JPH0513372B2 - - Google Patents

Info

Publication number
JPH0513372B2
JPH0513372B2 JP60089315A JP8931585A JPH0513372B2 JP H0513372 B2 JPH0513372 B2 JP H0513372B2 JP 60089315 A JP60089315 A JP 60089315A JP 8931585 A JP8931585 A JP 8931585A JP H0513372 B2 JPH0513372 B2 JP H0513372B2
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
forming
wiring
alignment mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60089315A
Other languages
Japanese (ja)
Other versions
JPS61248427A (en
Inventor
Yoshiaki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60089315A priority Critical patent/JPS61248427A/en
Publication of JPS61248427A publication Critical patent/JPS61248427A/en
Publication of JPH0513372B2 publication Critical patent/JPH0513372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層配線の形成方法に関し、特に金属
配線間に絶縁膜を設けて形成される半導体集積回
路の多層配線の形成方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming multilayer wiring, and more particularly to a method for forming multilayer wiring in a semiconductor integrated circuit formed by providing an insulating film between metal wirings. .

〔従来の技術〕[Conventional technology]

従来、集積回路等の半導体素子の多層配線にお
いて、目合せ露光方法として縮小投影露光法を用
いる場合、レーザー光によりウエハの位置を検出
し、マスクの投影像とウエハの目合せを行うた
め、ウエハ上に位置合せ用マークを形成するが、
そのマークとしては、シリコン基板、多結晶シリ
コン、アルミニウム等が使われていた。
Conventionally, when using the reduction projection exposure method as an alignment exposure method in multilayer wiring of semiconductor devices such as integrated circuits, the position of the wafer is detected using laser light and the wafer is aligned with the projected image of the mask. Alignment marks are formed on the top,
Silicon substrates, polycrystalline silicon, aluminum, etc. were used as the marks.

第2図a〜dは従来の多層配線の形成方法の一
例を説明するために工程順に示した断面図であ
る。第2図a〜dにおいては、層間絶縁膜にポリ
イミド樹脂を利用したアルミニウム二層配線の形
成方法につき説明する。
FIGS. 2a to 2d are cross-sectional views shown in order of steps to explain an example of a conventional method for forming multilayer wiring. 2a to 2d, a method for forming a two-layer aluminum wiring using polyimide resin as an interlayer insulating film will be described.

まず、第2図aに示すように、表面がシリコン
酸化膜22で覆われたシリコン基板21上に第一
層アルミニウム電極配線23を形成すると同時に
位置合せ用マーク24を形成する。次いでポリイ
ミド樹脂25に所望の開孔部を設けるためにフオ
トレジスト膜26でポリイミド樹脂25を覆いレ
ーザー光27を位置合せ用マーク部24に照射
し、アルミニウムにより形成されたマークの段部
で乱反射されたレーザー光のうち、ある一定の角
度、たとえば45゜の角度で反射されたレーザー光
28をフオトダイオード29で検出し、強度がピ
ークとなる位置をマスクの投影像とウエハとの目
合せ位置として露光を行う。
First, as shown in FIG. 2a, a first layer of aluminum electrode wiring 23 is formed on a silicon substrate 21 whose surface is covered with a silicon oxide film 22, and alignment marks 24 are formed at the same time. Next, in order to form a desired opening in the polyimide resin 25, the polyimide resin 25 is covered with a photoresist film 26, and a laser beam 27 is irradiated onto the alignment mark portion 24, which is diffusely reflected by the stepped portion of the mark formed of aluminum. Among the laser beams reflected at a certain angle, for example, at an angle of 45 degrees, the laser beam 28 is detected by a photodiode 29, and the position where the intensity peaks is determined as the alignment position between the projected image of the mask and the wafer. Perform exposure.

次に、第2図bに示すように、フオトレジスト
膜26を現像し、第一層アルミニウム電極配線領
域上のフオトレジスト膜26に開孔部を設ける。
Next, as shown in FIG. 2b, the photoresist film 26 is developed, and openings are formed in the photoresist film 26 on the first layer aluminum electrode wiring area.

