JPS5984576A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5984576A
JPS5984576A JP19547882A JP19547882A JPS5984576A JP S5984576 A JPS5984576 A JP S5984576A JP 19547882 A JP19547882 A JP 19547882A JP 19547882 A JP19547882 A JP 19547882A JP S5984576 A JPS5984576 A JP S5984576A
Authority
JP
Japan
Prior art keywords
layer
emitter
film
arsenic
dopos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19547882A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuda
津田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19547882A priority Critical patent/JPS5984576A/en
Publication of JPS5984576A publication Critical patent/JPS5984576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the junction breakdown due to the electrode formation in a thin P-N junction as well as to prevent the generation of short-circuit trouble between the adjoining electrodes by a method wherein a polycrystalline silicon (DOPOS) containing impurities is formed on the emitter aperture part only in a self-alignment manner, and said polycrystalline silicon is used as the source of diffusion. CONSTITUTION:After a base layer 5 has been formed on a semiconductor substrate 2, an emitter aperture part 3 and a base contact aperture part 4 are formed on the semiconductor substrate 2, an arsenic DOPOS layer 6 is formed and then a CVD-SiO2 film 7 is formed in the next process. Then, after a photoresist layer 10 has been spin-coated on the surface of the semiconductor, a baking is performed and when an oxygen- plasma etching is performed under the above condition, a photoresist layer 11 remains on the aperture parts 3 and 4 only. Under the above-mentioned condition, the CVD- SiO2 layer 7' on the exposed part and the arsenic DOPOS layer 6' are removed by performing an etching. Then, after the CVD-SiO4 layer of a base contact aperture part 4 and the arsenic DOPOS layer have been removed using an etching solution under the condition wherein a photoresist layer 12 is selectively formed on the upper part of the emitter aperture part 3 only, an emitter region is formed by thermally diffusing arsenic from the DOPOS 8 of the emitter aperture part 3.

Description

【発明の詳細な説明】 本発明は、拡散源として不純物を含む多結晶シリコンを
用いるマイクロ波トランジスタあるいはマイクロ波IO
の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a microwave transistor or a microwave IO using polycrystalline silicon containing impurities as a diffusion source.
Concerning the manufacturing method.

マイクロ波トランジスタでは高周波動作を行なうため、
ベース拡散層・エミッタ拡散層は半導体表面より極めて
浅く、エミッタ・ベース接合は0.1μm以下になるこ
とが多い。接合の深さがこの程度になると、エミッタ拡
散層とエミッタ電極とのオーミック接合をとる場合に、
配線部材の金属あるいは金属間化合物と半導体基板のシ
リコンとの共融体がエミッタ・ベース接合まで進入し、
エミッタ・ベース短絡故障が続発する。そのため砒素等
の不純物を含むポリシリコン(dopecl poly
si−1icon、以下DOPO8という)層を拡散源
として用イ、エミッタ電極とエミッタ・ベース接合トの
距離を大きくすることによって、エミッタ・ベース短絡
を防ぐ手段がとられている。
Because microwave transistors operate at high frequencies,
The base diffusion layer and emitter diffusion layer are extremely shallow than the semiconductor surface, and the emitter-base junction is often 0.1 μm or less. When the junction depth reaches this level, when making an ohmic junction between the emitter diffusion layer and the emitter electrode,
The eutectic of the metal or intermetallic compound of the wiring member and the silicon of the semiconductor substrate enters the emitter-base junction,
Emitter-base short circuit failures occur one after another. Therefore, polysilicon containing impurities such as arsenic (dopecl polysilicon)
si-1icon (hereinafter referred to as DOPO8) layer as a diffusion source, measures are taken to prevent emitter-base shorting by increasing the distance between the emitter electrode and the emitter-base junction.

上記の手段で、エミッタ・ベース短絡事故が防止できる
が、マイクロ波トランジスタではエミッタ領域とベース
コンタクト部との距離が極めて近いことから、エミッタ
電極とベース電極との短絡事故が生じ易くなる欠点が生
ずる。
The above measures can prevent emitter-base short circuit accidents, but in microwave transistors, the distance between the emitter region and the base contact part is extremely close, so there is a drawback that short circuit accidents between the emitter electrode and the base electrode are likely to occur. .

