JPS62128138A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62128138A
JPS62128138A JP26730385A JP26730385A JPS62128138A JP S62128138 A JPS62128138 A JP S62128138A JP 26730385 A JP26730385 A JP 26730385A JP 26730385 A JP26730385 A JP 26730385A JP S62128138 A JPS62128138 A JP S62128138A
Authority
JP
Japan
Prior art keywords
groove
insulating
position detection
detection mark
position detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26730385A
Other languages
Japanese (ja)
Other versions
JPH0478177B2 (en
Inventor
Takayuki Kamiya
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26730385A priority Critical patent/JPS62128138A/en
Publication of JPS62128138A publication Critical patent/JPS62128138A/en
Publication of JPH0478177B2 publication Critical patent/JPH0478177B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate relative positional difference from an insulating-isolating region for the accomplishment of high precision positioning by a method wherein a second groove is formed, 1.5-4 times wider than the insulating-isolating region but not wider than twice the thickness of the material to fill the grooves, a step is provided on the surface of the material filling the second groove, and said step serves as a position detecting mark. CONSTITUTION:A narrow groove 4 and second groove 8 are formed in a silicon substrate 1 provided on its primary surface with a silicon oxide film 2 and silicon nitride film 3. The grooves 4, 8 are provided with oxide films 5 on their inner surfaces. The grooves 4, 8 are then filled with polycrystalline silicon 6 for the formation of an groove-type insulating-isolating region 7 and a position detecting mark 9. The position detecting mark 9, 1.5-4 times wider than the insulating-isolating region 7, is a step created on a recess 6a provided on the upper surface of the polycrystalline silicon 6 filling the second groove 8. The width of the second groove 8 accommodating the position detecting mark 9 is set at a value not more than twice the thickness of the polycrystalline silicon 6 filling the grooves 4, 8. The position detecting mark 9 serves to realize a high precision positioning in relation to the insulating-isolating region 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溝型絶縁分離領域を有する半導体装置に関し、
特に一部に位置検出マークを有する半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a trench type isolation region;
In particular, the present invention relates to a semiconductor device having a position detection mark in a part thereof.

〔従来の技術〕[Conventional technology]

半導体集積回路等の半導体装置では、複数の工程からな
る拡散層や薄膜等を順次積層して半導体ウェハの主面に
所要の素子を形成しているが、各工程のパターン形成の
相互位置を設定するために通常半4体ウェハの一部には
位置検出マークを形成し、この位置検出マークを各工程
で検出して各工程パターンの位置設定を行っている。
In semiconductor devices such as semiconductor integrated circuits, the required elements are formed on the main surface of the semiconductor wafer by sequentially laminating diffusion layers and thin films, etc., which are made up of multiple steps, but it is necessary to set the relative positions of pattern formation in each step. In order to do this, a position detection mark is usually formed on a part of the half-quad wafer, and this position detection mark is detected in each process to set the position of each process pattern.

この位置検出マークとして、従来では半導体ウェハにお
いて素子領域を区画するために形成する絶縁領域のパタ
ーンエツジ部を利用しているが、近年における素子の微
細化に伴って絶縁分離領域を溝型に構成している半導体
装置では、この絶縁分離領域を位置検出マークに利用す
ることが困難になる。即ち、溝型絶縁分離領域は、半導
体ウェハに溝を形成した上で、この溝内に絶縁状態を保
って材料を埋設しているが、後工程における配線層の平
坦化を図るために、この溝内に埋設する材料は半導体ウ
ェハの表面に対して平坦に形成しているため、位置検出
マークに必要とされる段差が形成されず、したがってこ
れを認識することができなくなる。
Conventionally, pattern edges of insulating regions formed to partition device regions on semiconductor wafers have been used as position detection marks, but with the miniaturization of devices in recent years, insulating isolation regions have been configured in the form of grooves. In a semiconductor device in which this type of semiconductor device is used, it becomes difficult to use this insulating isolation region as a position detection mark. In other words, the trench-type insulation isolation region is created by forming a trench in a semiconductor wafer and then burying a material in the trench while maintaining an insulating state. Since the material buried in the groove is formed flat with respect to the surface of the semiconductor wafer, the step required for the position detection mark is not formed, and therefore it becomes impossible to recognize it.