次に、第2図cに示すように、上記フオトレジ
スト膜26をマスクにしてポリイミド樹脂膜25
に第一層アルミニウム電極配線23に達する開孔
部30を設け、その後フオトレジスト膜26を除
去する。
Next, as shown in FIG. 2c, using the photoresist film 26 as a mask, the polyimide resin film 25 is
An opening 30 reaching the first layer aluminum electrode wiring 23 is provided, and then the photoresist film 26 is removed.

次に、第2図dに示すように、シリコン基板全
面にスパツタリング法によりアルミニウム膜31
を被着したのち、フオトレジスト膜32で覆い第
二層アルミニウム電極配線を設けるための目合せ
露光を行い、現像後エツチングにより第二層目配
線を形成する。
Next, as shown in FIG. 2d, an aluminum film 31 is formed on the entire surface of the silicon substrate by sputtering.
After that, it is covered with a photoresist film 32, alignment exposure is performed to provide a second layer of aluminum electrode wiring, and after development, a second layer of wiring is formed by etching.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら第2図a〜dの方法において、第
二層アルミニウム電極配線を設けるための目合せ
露光において、この時、位置合せ用のマーク部2
4がポリイミド樹脂により平坦化されているため
アルミニウム膜32はマーク段部がなく、位置合
せ用レーザー光27は伝導体を通り抜けることが
できず平坦なアルミニウム膜31の表面で乱反射
されるのみで位置合せが不可能となるという欠点
を生ずる。また、完全に平坦化されていなくて
も、シリカフイルム塗布などにより一層目アルミ
ニウム配線段部をなめらかにする場合にも段部が
なめらかなため反射光のピークを判断することが
困難となり目ずれが多発するという欠点がある。
また層間絶縁膜としてバイアススパツタ酸化膜を
用いても表面が平坦化されるので上記したと同様
にレーザ光によるマークの位置検出が困難にな
る。
However, in the methods shown in FIGS. 2a to 2d, in the alignment exposure for providing the second layer aluminum electrode wiring, at this time, the alignment mark part 2
4 is flattened with polyimide resin, the aluminum film 32 does not have a mark step, and the alignment laser beam 27 cannot pass through the conductor and is only diffusely reflected on the surface of the flat aluminum film 31 to determine the position. This results in the disadvantage that alignment becomes impossible. Furthermore, even if the stepped portions of the first layer of aluminum wiring are smoothed by coating with silica film, it is difficult to judge the peak of the reflected light because the stepped portions are smooth, even if they are not completely flattened. It has the disadvantage that it occurs frequently.
Furthermore, even if a bias sputtered oxide film is used as an interlayer insulating film, the surface will be flattened, making it difficult to detect the position of the mark using a laser beam, as described above.

