JPS593859B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS593859B2
JPS593859B2 JP51034826A JP3482676A JPS593859B2 JP S593859 B2 JPS593859 B2 JP S593859B2 JP 51034826 A JP51034826 A JP 51034826A JP 3482676 A JP3482676 A JP 3482676A JP S593859 B2 JPS593859 B2 JP S593859B2
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
mask
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51034826A
Other languages
Japanese (ja)
Other versions
JPS52117588A (en
Inventor
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51034826A priority Critical patent/JPS593859B2/en
Publication of JPS52117588A publication Critical patent/JPS52117588A/en
Publication of JPS593859B2 publication Critical patent/JPS593859B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に半導体装置
を精度よく製造するための自己整合方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a self-alignment method for manufacturing a semiconductor device with high precision.

−例の半導体装置にI2L(InをegにaをedIn
jectinoLogic)がある。
- In the example semiconductor device, I2L (In is eg and a is edIn)
jectinoLogic).

これは簡単な構造で論理回路を構成でき、また素子間の
分離を必要としない等の利点を有するために集積回路の
高密度化に適した構造である。従来のI2Lは通常のバ
イバーラ論理回路に比して高密度化には適するも、イン
ジェクタとしてラテラル(Laterl)5PNPトラ
ンジスタを使用しているためにスイッチング速度が遅い
ために、いわゆる二重拡散方式になるものがある。これ
は一つのマスク開孔より異なる導電型の不純物を拡散し
てインジェクタをバーテイカル(Vertical)P
NPトランジス10夕に形成したものである。この型の
トランジスタは半導体基板中に拡散された不純物が基体
中で縦方向のみでなく横方向にも拡散し同一マスク開孔
より2つの異なる導電型の不純物を1つは深く、1つは
浅く拡散形成した層とで接合を形成するこ15とを利用
した拡散方式である。従来のフォトマスクを使用する写
真蝕刻技術ではフォトマスクの合わせ精度が完全でない
ためにマスクずれに対する余裕をとる必要があつたが、
二重拡散方法によればこの欠点はなくなる。20しかし
ながらこの二重拡散方法によるI2LではPNPトラン
ジスタのベース形成不純物としてはリンPを用いるのが
普通であるが、このリン拡散の際にリンがSiO2と反
応してリンガラスを形成し、そのリンガラスはSiO2
に比してエツチン25 グ速度が大であるために、リン
拡散後エミッタ形成する際の前処理で除去されてしまう
This structure is suitable for increasing the density of integrated circuits because it has the advantage that a logic circuit can be constructed with a simple structure and does not require separation between elements. Conventional I2L is suitable for higher density than ordinary bivara logic circuits, but because it uses a lateral 5PNP transistor as an injector, its switching speed is slow, resulting in a so-called double diffusion method. There is something. This is done by diffusing impurities of different conductivity types through one mask opening, and converting the injector into a vertical P.
NP Transis was formed on the 10th. In this type of transistor, impurities diffused into the semiconductor substrate are diffused not only vertically but also horizontally in the substrate, and two different conductivity type impurities are absorbed through the same mask opening, one deep and one shallow. This is a diffusion method that utilizes the formation of a junction with a diffusion-formed layer. In conventional photoetching technology that uses photomasks, the alignment accuracy of the photomasks is not perfect, so it was necessary to provide some margin for mask misalignment.
The double diffusion method eliminates this drawback. 20 However, in I2L using this double diffusion method, phosphorus P is usually used as an impurity to form the base of a PNP transistor, but during this phosphorus diffusion, phosphorus reacts with SiO2 to form phosphorus glass, and the phosphorus Glass is SiO2
Since the etching rate is higher than that of phosphorus, it is removed in the pretreatment when forming the emitter after phosphorus diffusion.