このため、この種の半導体装置では、溝型絶縁分離領域
とは独立した工程で半導体ウェハの表面を部分的にエツ
チングする等して段差を形成し、位置検出マークの形成
を行っている。
For this reason, in this type of semiconductor device, a position detection mark is formed by partially etching the surface of the semiconductor wafer in a process independent of the trench-type isolation region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置では、位置検出マークを形成
するために独立した工程を必要としているので、その分
工程数が増大して製造の複雑化を招くとともに、絶縁分
離領域と位置検出マークとを夫々形成する際のマスク合
わせの位置ずれによって両者の間に相対位置誤差が生じ
易く、位置検出マークを基準にした絶縁分離領域に対す
る位置合わせにおいて位置合わせ精度の低下を招く恐れ
がある。
The conventional semiconductor device described above requires an independent process to form the position detection mark, which increases the number of processes and complicates manufacturing. A relative positional error is likely to occur between the two due to positional deviation in mask alignment when forming each, and there is a risk that alignment accuracy will decrease in alignment with the insulation isolation region using the position detection mark as a reference.

〔問題点を解決するための手段〕 本発明の半導体装置は、溝型絶縁分離領域と同じ工程で
位置検出マークを形成し、工程数の増加を防止するとと
もに絶縁分離領域との相対位置誤差を無くして高精度の
位置設定を可能とするものである。
[Means for Solving the Problems] In the semiconductor device of the present invention, the position detection mark is formed in the same process as the groove-type insulation isolation region, thereby preventing an increase in the number of steps and reducing the relative position error with the insulation isolation region. This makes it possible to set the position with high accuracy.

本発明の半導体装置は、溝内に絶縁状態を保って材料を
埋設することにより形成した溝型絶縁分離領域よりも1
.5〜4倍の幅寸法で、かつ好ましくは溝内に埋設する
材料の厚さの2倍以下の幅寸法に第2の溝を形成し、こ
れら溝と第2の溝の溝幅の違いを利用して前記第2の溝
内に埋設した前記材料の表面に段差を形成して位置検出
マークを構成している。
The semiconductor device of the present invention has a trench type isolation region formed by burying a material in a trench while maintaining an insulating state.
.. A second groove is formed with a width that is 5 to 4 times as wide, and preferably less than twice the thickness of the material buried in the groove, and the difference in groove width between these grooves and the second groove is determined. A position detection mark is formed by forming a step on the surface of the material buried in the second groove.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図、第2図(a)、 
 (b)はその製造方法を工程順に示す断面図である。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2(a),
(b) is a sectional view showing the manufacturing method in order of steps.

この半導体装置は、主面にシリコン酸化膜2とシリコン
窒化膜3を有するシリコン基板1に細幅の溝4を形成し
た上でその内面に酸化膜5を形成し、かつ溝4内に多結
晶シリコン6を埋設して溝型絶縁分離領域7を形成して
いる。また、同様に第2の溝8を形成しかつその内面に
酸化膜5を形成した上で溝8内に多結晶シリコン6を埋
設して位置検出マーク9を形成している。そして、この
位置検出マーク9の溝幅は、前記絶縁分離領域7の溝幅
よりも幅寸法を1.5〜4倍の幅寸法に形成しており、
この位置検出マーク9においては前記多結晶シリコン6
の上面には凹部6aからなる段差が形成され、この段差
をマークとして認識できるようになっている。なお、こ
の位置検出マーク9の溝幅は前記多結晶シリコン6を溝
4,8内に埋設する際の厚さの2倍以下の幅に設定して
いる。
This semiconductor device includes a silicon substrate 1 having a silicon oxide film 2 and a silicon nitride film 3 on its main surface, a narrow groove 4 formed therein, an oxide film 5 formed on the inner surface thereof, and a polycrystalline A trench type insulation isolation region 7 is formed by embedding silicon 6. Similarly, a second groove 8 is formed, an oxide film 5 is formed on its inner surface, and then polycrystalline silicon 6 is buried in the groove 8 to form a position detection mark 9. The groove width of the position detection mark 9 is 1.5 to 4 times larger than the groove width of the insulation isolation region 7,
In this position detection mark 9, the polycrystalline silicon 6
A step consisting of a recess 6a is formed on the upper surface of the mark, and this step can be recognized as a mark. The groove width of the position detection mark 9 is set to be twice or less the thickness when the polycrystalline silicon 6 is buried in the grooves 4 and 8.