本発明は、従来の上記欠点を除去し、層間絶縁
膜の段部をなめらかにしても位置合せ誤差を小さ
くすることができ、たとえ完全に平坦化しても上
層の金属配線を精度よく形成することができ、微
細配線の形成が容易にできる多層配線の形成方法
を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks of the conventional technology, makes it possible to reduce alignment errors even when the steps of the interlayer insulating film are made smooth, and allows the upper layer metal wiring to be formed with high precision even when completely flattened. It is an object of the present invention to provide a method for forming multilayer wiring, which allows easy formation of fine wiring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、下層配線上に層間絶縁膜を有
し、前記層間絶縁膜の開口部を通して前記下層配
線と接続する上層配線を前記層間絶縁膜上に有す
る半導体集積回路の多層配線を縮小投影露光法に
より形成する方法において、第1の導電材料から
前記下層配線を形状形成すると同時に第1の位置
合せ用マークを前記第1の導電材料により形状形
成する工程と、前記下層配線上から前記第1の位
置合せ用マーク上にかけて前記層間絶縁膜を形成
する工程と、前記第1の位置合せ用マークにより
位置合せを行なつて、前記層間絶縁膜に前記開口
部を形成すると同時に、前記第1の位置合せ用マ
ーク上とは別の位置における前記層間絶縁膜の表
面部分から第2の位置合せ用マークとなる凹部を
形成する工程と、前記開口部内および前記第2の
位置合せ用マークとなる凹部内を含む全面上に前
記上層配線を構成する第2の導電材料を堆積する
工程と、前記第2の位置合せ用マークとなる前記
層間絶縁膜の凹部に対応して形成された前記第2
の導電材料表面の段部を位置合せ用マークとして
位置合せを行なつて、前記開口部を通して前記下
層配線と接続する前記上層配線を前記第2の導電
材料から形状形成する多層配線の形成方法にあ
る。
A feature of the present invention is that the multilayer wiring of a semiconductor integrated circuit has an interlayer insulating film on a lower wiring, and an upper wiring on the interlayer insulating film that connects to the lower wiring through an opening in the interlayer insulating film. In the method of forming by an exposure method, the step of forming a shape of the lower layer wiring from a first conductive material and simultaneously forming a first positioning mark from the first conductive material; forming the interlayer insulating film over the first alignment mark; aligning with the first alignment mark and forming the opening in the interlayer insulating film; a step of forming a recess that will become a second alignment mark from a surface portion of the interlayer insulating film at a position different from the position on the alignment mark; a step of depositing a second conductive material constituting the upper layer wiring on the entire surface including the inside of the recess, and a step of depositing the second conductive material forming the upper layer wiring on the entire surface including the inside of the recess, and forming the second conductive material corresponding to the recess of the interlayer insulating film that becomes the second alignment mark.
A method for forming a multilayer wiring, in which the upper layer wiring, which is connected to the lower layer wiring through the opening, is formed from the second conductive material by performing alignment using a stepped portion on the surface of the conductive material as an alignment mark. be.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明す
る。第1図a〜eは本発明の一実施例を説明する
ために工程順に示した断面図である。本実施例で
は層間絶縁膜にポリイミド樹脂を用いた場合のア
ルミニウム二層配線の形成方法について説明す
る。
Next, the present invention will be explained with reference to the drawings. FIGS. 1A to 1E are cross-sectional views shown in order of steps to explain an embodiment of the present invention. In this embodiment, a method for forming a two-layer aluminum wiring when polyimide resin is used for the interlayer insulating film will be described.

まず、第1図aに示すように、表面がシリコン
酸化膜2で覆われたシリコン基板1上に一層目ア
ルミニウム電極配線3を形成する。その際同時に
アルミニウムにより縮小投影露光の位置合せ用マ
ーク4を設ける。次にポリイミド樹脂5により層
間絶縁膜を形成した後、このポリイミド樹脂膜5
に、第1層目アルミニウム3に達する所望の開孔
部を設けるためにフオトレジスト6で覆いレーザ
ー光7をマーク部4に照射しアルミニウムにより
形成されたマーク4の段部で乱反射されたレーザ
ー光のうちある一定の角度、たとえば45゜の角度
で反射されたレーザー光8だけをフオトダイオー
ド9で検出する。ウエーハを水平方向に移動さ
せ、フオトダイオード9で検出したレーザー光8
の強度がピークとなる位置をマスクの投影像とウ
エーハの目合せ位置として露光を行なう。
First, as shown in FIG. 1a, a first layer of aluminum electrode wiring 3 is formed on a silicon substrate 1 whose surface is covered with a silicon oxide film 2. As shown in FIG. At the same time, alignment marks 4 for reduction projection exposure are provided using aluminum. Next, after forming an interlayer insulating film with polyimide resin 5, this polyimide resin film 5
Then, in order to provide a desired opening that reaches the first layer of aluminum 3, it is covered with a photoresist 6 and a laser beam 7 is irradiated onto the mark portion 4, and the laser beam is diffusely reflected by the stepped portion of the mark 4 formed of aluminum. A photodiode 9 detects only the laser beam 8 reflected at a certain angle, for example, an angle of 45 degrees. The wafer is moved horizontally and the laser beam 8 detected by the photodiode 9
Exposure is performed by setting the position where the intensity of the mask is at its peak as the alignment position between the projected image of the mask and the wafer.

