, there is "mask misalignment" within and between masks, and it has been difficult to reduce the size of the contact hole to less than a few microns.
As a measure to overcome this restriction and reduce the emitter size required for high-speed logic ICs to several microns or less, there is a so-called washed emitter method in which the emitter diffusion hole is used as it is as a contact hole for leading out the electrode. But np
Since the impurity used for emitter diffusion of an n-transistor is generally phosphorus, when this phosphorus is diffused, it reacts with SiO2 of the insulating film to form phosphorus glass. Since phosphorus glass has a higher etching rate than SiO2, the openings for diffusion tend to expand laterally during later etching. Therefore, when forming electrodes, the base
A serious drawback was that the emitters were easily short-circuited, reducing product yield. The present invention has been made to eliminate the drawbacks of the above-mentioned conventional manufacturing methods for semiconductor devices, and provides a method for manufacturing semiconductor devices using a self-alignment method that overcomes the drawbacks of the washed emitter method.

本発明にかゝる半導体装置の製造方法は次の如くして達
成される。
The method of manufacturing a semiconductor device according to the present invention is achieved as follows.

即ち半導体基体の主面に第1の絶縁被膜を形成する第1
工程、前記絶縁被膜に積層して第2の絶縁被膜を形成し
これにパターニングを施す第2工程、前記第2の絶縁被
膜でなるパターンをマスクとしかつこの開口よりも広く
第1の絶縁被膜にエッチングを施して半導体基体表面に
露出部位を設ける第3工程、前記エッチングの施された
第1の絶縁被膜をマスクとして前記露出部位に不純物を
拡散する第4工程、前記露出部位に第3の絶縁被膜を形
成する第5工程、前記第2の絶縁被膜をマスクとして第
3の絶縁被膜にイオンエッチングまたはスパッタエッチ
ングを施す第6工程、前記第2の絶縁被膜を除去し第3
の絶縁被膜の開孔に電極導出を施す第7工程。以下に本
発明の一実施例の半導体装置の製造方法につき図面を参
照して工程順に説明する。
That is, the first insulating film is formed on the main surface of the semiconductor substrate.
a second step of laminating a second insulating film on the insulating film and patterning it; a second step of laminating the second insulating film on the insulating film and patterning the second insulating film; using the pattern of the second insulating film as a mask; a third step of etching to provide an exposed region on the surface of the semiconductor substrate; a fourth step of diffusing impurities into the exposed region using the etched first insulating film as a mask; a fifth step of forming a film, a sixth step of performing ion etching or sputter etching on the third insulating film using the second insulating film as a mask, and a third step of removing the second insulating film.
A seventh step of leading out electrodes into the openings of the insulating coating. DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to an embodiment of the present invention will be explained below in order of steps with reference to the drawings.

第1図について1aは比抵抗が20Ω・儂のP型100
のシリコン基板、前記シリコン基板の1主面に選択的に
一例のアンチモン(Ab)を1.5μ厚に拡散(のちに
N+埋込層となる)を施して拡散層1bを形成し、次に
SiCl4の水素還元により比抵抗が0.4Ω・儂のN
型エピタキシヤル層1cを3.5μ厚に形成し、上記よ
りなる半導体基体1を形成した。次に前記エピタキシヤ
ル層3の主面にシリコン酸化膜3を形成(第1工程)し
、1150+℃でボロン(3)を選択的に拡散して3.
5μ厚のP分離層4を形成し素子間の分離をはかる。
Regarding Figure 1, 1a has a specific resistance of 20Ω・My P type 100
A silicon substrate, one main surface of the silicon substrate is selectively diffused with an example of antimony (Ab) to a thickness of 1.5μ (later to become an N+ buried layer) to form a diffusion layer 1b, and then a diffusion layer 1b is formed. Due to hydrogen reduction of SiCl4, the specific resistance is 0.4Ω・My N
A mold epitaxial layer 1c was formed to have a thickness of 3.5 μm, and the semiconductor substrate 1 as described above was formed. Next, a silicon oxide film 3 is formed on the main surface of the epitaxial layer 3 (first step), and boron (3) is selectively diffused at 1150+°C.3.
A P isolation layer 4 having a thickness of 5 μm is formed to isolate the elements.