次に、前記半導体装置の製造方法を第2図により説明す
る。
Next, a method for manufacturing the semiconductor device will be explained with reference to FIG.

先ず、同図(a)のようにシリコン基板1の主面を酸化
して500人のシリコン酸化膜2を形成し、続いて約1
000人のシリコン窒化膜3を気相成長法によって形成
する。そして、フォトレジスト10を用いたフォトリソ
グラフィ技術により前記シリコン窒化膜3.シリコン酸
化膜2及びシリコン基板1を順次エツチングし、幅1μ
mの細い溝4と、これよりも大きい3μm幅の第2の溝
8を形成する。この場合、溝4は絶縁分離領域に相当す
るパターンで形成し、第2の溝8は素子形成の邪魔にな
らない位置に形成する。
First, as shown in FIG. 1(a), the main surface of a silicon substrate 1 is oxidized to form a silicon oxide film 2 of about 500 layers.
A silicon nitride film 3 of 1,000 yen is formed by vapor phase growth. Then, the silicon nitride film 3. The silicon oxide film 2 and the silicon substrate 1 are sequentially etched to a width of 1 μm.
A narrow groove 4 with a width of m and a second groove 8 with a width of 3 μm, which is larger than this, are formed. In this case, the groove 4 is formed in a pattern corresponding to the insulation isolation region, and the second groove 8 is formed at a position that does not interfere with element formation.

次いで、フォトレジスト10を除去した後、同図(b)
のように熱酸化処理して溝4,8の内面に夫々2000
人のシリコン酸化膜5を形成し、更にその上から多結晶
シリコン6を気相成長法により略2μmの厚さに堆積す
る。このとき堆積された多結晶シリコン6は細幅の溝4
上では平坦に近い状態とされるが、大幅の溝8上では約
1000人程度の凹部6Aが発生する。
Then, after removing the photoresist 10, as shown in FIG.
The inner surfaces of grooves 4 and 8 are coated with 2,000 yen each by thermal oxidation treatment as shown in FIG.
A silicon oxide film 5 is formed, and polycrystalline silicon 6 is deposited thereon to a thickness of about 2 μm by vapor phase growth. The polycrystalline silicon 6 deposited at this time forms a narrow groove 4.
Although the groove 8 is almost flat on the top, a recess 6A of about 1,000 depths is formed on the groove 8.

しかる上で、前記多結晶シリコン6を異方性ドライエツ
チングし、前記シリコン窒化膜3が露呈されるまで多結
晶シリコン6をエツチングすると、第1図のように溝4
ではシリコン基板1乃至シリコン窒化膜3と略平坦な多
結晶シリコン面が得られて絶縁分離領域7が形成され、
溝8では凹部6Aがそのまま凹部6aとして残されて位
置検出マーク9が形成される。
Then, when the polycrystalline silicon 6 is anisotropically dry etched until the silicon nitride film 3 is exposed, grooves 4 are formed as shown in FIG.
Then, a substantially flat polycrystalline silicon surface is obtained from the silicon substrate 1 to the silicon nitride film 3, and an insulating isolation region 7 is formed.
In the groove 8, the recess 6A remains as it is, and the position detection mark 9 is formed.