以下第1図により従来のDOPO8層を有するマイクロ
波トランジスタの製造方法についての問題点を説明する
。第1図で(a)はn型の半導体基板2にp型のベース
層5を形成した後、半導体基板2上のシリコン酸化膜1
にエミツタ開口部3ベースコンタクト開口部4を形成し
た状態である。(b)は次の工程で半導体表面に砒素D
OPO8層6とその上にcVD法により生成した5in
2膜(以下では0VD−8in2膜という)7を形成し
た状態である。
Hereinafter, problems with the conventional method of manufacturing a microwave transistor having eight DOPO layers will be explained with reference to FIG. In FIG. 1(a), after forming a p-type base layer 5 on an n-type semiconductor substrate 2, a silicon oxide film 1 is formed on the semiconductor substrate 2.
This is a state in which an emitter opening 3 and a base contact opening 4 are formed. In (b), arsenic D is added to the semiconductor surface in the next step.
OPO 8 layer 6 and 5 inch layer formed on it by cVD method
This is a state in which two films (hereinafter referred to as 0VD-8in2 films) 7 are formed.

(c)は公知の写真蝕刻技術にょ9、OV])−8in
2膜7とDOPO8層6をエミッタ開口部3近傍にのみ
残して除去した後、熱拡散によpDOPO8(エミッタ
開口部に残ったDOPO8層)8の砒素が拡散してエミ
ッタ開口部3の位置にn形エミッタ領域を形成した状態
である。(d)はエミッタ領域形成後、DOPO88上
(7) OV D  S i 02膜を除去し、周知の
方法でエミッタ電極9I、およびベース電極9.を形成
した状態である。この電極としては非常に浅いpn接合
のコンタクトに有効なPtSi −Ti −PtAu構
造としている。以上説明し′た方法でエミッタ電極9.
はDOPO88を介してエミッタ領域と接し、また電極
部材もPtSi −Ti −Pt−Au構造としである
ので、エミッタ・ベース接合短絡を防止できる。
(c) is a known photo-etching technique 9,OV])-8in
After removing the pDOPO8 layer 6 and leaving it only in the vicinity of the emitter opening 3, the arsenic in the pDOPO8 (the DOPO8 layer remaining in the emitter opening) 8 is diffused by thermal diffusion to the position of the emitter opening 3. This is a state in which an n-type emitter region is formed. (d) After forming the emitter region, the OV D Si 02 film (7) on the DOPO 88 is removed, and the emitter electrode 9I and base electrode 9. It is in a state where it has been formed. This electrode has a PtSi--Ti--PtAu structure which is effective for very shallow pn junction contact. Emitter electrode 9.
is in contact with the emitter region via the DOPO 88, and the electrode member also has a PtSi-Ti-Pt-Au structure, so emitter-base junction short circuits can be prevented.

しかしマイクロ波トランジスタでは寸法は微細であり、
エミッタ開口部3とベースコンタクト開口部4との間隔
は2〜3μm、エミッタ開口部3の幅は0.5〜1.0
μm程度であり、第1図(c)のエミッタ開口部3にの
み0VD−8102膜、DOPO8層をのこす写真蝕刻
技術では目合せによるズレを考慮して設計上エミッタ開
口部3のQfliiよりかなり広く2倍以上の幅の層を
のこす。従っcDopos8はエミッタ・ベース間の酸
化層の上に、エミッタ開口部3の端からかなりの距離ま
で延び、DOPO88とベース電極92の間隔は設計上
0.5〜1.5μm ld度になる。製造工程中マスク
目金せを数回行い、その結果0.5μn1稈度の間隔を
得るのは見合せ精度を考慮すると製造プロセス上非常に
困難であり、DOPO8−ベース電極短絡不良が多発し
製造歩留りを低下させる。
However, the dimensions of microwave transistors are minute;
The distance between the emitter opening 3 and the base contact opening 4 is 2 to 3 μm, and the width of the emitter opening 3 is 0.5 to 1.0 μm.
It is about μm, and is considerably wider than the Qflii of the emitter opening 3 due to the design, taking into account misalignment due to alignment, in the photo-etching technique that leaves the 0VD-8102 film and the DOPO 8 layer only in the emitter opening 3 in Fig. 1(c). Leave a layer at least twice as wide. Therefore, the cDopos 8 extends a considerable distance from the end of the emitter opening 3 on the oxide layer between the emitter and the base, and the distance between the DOPO 88 and the base electrode 92 is designed to be 0.5 to 1.5 μm ld degrees. During the manufacturing process, mask fitting is performed several times, and as a result, it is very difficult to obtain a spacing of 0.5 μn 1 culm degree in terms of the manufacturing process, considering the alignment accuracy, and there are many short-circuit defects between the DOPO8 and base electrodes, which reduces the manufacturing yield. decrease.