次に、第1図bに示すように、フオトレジスト
膜6を現像し、フオトレジスト開孔部10を設け
る。この際同時に新たな位置合せ用マークパター
ン11を設ける。このマーク11を設ける位置と
しては今まで設置してきた位置合せ用マーク4と
は別の位置が望ましい。
Next, as shown in FIG. 1B, the photoresist film 6 is developed and photoresist openings 10 are provided. At this time, a new alignment mark pattern 11 is provided at the same time. It is desirable that this mark 11 be provided at a different position from the alignment mark 4 that has been set up until now.

次に、第1図cに示すように、このフオトレジ
スト膜6をマスクにしてポリイミド樹脂膜5に第
一層アルミニウム電極配線3に達する層間絶縁膜
開孔部12を設けるが、その際同時に新しい位置
合せ用マーク13が形成される。次いでフオトレ
ジスト膜6を除去する。
Next, as shown in FIG. 1c, using this photoresist film 6 as a mask, an opening 12 in the interlayer insulating film reaching the first layer aluminum electrode wiring 3 is provided in the polyimide resin film 5. An alignment mark 13 is formed. Next, the photoresist film 6 is removed.

次に、第1図dに示すように、シリコン基板全
面にスパツタリング法によりアルミニウム膜14
を被着し、さらにフオトレジスト膜15を被着す
る。そして、新たにポリイミド樹脂膜5に設けた
位置合せ用マーク部13にレーザ光16を照射し
位置合せを行うが、この時アルミニウム膜14の
表面にもポリイミド樹脂の段部に対応した同様の
段部が有り、この段部によりレーザー光16は乱
反射され、そのうち45゜の角度で乱反射されるレ
ーザー光17だけをフオトダイオード9で検出
し、強度がピークとなる位置を、マスクの投影像
とウエーハの目合せ位置として露光を行う。
Next, as shown in FIG. 1d, an aluminum film 14 is formed on the entire surface of the silicon substrate by sputtering.
A photoresist film 15 is further deposited. Then, alignment is performed by irradiating the alignment mark portion 13 newly provided on the polyimide resin film 5 with the laser beam 16. At this time, a similar step corresponding to the stepped portion of the polyimide resin is also formed on the surface of the aluminum film 14. The laser beam 16 is diffusely reflected by this step, and only the laser beam 17 that is diffusely reflected at an angle of 45 degrees is detected by the photodiode 9, and the position where the intensity peaks is determined by comparing the projected image of the mask and the wafer. Exposure is performed as the alignment position.

次に、第1図eに示すように、現像後フオトレ
ジスト膜15をマスクとし、アルミニウム膜15
のエツチングを行い、フオトレジスト膜15を除
去し、第二層アルミニウム電極配線18を形成す
ることにより、アルミニウム二層配線を完成す
る。
Next, as shown in FIG. 1e, using the developed photoresist film 15 as a mask, the aluminum film 15 is
The photoresist film 15 is removed by etching, and the second layer aluminum electrode wiring 18 is formed, thereby completing the aluminum two-layer wiring.

〔発明の効果〕 以上説明したように、本発明は半導体素子の多
層配線形成において、目合せ露光を縮小投影露光
法を用いて行なう場合、層間絶縁膜に下層の金属
配線に達する開孔部を選択的に設ける工程におい
て同時に位置合せ用マークを形成することにより
たとえ層間絶縁膜を完全に平坦化しても上層の金
属配線を精度良く形成することができるという効
果がある。
[Effects of the Invention] As described above, the present invention provides a method for forming an opening in an interlayer insulating film that reaches the underlying metal wiring when alignment exposure is performed using a reduction projection exposure method in forming multilayer wiring of a semiconductor element. By simultaneously forming alignment marks in the selective formation process, there is an effect that the upper layer metal wiring can be formed with high precision even if the interlayer insulating film is completely flattened.