この構成によれば絶縁分離領域7と位置検出マーク9と
を単に溝の幅を相違させてこれらを全く同一の工程で形
成すれば、絶縁分離領域7では平坦な面を得ることがで
き、また位置検出マーク9では凹部6aを得てこれをマ
ークとして利用できる。このため、絶縁分離領域7と位
置検出マーク9とを同一のフォトリソグラフィ技術のマ
スクを用いて形成でき、両者間での相対的な位置誤差が
生じることはなく、位置検出マーク9に対して位置合わ
せを行っても絶縁分離領域7に対する位置合わせを高精
度に行うことができる。また、両者を同一の工程で形成
できるので、独立した特別の工程を採用する必要はなく
製造工程の増加を招くこともなく容易に製造できる。
According to this configuration, if the insulation isolation region 7 and the position detection mark 9 are simply formed with different groove widths and are formed in the same process, a flat surface can be obtained in the insulation isolation region 7, and The position detection mark 9 has a recess 6a which can be used as a mark. Therefore, the insulation isolation region 7 and the position detection mark 9 can be formed using the same photolithography mask, and there is no relative positional error between the two, and the position detection mark 9 can be Even when alignment is performed, alignment with respect to the insulation isolation region 7 can be performed with high precision. Further, since both can be formed in the same process, there is no need to employ separate special processes, and the manufacturing process can be easily performed without increasing the number of manufacturing steps.

ここで、位置検出マーク9を構成する第2の溝8の幅は
絶縁分離領域7の溝4に対して1.5〜4倍の範囲であ
れば、溝4上では平坦化しかつ溝8上では凹部6aを形
成すると言う双方の要求を満たす構成の実現が可能であ
る。また、この場合溝8の幅は堆積する多結晶シリコン
6の堆積厚さの2倍以下の幅であることが好ましい。
Here, if the width of the second groove 8 constituting the position detection mark 9 is in the range of 1.5 to 4 times the width of the groove 4 of the insulation isolation region 7, it will be flat on the groove 4 and flat on the groove 8. In this case, it is possible to realize a configuration that satisfies both requirements by forming the recessed portion 6a. Further, in this case, the width of the groove 8 is preferably twice or less the thickness of the deposited polycrystalline silicon 6.

また、溝内に埋設する材料は、前述した多結晶シリコン
に限らず他の絶縁材料であってもよいことは勿論である
Furthermore, it goes without saying that the material buried in the trench is not limited to the above-mentioned polycrystalline silicon, but may be other insulating materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、溝型絶縁分離領域よりも
1.5〜4倍の幅寸法で、かつ好ましくは溝内に埋設す
る材料の厚さの2倍以下の幅寸法に第2の溝を形成し、
この第2の溝内に前記材料を埋設して位置検出マークを
形成しているので、溝型絶縁分離領域の形成と同一の工
程で位置検出マークを同時に形成することができ、工程
の増加を防止して製造の容易化を図るとともに、絶縁分
離領域と位置検出マークとの間の相対位置誤差の発生を
防止でき、位置検出マークを用いた位置合わせにおける
絶縁分離領域への位置合わせを高精度に行うことができ
る。
As explained above, the present invention provides a second layer having a width that is 1.5 to 4 times larger than that of the trench type isolation region, and preferably not more than twice the thickness of the material buried in the trench. form a groove,
Since the position detection mark is formed by embedding the material in this second groove, the position detection mark can be formed in the same process as the groove-type insulation isolation region, thereby reducing the number of steps. It is possible to prevent relative position errors between the insulation separation area and the position detection mark, and to improve the accuracy of alignment to the insulation separation area during alignment using the position detection mark. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の要部の断面図、第2図(
a)、  (b)はその製造方法を工程順に示す断面図
である。 1・・・シリコン基板、2・・・シリコン酸化1fi、
3・・・シリコン窒化膜、4・・・溝、5・・・シリコ
ン酸化膜、6・・・多結晶シリコン、6A、6a・・・
凹部、7・・・絶縁分離領域、8・・・第2の溝、9・
・・位置検出マーク、10・・・フォトレジスト。
FIG. 1 is a sectional view of the main parts of the semiconductor device of the present invention, and FIG.
a) and (b) are cross-sectional views showing the manufacturing method in order of steps. 1... Silicon substrate, 2... Silicon oxide 1fi,
3... Silicon nitride film, 4... Groove, 5... Silicon oxide film, 6... Polycrystalline silicon, 6A, 6a...
Recessed portion, 7... Insulating isolation region, 8... Second groove, 9...
...Position detection mark, 10...Photoresist.