本発明の目的は上記の欠点を除去し、微細パターンを有
し、拡散源としてDOI)O8層を用いるマイクロ波ト
ランジスタ、IO等の半導体装jδにおいて、DOl)
O8をセルフ・アライメント釦形成するととにより、製
造歩留を向上させる製造方法を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to improve semiconductor devices such as microwave transistors and IOs that have a fine pattern and use a DOI)O8 layer as a diffusion source.
It is an object of the present invention to provide a manufacturing method that improves the manufacturing yield by forming O8 into a self-alignment button.

以下本発明を図面を参照して詳しく説゛明する。The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の一実施例で、第1図のマイクロ波トラ
ンジスタに適用した場合を示す。
FIG. 2 shows an embodiment of the present invention, which is applied to the microwave transistor of FIG. 1.

第2図(R)はベース層5を半導体基板2に形成した後
、半導体基板2上のシリコン酸化膜1にエミッタ開口部
3.ベースコンタクト開口部4を形成した状態である。
FIG. 2(R) shows that after a base layer 5 is formed on a semiconductor substrate 2, an emitter opening 3 is formed in a silicon oxide film 1 on the semiconductor substrate 2. This is the state in which the base contact opening 4 has been formed.

(b)は次の工程で砒素DOPO8層6とその上に0V
D−8in2膜7を形成した状態である。前者は20o
OX、後者は100OX程度の厚みとする。次に半導体
表面に例えばホトレジスト層10をスピンコーテイング
後ベーキングした状態を(c)に示す。液体ホトンジス
トは流動性に富むから、エミッタ開口部3.ベースコン
タクト開口部4上は多少凹状になるが半導体表面は略し
平坦にホトレジスト層10で覆われる。この状態で酸素
プラズマエツチングを行な゛う。ホトレジスト層10は
灰化され、次第にエツチングへれる。cVD。
(b) In the next step, the arsenic DOPO8 layer 6 and the 0V
This is a state in which a D-8in2 film 7 is formed. The former is 20o
OX, and the latter has a thickness of about 100 OX. Next, a photoresist layer 10, for example, is spin-coated on the semiconductor surface and then baked, as shown in FIG. Since the liquid photonist has high fluidity, the emitter opening 3. Although the top of the base contact opening 4 is somewhat concave, the semiconductor surface is covered flat with the photoresist layer 10. Oxygen plasma etching is performed in this state. The photoresist layer 10 is ashed and gradually etched. cVD.

−8in、、膜76が各開口部3,4をのぞき露出され
た時にエツチングを停止した状態が(d)である。図に
示すように各開口部3,4にのみホトレジスト層11が
残る。この状態で希釈弗酸中に侵し1.露山部の0VD
−8in2層7′をエツチングし、さらに間部の砒素D
OP O8層6′をHF : :EIN On ’ O
■■5000Aの混合液中にてエツチングする。この工
程の後ホトレジスト層11を除去した状態を(e)に示
す。エミッタ開口部3.ベースコンタクト開口部4にの
み、0VD−8t04層、砒素DOPO8層が残ってい
る。次にエミッタ開口部3内のみに砒素DOPO8層を
残すため、エミツタ開口部3上部のみに選択的にホトレ
ジスト層12を形成した状態が(f)である。次にベー
スコンタクト開口部4のOVD  8i0+層、砒素D
OPO8層を前記エツチング液で除去した後、熱拡散に
よりエミッタ開口部3のDOPO88から砒素拡散を行
ないエミッタ領域を形成する。以下公知の方法によ!1
lOVD−8i04層の除去、各電極9..9□の形成
を行ない(g)に示す構造のトランジスタを得ることが
できる。この製造方法によればエミッタ不純物拡散源で
あるDOPO88はセルフアライメント(自己整合的)
にエミッタ開口部3にのみ存在し、従来の方法による第
1図(d)に示すようなエミッタ・ベース間の酸化層上
の延長部は全くない。
-8 inches, the state in which the etching is stopped when the film 76 is exposed except through the openings 3 and 4 is shown in (d). As shown in the figure, the photoresist layer 11 remains only in each opening 3,4. In this state, immerse it in diluted hydrofluoric acid.1. 0VD in the open mountain area
- Etch the 8 inch 2 layer 7' and further arsenic D in between.
OP O8 layer 6' HF: :EIN On 'O
■■ Etching in a mixed solution of 5000A. The state in which the photoresist layer 11 is removed after this step is shown in (e). Emitter opening 3. The 0VD-8t04 layer and the arsenic DOPO8 layer remain only in the base contact opening 4. Next, in order to leave the arsenic DOPO8 layer only inside the emitter opening 3, a photoresist layer 12 is selectively formed only on the upper part of the emitter opening 3, as shown in FIG. Next, OVD 8i0+ layer of base contact opening 4, arsenic D
After removing the OPO 8 layer with the etching solution, arsenic is diffused from the DOPO 88 in the emitter opening 3 by thermal diffusion to form an emitter region. Follow the known method below! 1
Removal of lOVD-8i04 layer, each electrode 9. .. By forming 9□, a transistor having the structure shown in (g) can be obtained. According to this manufacturing method, the emitter impurity diffusion source DOPO88 is self-aligned.
There is no extension on the oxide layer between emitter and base as shown in FIG. 1(d) in the conventional method.

