JPS5923516A - Placement of reference figure for superposed location - Google Patents

Placement of reference figure for superposed location

Info

Publication number
JPS5923516A
JPS5923516A JP13193282A JP13193282A JPS5923516A JP S5923516 A JPS5923516 A JP S5923516A JP 13193282 A JP13193282 A JP 13193282A JP 13193282 A JP13193282 A JP 13193282A JP S5923516 A JPS5923516 A JP S5923516A
Authority
JP
Japan
Prior art keywords
film
thickness
oxide films
figures
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13193282A
Other languages
Japanese (ja)
Inventor
Shinji Okazaki
信次 岡崎
Fumio Murai
二三夫 村井
Yutaka Takeda
豊 武田
Osamu Suga
治 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13193282A priority Critical patent/JPS5923516A/en
Publication of JPS5923516A publication Critical patent/JPS5923516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable reduction in thickness of the resist film on reference figures and to facilitte signal detection from the figures by a method wherein superposition reference figures are formed at a position higher than the active layer surface of a semiconductor device. CONSTITUTION:Source and drain diffusion regions 3 are provided in the surface layer part of a semiconductor substrate 1, and a gate electrode 4 consisted of polycrystalline Si is formed therebetween through a gate insulating film. Next, field oxide films 2 for isolation are formed on both sides of the region 3, and thick field oxide films 10 continuously extended thereform to form plateaus are further provided on both sides of the oxide films 2. Thereafter, a protructed mark 6 made of polycrystalline Si and a heavy metal mark 8 made of W, etc. are put on the film 10, and a PSG film 5 as an interlayer insulating film is coated all over the surface including those marks, the film 5 being formed at its part with a recessed mark 7. Subsequently, a positive type electron beam resist film 9 for forming contact holes is provided all over the surface. At this time, the thickness of the film 9 is so selected that it has a normal thickness of ca. 1mum and the thickness on the thick oxide films 10 becomes ca. 0.2mum, thereby facilitating detection of figures.

Description

【発明の詳細な説明】 本発明は電子線直接描画法もしくは縮小投影露光法等の
図形転写法を用いて転写図形の重ね゛合せを行う場合に
用いる、重ね合せ基準図形の設置方法に関し、特に上記
基準図形を容易に且つ高精度に検出できるような基準図
形の設置方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for setting an overlay reference figure used when overlapping transferred figures using a figure transfer method such as an electron beam direct writing method or a reduction projection exposure method, and particularly relates to The present invention relates to a method for installing a reference figure so that the reference figure can be detected easily and with high precision.

従来の重ね合せ基準図形は、一般に半導体装置の製造工
程内で形成されることが多く、第1図に示されるように
半導体素子もしくは半導体素子を含む回路をtlり成す
る基板となる平面と同一平面上に設置されることが多か
った。しかし半導体装置の製造工程では基板10表面に
種々の導電性層や絶縁性層を被着することが多く、基準
図形6.7゜8が高い段差にとりかこまれた凹地に残さ
れることが多かった。一方図形転写のために塗布する感
光性もしくは感電子線等のレジスト9は回転塗布される
ため、塗布後のレジスト表面は比較的平坦となり基準図
形6,7.8などの四部」二のII!4厚が非常に厚く
なりやすい。この状態で基1■図形6゜7.8の位置を
検出するとその検出信号は非常に弱く高精度な位置検出
が)i16 Lいという欠点があった。
Conventional overlay reference figures are generally formed during the manufacturing process of semiconductor devices, and as shown in FIG. It was often installed on a flat surface. However, in the manufacturing process of semiconductor devices, various conductive and insulating layers are often deposited on the surface of the substrate 10, and the reference figure 6.7°8 is often left in a depression surrounded by a high step. Ta. On the other hand, since the photosensitive or electron beam sensitive resist 9 applied for pattern transfer is applied by rotation, the resist surface after coating is relatively flat, and the four parts of the reference figures 6, 7.8, etc."2-II! 4 The thickness tends to be very thick. In this state, when the position of the base 1 figure 6°7.8 is detected, the detection signal is very weak, making it difficult to detect the position with high precision.

従って本発明の目的は」二記欠点を克服し、半2!ト体
装置の製造工程内で常に高い該基準図形の検出精度を実
男することにある。
Therefore, the object of the present invention is to overcome the drawbacks mentioned above and to solve the problems mentioned above. The object of the present invention is to constantly achieve high detection accuracy of the reference figure in the manufacturing process of the body device.

上記目的を達成するため、本発明は、重ね合せ基準図形
を、半導体素子の能動層表面より高い位置に形成するこ
とによって、」二記重ね合せ基準図形上のレジスト膜厚
を薄くシ、それによつ−C上記重ね合せ基準図形よりの
信号検出を容易に一ノーるものである。
In order to achieve the above object, the present invention reduces the resist film thickness on the overlay reference figure by forming the overlay reference figure at a higher position than the surface of the active layer of the semiconductor element. This makes it easy to detect signals from the superimposed reference figures mentioned above.