Claims (1)

【特許請求の範囲】 1、半導体基板上に形成した溝内に絶縁状態に材料を埋
設して形成した溝型絶縁分離領域と、半導体基板の段差
を利用して位置検出を行う位置検出マークとを備える半
導体装置において、前記位置検出マークは前記溝型絶縁
分離領域よりも1.5〜4倍の幅寸法で形成した第2の
溝内に前記埋設材料と同じ材料を埋設し、かつこの第2
の溝内における埋設材料の上面に凹部を形成したことを
特徴とする半導体装置。 2、位置検出マークを構成する第2の溝は、この溝内に
埋設する材料の堆積厚さの2倍以下の幅寸法に設定して
なる特許請求の範囲第1項記載の半導体装置。
[Scope of Claims] 1. A groove-type insulating isolation region formed by burying a material in an insulating state in a groove formed on a semiconductor substrate, and a position detection mark that detects a position using a step on the semiconductor substrate. In the semiconductor device, the position detection mark is formed by embedding the same material as the embedding material in a second groove formed with a width 1.5 to 4 times wider than the groove-type insulation isolation region, and 2
A semiconductor device characterized in that a recess is formed on the upper surface of the buried material in the groove. 2. The semiconductor device according to claim 1, wherein the second groove constituting the position detection mark is set to have a width not more than twice the thickness of the deposited material buried in the groove.
JP26730385A 1985-11-29 1985-11-29 Semiconductor device Granted JPS62128138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26730385A JPS62128138A (en) 1985-11-29 1985-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26730385A JPS62128138A (en) 1985-11-29 1985-11-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62128138A true JPS62128138A (en) 1987-06-10
JPH0478177B2 JPH0478177B2 (en) 1992-12-10

Family

ID=17442952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26730385A Granted JPS62128138A (en) 1985-11-29 1985-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62128138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164018A (en) * 1988-12-19 1990-06-25 Sony Corp Manufacture of semiconductor device
JP2007288213A (en) * 2007-06-25 2007-11-01 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164018A (en) * 1988-12-19 1990-06-25 Sony Corp Manufacture of semiconductor device
JP2007288213A (en) * 2007-06-25 2007-11-01 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor substrate

Also Published As

Publication number Publication date
JPH0478177B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
EP3203322B1 (en) Mark structure and fabrication method thereof
US5733801A (en) Method of making a semiconductor device with alignment marks
US9646865B1 (en) Interconnection structure, fabricating method thereof, and exposure alignment system
JP4537124B2 (en) Integrated circuit semiconductor device having overlay key, align key, and manufacturing method thereof
US7449792B2 (en) Pattern registration mark designs for use in photolithography and methods of using the same
US6809002B2 (en) Method of manufacturing an alignment mark
US7332405B2 (en) Method of forming alignment marks for semiconductor device fabrication
JP4373874B2 (en) Semiconductor device, semiconductor substrate
JP2003243293A (en) Manufacturing method for semiconductor device
US6165878A (en) Method of manufacturing semiconductor device
JPS62128138A (en) Semiconductor device
JP2748465B2 (en) Method for manufacturing semiconductor device
JPH033346A (en) Manufacture of semiconductor device
JP2003151873A (en) Method of forming alignment mark
JP3589580B2 (en) Method for manufacturing semiconductor device
KR100207480B1 (en) Alignment marks forming method
JPH02172215A (en) Manufacture of semiconductor device
JPH1154607A (en) Manufacture of semiconductor device
JPH0290511A (en) Semiconductor device
JPH0230160A (en) Semiconductor device
JPS62273750A (en) Semiconductor device and manufacture of the same
JPH11135404A (en) Manufacture of semiconductor device
JPH0613459A (en) Element isolating method and semiconductor device
KR20070025027A (en) Method for manufacturing semiconductor device
JPH0387030A (en) Multilayer interconnection