また、層間絶縁膜は完全に平坦化された場合に
限らず、段部をなめらかにし、マーク部が不明瞭
となる場合は、位置合せにおいて誤動作の原因と
なるが、この発明を使用することにより誤動作を
無くすことができる。
In addition, not only when the interlayer insulating film is completely flattened, but also when the step part is smoothed and the mark part becomes unclear, it may cause malfunction during alignment. Malfunctions can be eliminated.

さらに、上層の電極配線形成を下層の電極配線
に達する開孔部に対して位置合せをするため、こ
の開孔部と上層電極配線との余裕を小さくするこ
とができ微細配線の形成が容易になるという利点
も有する。
Furthermore, since the upper layer electrode wiring is aligned with the opening that reaches the lower layer electrode wiring, the margin between this opening and the upper layer electrode wiring can be reduced, making it easier to form fine wiring. It also has the advantage of being

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明の一実施例を説明するた
めに工程順に示した断面図、第2図a〜dは従来
の多層配線の形成方法を説明するために工程順に
示した断面図である。 1,21……シリコン基板、2,22……シリ
コン酸化膜、3,23……第一層アルミニウム電
極配線、4,24……位置合せ用マーク、5,2
5……ポリイミド樹脂、6,15,26,32…
…フオトレジスト膜、7,16,27……位置合
せ用レーザー光、8,17,28……45゜の角度
に反射されたレーザー光、9,29……フオトダ
イオード、10,11……フオトレジスト開孔
部、12,30……層間絶縁膜開孔部、13……
層間絶縁膜位置合せ用マーク、14,31……ア
ルミニウム膜、18……第二層アルミニウム電極
配線。
1A to 1E are cross-sectional views shown in the order of steps to explain an embodiment of the present invention, and FIGS. 2A to 2D are cross-sectional views shown in the order of steps to explain the conventional method for forming multilayer wiring. It is. 1, 21... Silicon substrate, 2, 22... Silicon oxide film, 3, 23... First layer aluminum electrode wiring, 4, 24... Alignment mark, 5, 2
5... Polyimide resin, 6, 15, 26, 32...
...Photoresist film, 7,16,27...Laser beam for alignment, 8,17,28...Laser beam reflected at an angle of 45 degrees, 9,29...Photodiode, 10,11...Photo Resist opening, 12, 30...Interlayer insulating film opening, 13...
Interlayer insulating film alignment mark, 14, 31... Aluminum film, 18... Second layer aluminum electrode wiring.

Claims (1)

【特許請求の範囲】 1 下層配線上に層間絶縁膜を有し、前記層間絶
縁膜の開口部を通して前記下層配線と接続する上
層配線を前記層間絶縁膜上に有する半導体集積回
路の多層配線を縮小投影露光法により形成する方
法において、第1の導電材料から前記下層配線を
形状形成すると同時に第1の位置合せ用マークを
前記第1の導電材料により形状形成する工程と、
前記下層配線上から前記第1の位置合せ用マーク
上にかけて前記層間絶縁膜を形成する工程と、前
記第1の位置合せ用マークにより位置合せを行な
つて、前記層間絶縁膜に前記開口部を形成すると
同時に、前記第1の位置合せ用マーク上とは別の
位置における前記層間絶縁膜の表面部分から第2
の位置合せ用マークとなる凹部を形成する工程
と、前記開口部内および前記第2の位置合せ用マ
ークとなる凹部内を含む全面上に前記上層配線を
構成する第2の導電材料を堆積する工程と、前記
第2の位置合せ用マークとなる前記層間絶縁膜の
凹部に対応して形成された前記第2の導電材料表
面の段部を位置合せ用マークとして位置合せを行
なつて、前記開口部を通して前記下層配線と接続
する前記上層配線を前記第2の導電材料から形状
形成することを特徴とする多層配線の形成方法。 2 前記層間絶縁膜は表面が平坦化された絶縁膜
であることを特徴とする特許請求の範囲第1項に
記載の多層配線の形成方法。
[Scope of Claims] 1. Reducing the multilayer wiring of a semiconductor integrated circuit that has an interlayer insulating film on a lower layer wiring, and has an upper layer wiring on the interlayer insulating film that connects to the lower layer wiring through an opening in the interlayer insulating film. In the method of forming by a projection exposure method, a step of simultaneously forming the lower wiring from a first conductive material and forming a first alignment mark from the first conductive material;
forming the interlayer insulating film from above the lower wiring to above the first alignment mark; and performing alignment using the first alignment mark, and forming the opening in the interlayer insulating film. At the same time, a second alignment mark is formed from a surface portion of the interlayer insulating film at a position different from the first alignment mark.
a step of forming a recess that will become an alignment mark; and a step of depositing a second conductive material constituting the upper layer wiring over the entire surface including the inside of the opening and the inside of the recess that will become the second alignment mark. Then, alignment is performed using a step on the surface of the second conductive material formed corresponding to the recess of the interlayer insulating film, which serves as the second alignment mark, to align the opening. A method for forming a multilayer wiring, characterized in that the upper layer wiring, which is connected to the lower layer wiring through the second conductive material, is formed into a shape from the second conductive material. 2. The method for forming a multilayer wiring according to claim 1, wherein the interlayer insulating film is an insulating film whose surface is flattened.
JP60089315A 1985-04-25 1985-04-25 Formation of multilayer interconnection Granted JPS61248427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089315A JPS61248427A (en) 1985-04-25 1985-04-25 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089315A JPS61248427A (en) 1985-04-25 1985-04-25 Formation of multilayer interconnection