以下本発明を実施例によυ詳しく説明する。第2図は半
導体基板上に形成する種りの台地の例を示す。第1の実
施例として厚いフィールド+14f2化膜」二に基1(
t+同図形設けた[)すを第21;1(a)に示す。本
例でし」、通常のR,10S素子の製造工程に先だって
フィールドl’+P化膜1oを1μI11該基準マーク
を形成せんとする部分に設置し、該フィールド酸化膜l
The present invention will be explained in detail below using examples. FIG. 2 shows an example of a seed plateau formed on a semiconductor substrate. The first example is a thick field + 14f2 dielectric film"2 based on 1 (
t+[) with the same figure is shown in 21st; 1(a). In this example, prior to the normal R, 10S element manufacturing process, a field l'+P oxide film 1o of 1μI11 is placed on the part where the reference mark is to be formed, and the field oxide film l
.

上に0.5 lr m膜厚のPOI)’siを加工しで
形成した凸形7−り6もしくは該フ・「−ルド酸化膜1
oにQ、 5μm dJjさの穴を分った凹形マーク7
もしくは該フィールド酸化膜lo上に被着した0、2μ
m膜タングスデン膜を加工して形成した重金属マーク8
を設(4した。続1ハて上1己マーク(5,7,8を重
ね合ぜ基準図形として拙々の図形を重ね合せてMO8素
子を形成した。第2図にI)ではその内の典型的な一工
程を示す。ここでは半導体基板1」二に形成したM O
S IA子上に層間絶縁膜としU P S G膜5を0
.6μm被着し、この上にコンタクトホール形成のだめ
のパターン転写を行うためポジ形電子線レジストPMM
A9を1μIn塗布した。この場合通常の素子領域上で
は約1μIllの厚さのJ)ム・l M A膜9が形成
されているが該基準図形上ではこの膜厚は0.2μm8
度となる。続いて電子線を」二記基準図形6,7.8上
に照射し、その0°L置を基準図形6,7.8上からの
反射電子をとらえることによりその位置を検出する。次
にコンタクトポール形成用パターンを上記基準図形6,
7゜8の位置を基準として配置する。この場合反射電子
の呈は従来法に比べ10〜25倍となり、飛躍的に検出
信号のS/Nが向上し、重ね合せ精度が向上した。
A convex 7-ri 6 or the field oxide film 1 formed by processing a POI'si with a film thickness of 0.5 lr m on top.
Q in o, concave mark 7 with a hole of 5μm dJj
Or 0.2μ deposited on the field oxide film lo.
Heavy metal mark 8 formed by processing m-film tungsden film
I set (4).Continued 1 and above 1Self marks (5, 7, 8 are superimposed and used as a reference figure.The MO8 element was formed by superimposing the rough shapes.I in Fig. 2) This shows a typical process of M O formed on a semiconductor substrate 1''2.
The UPS G film 5 is used as an interlayer insulating film on the SIA element.
.. A positive electron beam resist PMM was deposited with a thickness of 6 μm, and a positive electron beam resist PMM was applied to transfer the pattern for forming contact holes.
1 μIn of A9 was applied. In this case, on the normal device region, a J)mu・l M A film 9 with a thickness of about 1μIll is formed, but on the reference figure, this film thickness is 0.2μm8.
degree. Next, an electron beam is irradiated onto the reference figures 6, 7.8, and the 0°L position is detected by capturing the reflected electrons from above the reference figures 6, 7.8. Next, the pattern for contact pole formation is shown in the reference figure 6 above.
Place it based on the 7°8 position. In this case, the appearance of reflected electrons was 10 to 25 times that of the conventional method, and the S/N ratio of the detection signal was dramatically improved, and the overlay accuracy was improved.

第2の実施例として高いSi台地上に基準図形を設けた
例を第2図(b)に示す。本例では通常のMO8素子の
製造工程に先立って基準図形を形成する領域を残して、
素子もしくは素子を含む回路を形成せんとする領域を約
1μm11エツチングし、本i程により形成された台地
12上に実施例1に示されたと同等な基準図形6,7.
8を形成した。
As a second embodiment, an example in which a reference figure is provided on a high Si plateau is shown in FIG. 2(b). In this example, prior to the manufacturing process of a normal MO8 element, a region for forming a reference figure is left,
A region where an element or a circuit including an element is to be formed is etched by approximately 1 μm 11, and reference figures 6, 7, .
8 was formed.

第2図(b)では実施例1と同一工程の例を示している
。本図でも実施例1で述べたと同様の効果により、重ね
合せ精度が向上した。
FIG. 2(b) shows an example of the same process as in Example 1. Also in this figure, the overlay accuracy was improved due to the same effect as described in Example 1.