その結果拡散窓の横方向の拡がりを生じ、この状態で次
のエミッタを形成すると半導体基体の表面でエミッター
ベース接合郵が短絡しやすく、リーク電流が30増加す
る現象が見られた。この現象は拡散マスクとしてシリコ
ン酸化膜の代わりに窒化膜を用いれば回避されるかに見
えるが、実際には半導体基体の表面近傍での基体と窒化
膜との膨張係数の差による否によつて不純物が異常拡散
し、やはりーー35ク電流が増加する傾向があつた。ま
たこのリーク電流をなくするためにエミッタ拡散を浅く
するとバーテイカルPNPトランジスタとしての動作は
基体表面近傍でのみ行なわれ特性が悪化する傾向があつ
た。本発明は上述の半導体装置の製造方法の欠点を除去
するために半導体装置の改良された製造方法を提供する
ものであり、二重拡散方式における欠点を除去した自己
整合方式による半導体装置の製造方法である。
As a result, the diffusion window expanded in the lateral direction, and when the next emitter was formed in this state, the emitter-base junction was likely to be short-circuited on the surface of the semiconductor substrate, resulting in a phenomenon in which the leakage current increased by 30%. This phenomenon seems to be avoided if a nitride film is used instead of a silicon oxide film as a diffusion mask, but in reality, it depends on the difference in expansion coefficient between the substrate and the nitride film near the surface of the semiconductor substrate. Impurities were abnormally diffused, and there was a tendency for the -35 current to increase. Furthermore, if the emitter diffusion is made shallow in order to eliminate this leakage current, the operation as a vertical PNP transistor occurs only in the vicinity of the substrate surface, and the characteristics tend to deteriorate. The present invention provides an improved method for manufacturing a semiconductor device in order to eliminate the drawbacks of the above-mentioned method for manufacturing a semiconductor device, and provides a method for manufacturing a semiconductor device using a self-alignment method that eliminates the drawbacks of the double diffusion method. It is.

上記目的を達成するために半導体基体表面に第1の絶縁
被膜を形成する第1工程、前記絶縁被膜に積層して第2
の絶縁被膜を形成しこれにバターニングを施す第2工程
、前記第2の絶縁被膜でなるパターンをマスクとしかつ
この開口よりも広く第1の絶縁被膜にエツチングを施し
て半導体基体表面に露出部位を設ける第3工程、前記エ
ツチングの施された第1の絶縁被膜をマスクとして前記
半導体基体の露出部位に第1の不純物を拡散する第4工
程、前記露出部位に第3の絶縁被膜を形成する第5工程
、前記第2の絶縁被膜をマスクとして第3の絶縁被膜に
イオンエツチングまたはスバツタエツチングを施す第6
工程、第1および第3の絶縁被膜をマスクとして半導体
基体の露出部位に前記第1の不純物と異なる導電型の不
純物を拡散する第7工程とを具備してなる。
In order to achieve the above object, a first step of forming a first insulating film on the surface of a semiconductor substrate, a second step of laminating the first insulating film on the surface of the semiconductor substrate,
a second step of forming an insulating film and patterning it, using the pattern of the second insulating film as a mask and etching the first insulating film wider than the opening to form exposed areas on the surface of the semiconductor substrate; a fourth step of diffusing the first impurity into the exposed portion of the semiconductor substrate using the etched first insulating film as a mask; and forming a third insulating film on the exposed portion. Fifth step: Using the second insulating film as a mask, the third insulating film is subjected to ion etching or sputter etching.
and a seventh step of diffusing an impurity of a conductivity type different from the first impurity into the exposed portion of the semiconductor substrate using the first and third insulating films as masks.

次に本発明を一実施例につき図面を参照して工程順に詳
細に説明する。
Next, one embodiment of the present invention will be explained in detail in the order of steps with reference to the drawings.

第1図に示す半導体基体1は、比抵抗が0.015Ωm
″(:N型100シリコン基板1aの1主面に、一例の
四塩化シリコン(Sicl4)を11500Cで水素還
元することにより約3μm厚にエピタキシヤル形成され
た比抵抗が0.5ΩMf)P型エビタキシヤル層1bで
なる。
The semiconductor substrate 1 shown in FIG. 1 has a specific resistance of 0.015 Ωm.
''(: epitaxially formed on one main surface of an N-type 100 silicon substrate 1a to a thickness of approximately 3 μm by hydrogen reduction of an example of silicon tetrachloride (SiCl4) at 11500C, with a specific resistance of 0.5ΩMf) P-type epitaxial It consists of layer 1b.

第1工程(参照第2図)前記用意された半導体基体1の
エピタキシヤル層に熱酸化によりシリコン酸化膜2を約
4000Aの膜厚に形成する。
First step (see FIG. 2) A silicon oxide film 2 having a thickness of about 4000 Å is formed on the epitaxial layer of the prepared semiconductor substrate 1 by thermal oxidation.