さらに1150℃でオキシ塩化リン(POCI,)ガス
中にてリンを約3μ拡散してN+層5を形成した。この
N+層5はコレクタ層にて前記N+拡散層(埋込層)1
bに接続する。こ〜でシリコン酸化膜3′は約5000
人である。次に1100℃でボロンを1.5μ拡散して
ベース層6を形成した。前記シリコン酸化膜3′に積層
してモノシラン(SiH4)とアンモニア(NH,)の
熱分解により約5000λ厚のシリコン窒化膜7を形成
した。次に周知の写真蝕刻技術により被着されたフオト
レジスト膜8に、エミツタ領域に対応したパターン付け
を施し、一部の開孔8′を設ける(第2工程、第2図)
。前記フオトレジストのパターンをマスクにしてシリコ
7窒化膜7をフレオン(CF4)中でプラズマエツチン
グして除去し、次にシリコン酸化膜3を除去し開孔13
′を設けた。この際シリコン酸化膜3′を横方向に1.
5μ広くエツチング(第3図におけるtはオーバエツチ
ング)を施した(第3工程、第3図)。前記シリコン酸
化膜3をマスクとしてリンを1000℃にて1.0μ拡
散してエミツタ領域9を形成した(第4工程、第4図)
。次に前記開孔14を熱酸化してシリコン酸化膜10を
2000λ形成した(第5工程、第5図)。前記シリコ
ン窒化膜7をマスクにしてアルゴンガスを用いたイオン
エツチングによりシリコン酸化膜10を一部除去した。
このときシリコン窒化膜の下のシリコン酸化膜3′はエ
ツチングされない(第6工程、第6図)。次に周知の写
真蝕刻技術によりベースおよびコレクタのコンタクト孔
を形成した。この際シリコン窒化膜をプラズマエツチン
グで、シリコン酸化膜をNH4Fで蝕刻して行なつた。
次に熱リン酸を用いてシリコン窒化膜を除去した後、ア
ルミニウムを蒸着して電極(エミツタ電極11、ベース
電極12、コレクタ電極13)を形成し、ICを構成し
た(第7工程、第7図)。上記の如くしてなる一部のN
PNトランジスタにつき電気的特性を測定したところ、
従来のウオツシユドエミツタ方式に比し、エミツタ・ベ
ース間の短絡は全くなく、製品の歩留が顕著に向上をみ
た。
Further, approximately 3 μm of phosphorus was diffused in phosphorus oxychloride (POCI) gas at 1150° C. to form an N+ layer 5. This N+ layer 5 is the collector layer and the N+ diffusion layer (buried layer) 1
Connect to b. At this point, the silicon oxide film 3' has a thickness of about 5000
It's a person. Next, a base layer 6 was formed by diffusing 1.5μ of boron at 1100°C. A silicon nitride film 7 having a thickness of about 5000λ was formed by thermal decomposition of monosilane (SiH4) and ammonia (NH,) to be laminated on the silicon oxide film 3'. Next, the photoresist film 8 deposited by well-known photolithographic techniques is patterned to correspond to the emitter region, and some openings 8' are formed (second step, FIG. 2).
. Using the photoresist pattern as a mask, the silicon 7 nitride film 7 is removed by plasma etching in Freon (CF4), and then the silicon oxide film 3 is removed and the opening 13 is removed.
' was set. At this time, the silicon oxide film 3' is 1.
Etching was performed to a wide area of 5 μm (t in FIG. 3 indicates overetching) (third step, FIG. 3). Using the silicon oxide film 3 as a mask, 1.0μ of phosphorus was diffused at 1000°C to form an emitter region 9 (fourth step, FIG. 4).
. Next, the opening 14 was thermally oxidized to form a silicon oxide film 10 having a thickness of 2000λ (fifth step, FIG. 5). Using the silicon nitride film 7 as a mask, a portion of the silicon oxide film 10 was removed by ion etching using argon gas.
At this time, the silicon oxide film 3' under the silicon nitride film is not etched (sixth step, FIG. 6). Next, contact holes for the base and collector were formed using a well-known photolithography technique. At this time, the silicon nitride film was etched by plasma etching, and the silicon oxide film was etched with NH4F.
Next, after removing the silicon nitride film using hot phosphoric acid, aluminum was deposited to form electrodes (emitter electrode 11, base electrode 12, collector electrode 13), and an IC was constructed (seventh step, seventh step). figure). Some N formed as above
When we measured the electrical characteristics of a PN transistor, we found that
Compared to the conventional washed emitter method, there was no short circuit between the emitter and base, and the product yield was significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明の一実施例の半導体装置の
製造方法を工程順に示すいづれも断面図である。 なお図中同一符号は同一または相当部分を夫々示すもの
とする。1・・・・・・半導体基体、3,3′・・・・
・・シリコン酸化膜(第1の絶縁被膜)、7・・・・・
・シリコン窒化膜(第2の絶縁被膜)、10・・・・・
・シリコン酸化膜(第3の絶縁被膜)、11・・・・・
・ベース電極、12・・・・・・エミツタ電極、13・
・・・・・コレクタ電極。
1 to 7 are cross-sectional views showing a method of manufacturing a semiconductor device according to an embodiment of the present invention in order of steps. Note that the same reference numerals in the drawings indicate the same or corresponding parts, respectively. 1...Semiconductor substrate, 3,3'...
...Silicon oxide film (first insulating film), 7...
・Silicon nitride film (second insulating film), 10...
・Silicon oxide film (third insulating film), 11...
・Base electrode, 12... Emitter electrode, 13.
...Collector electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体の1主面に第1の絶縁被膜を形成する第
1工程、前記絶縁被膜に積層して第2の絶縁被膜を形成
し、これにパターニングを施す第2工程、前記第2の絶
縁被膜でなるパターンをマスクとしかつこの開口よりも
広く第1の絶縁被膜にエッチングを施して半導体基体表
面に露出部位を設ける第3工程、前記エッチングの施さ
れた第1の絶縁被膜をマスクとして前記半導体基体の露
出部位に不純物を拡散する第4工程、前記露出部位に第
3の絶縁被膜を形成する第5工程、ひさし状に形成され
た前記第2の絶縁被膜をマスクとして第3の絶縁被膜に
イオンエッチングまたはスパッタエッチングを施す第6
工程、前記第2の絶縁被膜を除去し第3の絶縁被膜の開
孔に電極導出を施す第7工程を具備した半導体装置の製
造方法。
1. A first step of forming a first insulating film on one main surface of a semiconductor substrate, a second step of forming a second insulating film by laminating it on the insulating film and patterning it, and a second step of forming the second insulating film on one main surface of the semiconductor substrate. a third step of etching the first insulating film wider than the opening using the pattern of the film as a mask to provide an exposed portion on the surface of the semiconductor substrate; a fourth step of diffusing impurities into the exposed region of the semiconductor substrate; a fifth step of forming a third insulating film on the exposed region; and a third insulating film using the second insulating film formed in the shape of an eave as a mask. The sixth step is to perform ion etching or sputter etching on the
a seventh step of removing the second insulating film and leading out an electrode into the opening of the third insulating film.
JP3482776A 1976-03-30 1976-03-30 Manufacturing method of semiconductor device Expired JPS5929136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3482776A JPS5929136B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3482776A JPS5929136B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS52117554A JPS52117554A (en) 1977-10-03
JPS5929136B2 true JPS5929136B2 (en) 1984-07-18