Publications (2)

Publication Number Publication Date
JPS61248427A JPS61248427A (en) 1986-11-05
JPH0513372B2 true JPH0513372B2 (en) 1993-02-22

Family

ID=13967231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089315A Granted JPS61248427A (en) 1985-04-25 1985-04-25 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS61248427A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307736A (en) * 1987-06-10 1988-12-15 Hitachi Ltd Method of processing by using ion beam
JPS63237520A (en) * 1987-03-26 1988-10-04 Nec Corp Manufacture of semiconductor element
JPH01103834A (en) * 1987-10-16 1989-04-20 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH03174728A (en) * 1989-12-04 1991-07-29 Matsushita Electron Corp Manufacture of semiconductor device
US7355675B2 (en) 2004-12-29 2008-04-08 Asml Netherlands B.V. Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus
TWI445225B (en) * 2011-11-07 2014-07-11 Voltafield Technology Corp Method for forming structure of magnetoresistance device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035515A (en) * 1983-08-08 1985-02-23 Hitachi Micro Comput Eng Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035515A (en) * 1983-08-08 1985-02-23 Hitachi Micro Comput Eng Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS61248427A (en) 1986-11-05

Similar Documents

Publication Publication Date Title
US5128283A (en) Method of forming mask alignment marks
JPS6323657B2 (en)
JP2890538B2 (en) Semiconductor device
JPH0513372B2 (en)
TW444271B (en) Method for manufacturing semiconductor device
KR970007822B1 (en) Fabricating method of semiconductor device
EP0230648B1 (en) Method of forming an alignment mark
JP2796068B2 (en) Method of forming photosensitive film pattern
JP2748029B2 (en) How to create alignment marks
JPH0536583A (en) Alignment method and manufacture of semiconductor integrated circuit device
JPH03177013A (en) Manufacture of semiconductor device
JPH0669153A (en) Formation of fine contact hole
JP2002353117A (en) Manufacturing method of semiconductor device
KR100370138B1 (en) Method for forming global aligning pattern using exposure of semiconductor
KR100356474B1 (en) Method of forming overlay vernier in semiconductor device
JP2762500B2 (en) Semiconductor device
JPS61183944A (en) Formation of multilayer electrode
KR100209337B1 (en) Method for forming metal wiring with sog oxide film
JP3108172B2 (en) Method of forming resist pattern
JP3167398B2 (en) Method for manufacturing semiconductor device
JPS6210011B2 (en)
JPH0388352A (en) Manufacture of semiconductor device
JPH01149435A (en) Manufacture of semiconductor device
JPH07135162A (en) Method of manufacturing semiconductor device
JPH07111231A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term