第3の実施例として第2の実施例で示したと同様のSi
台地を別の方法で形成してその上に基準図形を設けた例
を示す。すなわち通常のMO8素子製造工程に先立つ−
csi基板上に0.1μm11のS to 2膜を形成
し続いて多結晶Si膜をlμIll被着した後1.実施
例2と同様の工程を行う。第2図(C)では実施例1,
2と同一工程の例を示している。
As a third embodiment, a Si similar to that shown in the second embodiment is used.
An example is shown in which a plateau is formed using a different method and a reference figure is provided on it. That is, prior to the normal MO8 element manufacturing process -
After forming an S to 2 film of 0.1 μm11 on a CSI substrate and subsequently depositing a polycrystalline Si film of 1 μIll, 1. The same steps as in Example 2 are performed. In FIG. 2(C), Example 1,
An example of the same process as 2 is shown.

本図でも実施例1.2で述べたと同様の効果で、重ね倉
せ精度が向上した。
Also in this figure, the stacking accuracy was improved with the same effect as described in Example 1.2.

上記説明から明らかなように、本発明によれば重ね合せ
位置基準図形が半導体基板の能動層表面より高い位置に
あるため、半導体基板上に回転塗布するレジスト膜厚が
基準図形上で非常に719くなるため、検出感度が非常
に高くなる。通常半導体基板上の加工では、半導体基板
上の段差の1.5倍から3倍のj膜厚のレジストを塗布
することが多いが、本発明による台地の高さをこのレジ
スト膜厚ど同じにした場合、台地上のレジスト膜厚は通
常部分のレジスト膜ノ9の115〜1/1o、@度にお
さえることが可能で、S/N比は従来法に比べ3倍以上
どなつで、極めて正確な検出が可能となる。
As is clear from the above description, according to the present invention, since the superimposition position reference pattern is located at a higher position than the active layer surface of the semiconductor substrate, the thickness of the resist film spin-coated onto the semiconductor substrate is very much 719 mm above the reference pattern. Therefore, the detection sensitivity is extremely high. Normally, when processing a semiconductor substrate, a resist is often applied with a thickness of 1.5 to 3 times the height of the step on the semiconductor substrate. In this case, the resist film thickness on the platen can be kept to 115 to 1/1 degrees of the resist film on the normal part, and the S/N ratio is more than 3 times that of the conventional method, which is extremely high. Accurate detection becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の能動層表面よりも高い位置に重ね合せ位置
基準図形を形成することを特徴とする重ね合せ位置基準
図形の設置方法。
A method for installing an overlay position reference figure, comprising forming the overlay position reference figure at a higher position than the surface of an active layer of a semiconductor element.
JP13193282A 1982-07-30 1982-07-30 Placement of reference figure for superposed location Pending JPS5923516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13193282A JPS5923516A (en) 1982-07-30 1982-07-30 Placement of reference figure for superposed location

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13193282A JPS5923516A (en) 1982-07-30 1982-07-30 Placement of reference figure for superposed location

Publications (1)

Publication Number Publication Date
JPS5923516A true JPS5923516A (en) 1984-02-07

Family

ID=15069578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13193282A Pending JPS5923516A (en) 1982-07-30 1982-07-30 Placement of reference figure for superposed location

Country Status (1)

Country Link
JP (1) JPS5923516A (en)

Similar Documents

Publication Publication Date Title
EP0341843A2 (en) A process of forming a conductor pattern
US6589385B2 (en) Resist mask for measuring the accuracy of overlaid layers
JP2890538B2 (en) Semiconductor device
JPS5923516A (en) Placement of reference figure for superposed location
JPH0513372B2 (en)
JPS62155532A (en) Formation of positioning mark for semiconductor wafer
JP2000294490A (en) Semiconductor device and its manufacture
US20070054205A1 (en) Process for forming anti-reflection coating and method for improving accuracy of overlay measurement and alignment
JP2628555B2 (en) Method for manufacturing semiconductor device
JP2583986B2 (en) Method of forming resist pattern
JPH04180231A (en) Manufacture of semiconductor device provided with fine bump electrode
JPS6210011B2 (en)
JPH0290511A (en) Semiconductor device
JPH09199588A (en) Manufacture of semiconductor device
KR100356474B1 (en) Method of forming overlay vernier in semiconductor device
TW594448B (en) Overlay mark and method for making the same
JPH01272133A (en) Semiconductor device
JPS62177922A (en) Manufacture of semiconductor device
JP2758595B2 (en) Three-layer resist structure
JPH081884B2 (en) Method of forming resist pattern
KR100291412B1 (en) Method for applying photoresist
JPS62128138A (en) Semiconductor device
JPS5820138B2 (en) Manufacturing method of semiconductor device
JPS6110974B2 (en)
JPH06177027A (en) Electron beam lithography and semiconductor device