Family

ID=12425020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3482776A Expired JPS5929136B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5929136B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176029A (en) * 1978-03-02 1979-11-27 Sperry Rand Corporation Subminiature bore and conductor formation
JPS5557269A (en) * 1978-10-23 1980-04-26 Matsushita Electric Ind Co Ltd Battery
JPS5737835A (en) * 1980-08-19 1982-03-02 Nec Corp Manufacture of semiconductor device
JPS57162460A (en) * 1981-03-31 1982-10-06 Fujitsu Ltd Manufacture of semiconductor device
JPS58147122A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd Dry etching method for compound semiconductor

Also Published As

Publication number Publication date
JPS52117554A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPS6318673A (en) Manufacture of semiconductor device
US4525922A (en) Method of producing a semiconductor device
JPS5929136B2 (en) Manufacturing method of semiconductor device
EP0076147B1 (en) Method of producing a semiconductor device comprising an isolation region
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6231507B2 (en)
JPS5912020B2 (en) Manufacturing method of semiconductor device
JPS5846846B2 (en) hand tai souchi no seizou houhou
JPS61135136A (en) Manufacture of semiconductor device
JP2817226B2 (en) Method for manufacturing semiconductor device
JPS593859B2 (en) Manufacturing method of semiconductor device
JPS5984576A (en) Manufacture of semiconductor device
JPS5950087B2 (en) Manufacturing method of semiconductor device
JPH0287621A (en) Manufacture of semiconductor device
JPS60128633A (en) Semiconductor device and manufacture thereof
JPS60242662A (en) Semiconductor device
JPH0337740B2 (en)
JPH0140502B2 (en)
JPS6161546B2 (en)
JPS59188172A (en) Manufacture of semiconductor device
JPS5914901B2 (en) Manufacturing method of semiconductor device
JPS5947756A (en) Manufacture of semiconductor resistance element
JPS628540A (en) Manufacture of semiconductor device