さらに積層してシリコン窒化膜3(Si3N4)を約3
000Aの膜厚に形成する。前記シリコン窒化膜はモノ
シラン(SiH4)とアンモニア(NH3)との熱分解
により生成する。さらにフオトレジスト膜4を被着し所
定形状のパターン付けを行なう。図における14はバタ
ーニングの開孔の一部を示す。第2工程(第3図)前記
フオトレジストのパターンをマスクとしてシリコン窒化
膜3をフレオンガス(CF4)中でプラズマエツチング
を施し、パターンによる開口13を得る。(このときシ
リコン酸化膜はシリコン窒化膜に比してエツチングレー
トが低いためにほとんどエツチングされない)次にフオ
トレジスト膜を剥離し、シリコン窒化膜をマスクにして
フツ化アンモン(ト)H4F)でシリコン酸化膜2にエ
ツチングを施し前記開口13に連接した凸字型の開口1
3′を得た。即ちシリコン酸化膜に対しては横方向に約
1.5μm広くエツチングを施した開口12を設ける。
したがつて開口の広さは開口12〉開口13である。第
3工程(第4図)シリコン酸化膜2とシリコン窒化膜3
をマスクとして開口13′よりオキシ塩化リン(POc
t3)を用いて1100オCにて半導体基体1にリンP
を約3μm拡散した。
Furthermore, about 3 layers of silicon nitride film 3 (Si3N4) are layered.
The film thickness is 000A. The silicon nitride film is produced by thermal decomposition of monosilane (SiH4) and ammonia (NH3). Furthermore, a photoresist film 4 is deposited and patterned into a predetermined shape. Reference numeral 14 in the figure indicates a part of the hole in the patterning. Second step (FIG. 3) Using the photoresist pattern as a mask, the silicon nitride film 3 is subjected to plasma etching in Freon gas (CF4) to obtain a patterned opening 13. (At this time, the silicon oxide film is hardly etched because its etching rate is lower than that of the silicon nitride film.) Next, the photoresist film is peeled off, and the silicon oxide film is etched with ammonium fluoride (H4F) using the silicon nitride film as a mask. A convex opening 1 is formed by etching the oxide film 2 and is connected to the opening 13.
I got 3'. That is, an opening 12 is provided in the silicon oxide film by etching to a width of approximately 1.5 μm in the lateral direction.
Therefore, the width of the opening is 12>13. Third step (Figure 4) Silicon oxide film 2 and silicon nitride film 3
Using the mask as a mask, phosphorus oxychloride (POc
t3) to the semiconductor substrate 1 at 1100°C.
was diffused approximately 3 μm.

第4工程(第5図)熱酸化を施して前記開口13″の半
導体基体露出面にシリコン酸化膜16を膜厚約2000
A形成した。第5程(第6図)前記シリコン酸化膜16
に対し、前記シリコン窒化膜3をマスクとし、アルゴン
ガスを用いたイオンエツチングによりエツチングを施し
開口26を設けた。
Fourth step (FIG. 5) A silicon oxide film 16 is formed to a thickness of about 2000 on the exposed surface of the semiconductor substrate in the opening 13'' by thermal oxidation.
A was formed. Step 5 (FIG. 6) The silicon oxide film 16
Then, using the silicon nitride film 3 as a mask, etching was performed by ion etching using argon gas to form an opening 26.

この際シリコン酸化膜2,16でシリコン窒化膜に被覆
された部分はエツチングされず残る。第6工程(第7図
)シリコン窒化膜を熱リン酸(H3PO4)で溶除後、
ボロンBを11000Cにて約2μm拡散しインジエク
タを形成した。
At this time, the portions of the silicon oxide films 2 and 16 covered with the silicon nitride film remain without being etched. 6th step (Figure 7) After dissolving the silicon nitride film with hot phosphoric acid (H3PO4),
An injector was formed by diffusing boron B to about 2 μm at 11000C.

この際シリコン酸化膜を約3000A形成した。次に周
知の写真蝕刻技術によりシリコン酸化膜2に開孔を施し
、半導体基体にリンを1μm拡散して第8図に示す如く
NPNトランジスタのコレクタ領域18を形成した。ま
たインジエクタ、ベースコレクタの導出孔を設け該部に
おいて基体(領域)を露出せしめ、電極21,22,2
3を配設しI2Lを形成した。
At this time, a silicon oxide film of about 3000 Å was formed. Next, a hole was formed in the silicon oxide film 2 by a well-known photolithography technique, and phosphorus was diffused into the semiconductor substrate by 1 μm to form a collector region 18 of an NPN transistor as shown in FIG. In addition, lead-out holes for the injector and base collector are provided to expose the base body (region) in these parts, and the electrodes 21, 22, 2
3 was placed to form I2L.