以上説明したように本発明によれば、不純物を含む多結
晶シリコンを半導体基板上の酸化層の特定の開口部9本
例ではエミッタ開口部、にのみセルフアライメントに形
成し、これを拡散源とするから、薄いpn接合での電極
生成による接合破壊。
As explained above, according to the present invention, polycrystalline silicon containing impurities is formed in self-alignment only in specific openings (in this example, the emitter opening) of an oxide layer on a semiconductor substrate, and this is used as a diffusion source. Therefore, junction breakdown occurs due to electrode formation in a thin pn junction.

隣接する電極との短絡故障が生じない。従って本発明の
製造方法によって、微細パターンを有する半導体装置を
歩留よく製造することができる。
No short-circuit failure with adjacent electrodes occurs. Therefore, by the manufacturing method of the present invention, semiconductor devices having fine patterns can be manufactured with high yield.

なお実施例では液状のホトレジストを第2図(c)で用
いだが、流動性のある物質であればよく、ポリイミド樹
脂、液状シリカフィルムでもよい。まだ前記物質のプラ
ズマエツチングは酸素ガスにより行ったが、フレオン系
ガスによってもよい。
Although liquid photoresist is used in the embodiment as shown in FIG. 2(c), any material with fluidity may be used, such as polyimide resin or liquid silica film. Although plasma etching of the above-mentioned material was performed using oxygen gas, it may also be performed using Freon gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製造方法を示す図、第2図は本発明の一
実施例を示す図である。 1・・・・・・シリコン酸化膜、2・・・・・・半導体
基板、3・・・・・・エミッタ開口部、4・・・・・・
ベースコンタクト開口部、5・・・・・・ベース層、6
.6’・・自・・砒素DOPO8層、7.7’−・”0
VD−8to2層、8・・・・・・DOPO8(エミッ
タ開口部に残ったDOPO8層)、9m・92・・・・
・・エミッタ電極・コレクタ電極、10,12°°゛・
・・ホトレジスト層、11・・・・・・開口部に残った
ホトレジスト層。
FIG. 1 is a diagram showing a conventional manufacturing method, and FIG. 2 is a diagram showing an embodiment of the present invention. 1...Silicon oxide film, 2...Semiconductor substrate, 3...Emitter opening, 4...
Base contact opening, 5...Base layer, 6
.. 6'...Auto...Arsenic DOPO8 layer, 7.7'-・”0
VD-8 to 2 layers, 8...DOPO8 (DOPO8 layer remaining in the emitter opening), 9m/92...
・・Emitter electrode/Collector electrode, 10, 12°°゛・
... Photoresist layer, 11... Photoresist layer remaining in the opening.

Claims (1)

【特許請求の範囲】 1、開口部が形成されたシリコン酸化膜を有する半導体
基板において、拡散源として不純物を含む多結晶シリコ
ン膜およびOVD法によるシリコン酸化膜よりなる複合
膜を形成する第1工程。 液状物、質を基板表面に平坦に塗布し同物質による膜を
形成する第2工程、プラズマエツチングにより、一様に
開口部以外のシリコン酸化膜上の複合膜が露出するまで
エツチングする第3工程。 露出された複合膜をエツチング後、第2工程による膜を
除去する第4工程、拡散を行なわない開口部に形成され
た第1工程の複合膜をエツチングする第5工程、拡散を
行なう開口部にて拡散領域を形成し、且つ電極を形成す
る第6エ程よりなることを特徴とする半導体装置の製造
方法。 2、前記液状物質がホト・レジスト、ポリイミド樹脂、
液状シリカフィルムであることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。 3、前記プラズマエツチングは酸素ガスアルイハフレオ
ン系ガスによるものであることを特徴とする特許請求の
範囲第2項記載の半導体装置の製造方法。
[Claims] 1. A first step of forming a composite film consisting of a polycrystalline silicon film containing impurities as a diffusion source and a silicon oxide film by OVD method in a semiconductor substrate having a silicon oxide film with an opening formed therein. . The second step is to apply a liquid material evenly onto the surface of the substrate to form a film of the same material, and the third step is to use plasma etching to uniformly etch the composite film on the silicon oxide film except for the openings until it is exposed. . After etching the exposed composite film, the fourth step is to remove the film from the second step, the fifth step is to etch the composite film formed in the first step in the opening where diffusion is not performed, and the fifth step is to remove the film in the opening where diffusion is to be performed. A method for manufacturing a semiconductor device, comprising a sixth step of forming a diffusion region and forming an electrode. 2. The liquid substance is photoresist, polyimide resin,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a liquid silica film. 3. The method of manufacturing a semiconductor device according to claim 2, wherein the plasma etching is performed using an oxygen gas or an alihafreon gas.
JP19547882A 1982-11-08 1982-11-08 Manufacture of semiconductor device Pending JPS5984576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19547882A JPS5984576A (en) 1982-11-08 1982-11-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19547882A JPS5984576A (en) 1982-11-08 1982-11-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5984576A true JPS5984576A (en) 1984-05-16

Family

ID=16341749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19547882A Pending JPS5984576A (en) 1982-11-08 1982-11-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5984576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374368A1 (en) * 1976-12-16 1978-07-13 Gen Electric POLYESTER REINFORCED THERMOPLASTIC COMPOSITION
US5071789A (en) * 1985-08-02 1991-12-10 Kabushiki Kaisha Toshiba Method for forming a metal electrical connector to a surface of a semiconductor device adjacent a sidewall of insulation material with metal creep-up extending up that sidewall, and related device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374368A1 (en) * 1976-12-16 1978-07-13 Gen Electric POLYESTER REINFORCED THERMOPLASTIC COMPOSITION
US5071789A (en) * 1985-08-02 1991-12-10 Kabushiki Kaisha Toshiba Method for forming a metal electrical connector to a surface of a semiconductor device adjacent a sidewall of insulation material with metal creep-up extending up that sidewall, and related device

Similar Documents

Publication Publication Date Title
JPH0570303B2 (en)
JPH0744186B2 (en) Method for manufacturing semiconductor device
US4792534A (en) Method of manufacturing a semiconductor device involving sidewall spacer formation
US3839103A (en) Semiconductor device and method of manufacturing same
JPS5915495B2 (en) semiconductor equipment
KR910000020B1 (en) Manufacture of semiconductor device
JPS5984576A (en) Manufacture of semiconductor device
JP2603259B2 (en) Base-emitter contact structure and method of manufacturing the same
JPS5929136B2 (en) Manufacturing method of semiconductor device
JPH0373541A (en) Manufacture of semiconductor device
US3969165A (en) Simplified method of transistor manufacture
EP0036620A2 (en) Semiconductor device and method for fabricating the same
JPH0366815B2 (en)
US3977920A (en) Method of fabricating semiconductor device using at least two sorts of insulating films different from each other
JPS637665A (en) Lateral p-n-p transistor
US4012763A (en) Semiconductor device having insulator film with different prescribed thickness portions
JPS59105363A (en) Manufacture of semiconductor device
JPS5850411B2 (en) Impurity diffusion method
JPS6245174A (en) Manufacture of semiconductor device
JPH05218306A (en) Semiconductor integrated circuit and manufacture thereof
JPS60785B2 (en) Manufacturing method of MOS type semiconductor device
JPS6068652A (en) Manufacture of semiconductor element
JPS61168257A (en) Semiconductor device
JPS59208780A (en) Manufacture of transistor
JPS59148359A (en) Manufacture of semiconductor device