本発明にかXる半導体装置の製造方法によれば、特に従
来の二重拡散方式のPNPトランジスタの特性に比し、
エミツタ、ベースの接合部の短絡は全くなく、また電流
増幅率βを10以上にとることができた上にウエハ内の
バラツキを少くすることもできるという極めて顕著な効
果を備える。
According to the method for manufacturing a semiconductor device according to the present invention, the characteristics of the conventional double-diffusion type PNP transistor are particularly improved.
There is no short circuit at the junction between the emitter and the base, and the current amplification factor β can be set to 10 or more, and variations within the wafer can be reduced, which is an extremely remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第8図までは本発明にかかる半導体装置の製
造方法を工程順に示すいずれも断面図である。 なお図中同一符号は同一または相当部分を夫々示すもの
とする。1・・・・・・半導体基体、2・・・・・・シ
リコン酸化膜(第1の絶縁被膜)、3・・・・・・シリ
コン窒化膜(第2の彼膜)、12・・・・・・シリコン
酸化膜の開口、13シリコン窒化膜の開口。
1 to 8 are cross-sectional views showing the method of manufacturing a semiconductor device according to the present invention in the order of steps. Note that the same reference numerals in the drawings indicate the same or corresponding parts, respectively. 1...Semiconductor substrate, 2...Silicon oxide film (first insulating film), 3...Silicon nitride film (second insulating film), 12... ...Opening in silicon oxide film, opening in 13 silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体の主面に第1の絶縁被膜を形成する第1
工程、前記絶縁被膜に積層して第2の絶縁被膜を形成し
これにパターニングを施す第2工程、前記第2の絶縁被
膜であるパターンをマスクとしかつこの開口よりも広く
第1の絶縁被膜にエッチングを施して半導体基体の主面
に露出部位を設ける第3工程、前記エッチングの施され
た第1の絶縁被膜をマスクとして前記半導体基体の露出
部位に第1の不純物を拡散する第4工程、前記露出部位
に第3の絶縁被膜を形成する第5工程、前記第2の絶縁
被膜をマスクとして第3の絶縁被膜にイオンエッチング
またはスパッタエッチングを施す第6工程、前記第1お
よび第3の絶縁被膜をマスクとして半導体基体の露出部
位に前記第1の不純物と異なる導電型の不純物を拡散す
る第7工程を具備した半導体装置の製造方法。
1. A first insulating film is formed on the main surface of the semiconductor substrate.
a second step of forming a second insulating film by laminating it on the insulating film and patterning it; using the pattern of the second insulating film as a mask and applying a layer to the first insulating film wider than the opening; a third step of etching to provide an exposed portion on the main surface of the semiconductor substrate; a fourth step of diffusing a first impurity into the exposed portion of the semiconductor substrate using the etched first insulating film as a mask; a fifth step of forming a third insulating film on the exposed portion, a sixth step of performing ion etching or sputter etching on the third insulating film using the second insulating film as a mask, and removing the first and third insulating films. A method for manufacturing a semiconductor device, comprising a seventh step of diffusing an impurity of a conductivity type different from the first impurity into an exposed portion of the semiconductor substrate using a film as a mask.
JP51034826A 1976-03-30 1976-03-30 Manufacturing method of semiconductor device Expired JPS593859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51034826A JPS593859B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51034826A JPS593859B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS52117588A JPS52117588A (en) 1977-10-03
JPS593859B2 true JPS593859B2 (en) 1984-01-26

Family

ID=12424994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51034826A Expired JPS593859B2 (en) 1976-03-30 1976-03-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS593859B2 (en)

Also Published As

Publication number Publication date
JPS52117588A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPH0322053B2 (en)
JPS6146063A (en) Manufacture of semiconductor device
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS6318673A (en) Manufacture of semiconductor device
JPS6328060A (en) Integrated circuit and manufacture of the same
KR910000020B1 (en) Manufacture of semiconductor device
JPS5929136B2 (en) Manufacturing method of semiconductor device
JPS593859B2 (en) Manufacturing method of semiconductor device
JPH0373541A (en) Manufacture of semiconductor device
JPS5846846B2 (en) hand tai souchi no seizou houhou
JPH0366815B2 (en)
JPS628939B2 (en)
JPS593864B2 (en) hand tai souchi no seizou houhou
JPS6018951A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPS62141765A (en) Manufacture of semiconductor device
JPS63124463A (en) Manufacture of semiconductor device
JPS61198675A (en) Manufacture of semiconductor device
JPH0343779B2 (en)
JPS5932894B2 (en) Manufacturing method of semiconductor device
JPS5950087B2 (en) Manufacturing method of semiconductor device
JPS5947756A (en) Manufacture of semiconductor resistance element
JPH0312768B2 (en)
JPS59208780A (en) Manufacture of transistor