JPH0230160A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0230160A
JPH0230160A JP18101388A JP18101388A JPH0230160A JP H0230160 A JPH0230160 A JP H0230160A JP 18101388 A JP18101388 A JP 18101388A JP 18101388 A JP18101388 A JP 18101388A JP H0230160 A JPH0230160 A JP H0230160A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
silicon oxide
region
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18101388A
Other languages
Japanese (ja)
Inventor
Takayuki Kamiya
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18101388A priority Critical patent/JPH0230160A/en
Publication of JPH0230160A publication Critical patent/JPH0230160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce a floating capacitance between a wiring layer and a silicon substrate, and obtain a semiconductor device having a high integration degree and capable of high speed operation, by arranging, in a field region, a silicon oxide film which is formed in the self-matching manner in the range of width of an isolation trench, and has a thickness larger than insulating films on an element region. CONSTITUTION:On the surface of a semiconductor substrate 1 in the title device, an element region B and a field region A are formed and isolated by an isolation trench 4 whose inside is filled with polycrystalline silicon. A silicon oxide film 10 is formed in the field region A, in the self-matching manner in the range of width of the isolation trench 4, and the thickness is larger than the thicknesses of insulating films 2, 3 on the element region B. For example, after the silicon oxide film 2 is formed on the silicon substrate 1, and the silicon nitride film 3 is deposited, the trench 4 is formed and then a channel stopper layer 5 is formed. A silicon oxide film 6 is formed on the side surface and the bottom surface of the trench 4, and the inside of the trench is filled with polycrystalline silicon 7. After that, oxidizing is performed by using the silicon nitride film 3 as a mask, and the thick silicon oxide film 10 is formed on the upper part of the polycrystalline silicon 7 and on the field region A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に多結晶シリコンを埋設
材とする深い溝による素子間絶縁分離を用いる高集積度
の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device, and more particularly to a highly integrated semiconductor device that uses isolation between elements by deep trenches filled with polycrystalline silicon.

〔従来の技術〕[Conventional technology]

深い分離溝を用いた素子間絶縁分離は通常の選択酸化法
でのバースビークと呼ばれる活性領域への酸化膜の食い
込み部分が生じない為、絶縁分離に要する面積が選択酸
化法に比べて少なく、高集積度の半導体集積回路装置の
絶縁分離法として有利である。
Inter-element insulation isolation using deep isolation trenches does not cause the oxidized film to dig into the active region, which is called birthbeak, which occurs in normal selective oxidation methods, so the area required for insulation isolation is smaller than in selective oxidation methods, resulting in high efficiency. This method is advantageous as an insulation isolation method for highly integrated semiconductor integrated circuit devices.

従来、分離溝による素子間絶縁分離を行なうと、分離溝
に囲まれた素子形成領域と分離溝の外側の素子を形成し
ない領域とは表面に形成される絶縁膜の種類と厚さは同
じ構造となっていた。
Conventionally, when insulation isolation between elements is performed using an isolation trench, the type and thickness of the insulating film formed on the surface of the element formation region surrounded by the isolation trench and the region outside the isolation trench where no element is formed are the same structure. It became.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の溝絶縁分離の構造では、フィールド領域
の上部には素子を形成する領域上と同一の絶縁膜を同一
の膜厚で形成する事となるので充分な膜厚の絶縁膜が得
られず、従って、さらに上部に形成する金属配線層と半
導体基板との間に少なからぬ量の浮遊容量が生じ、これ
が素子の高速動作の妨げとなる欠点があった。
In the conventional groove isolation structure described above, the same insulating film is formed at the same thickness above the field region as on the region where the element is formed, so it is not possible to obtain an insulating film of sufficient thickness. Therefore, a considerable amount of stray capacitance occurs between the metal wiring layer formed further above and the semiconductor substrate, which has the drawback of hindering high-speed operation of the device.

これを避ける為に、溝による絶縁分離と選択酸化による
酸化膜分離とを併用し、素子の配列の結果広いフィール
ド部が存在する領域には酸化膜分離を用い、また素子が
緻密に並ぶ領域には溝絶縁分離を用いる事は有効な方法
であるが、絶縁分離のための工程が著しく複雑になるだ
けでなく、素子を形成する為の後工程で行なう写真食刻
工程では分離溝と分離酸化膜の双方に同時に位置合わせ
を行なう事となるので、分離溝と分離酸化膜との相対位
置は予め厳密に合わせておかなければならないという制
約が生じ、高集積度の半導体装置にはこのように二種類
の絶縁分離方法を併用する事は望ましくない。
In order to avoid this, we use a combination of insulation isolation using trenches and oxide film isolation using selective oxidation, and use oxide film isolation in areas where there is a wide field area as a result of the arrangement of elements, and in areas where elements are closely arranged. Using trench isolation is an effective method, but not only does the process for isolation become extremely complicated, but the photolithography process that is performed in the subsequent process to form the device requires the use of isolation trenches and isolation oxidation. Since alignment is performed on both sides of the film at the same time, there is a constraint that the relative positions of the isolation trench and the isolation oxide film must be precisely aligned in advance. It is not desirable to use two types of isolation methods together.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体基板表面に多結晶シリコンで内部を充
填した分離溝によって素子領域とフィールド領域とを分
離形成した半導体装置において、前記フィールド領域に
前記分離溝の幅の範囲で自己整合的に形成され、且つ前
記素子領域上の絶縁膜の厚さより厚いシリコン酸化膜を
有する。
The present invention provides a semiconductor device in which an element region and a field region are separated from each other by an isolation trench filled with polycrystalline silicon on the surface of a semiconductor substrate, in which an element region and a field region are formed in a self-aligned manner within the width of the isolation trench. and has a silicon oxide film thicker than the thickness of the insulating film on the element region.

〔実施例〕〔Example〕

次に、本発明の実施例について2つを図面を参照して説
明する。
Next, two embodiments of the present invention will be described with reference to the drawings.

〔実施例1〕 第1の実施例として第1図の(c)にその構造の縦断面
図を示した。分離溝の内壁は薄い酸化膜があり多結晶シ
リコン7で埋設されており、領域B(素子形成領域)の
表面にはシリコン酸化膜2とその上にシリコン窒化膜3
があり、領域A(素子を形成しない領域)の表面には厚
い(5000Å以上)シリコン酸化膜10がある。
[Example 1] As a first example, a vertical cross-sectional view of the structure is shown in FIG. 1(c). The inner wall of the isolation trench has a thin oxide film buried in polycrystalline silicon 7, and the surface of region B (element formation region) has a silicon oxide film 2 and a silicon nitride film 3 thereon.
There is a thick (5000 Å or more) silicon oxide film 10 on the surface of region A (region where no element is formed).

次に、この製造方法を第1図にもとすいて説明する。第
1図の(a)に示すように、P型シリコン基板1の主面
上を酸化して500人の第1のシリコン酸化膜2を形成
し、気相成長により1000人のシリコン窒化膜3を堆
積した後、ホトレジストパターンをマスクとした異方性
ドライエツチングによりシリコン窒化膜3、第1のシリ
コン酸化膜2及びシリコン基板1を順次食刻して幅1.
5μm、深さ4μmの溝4を形成する。溝4の底部にB
+イオンを注入しP+チャネルストッパ層5を形成した
後ホトレジスト材を除去する。ここで溝4で分かれた領
域Aは素子を形成しないフィールド領域であり、領域B
は素子を形成する活性領域である。次に第1図の(b)
に示すように、シリコン窒化膜3をマスクとして酸化を
行ない溝4の側面及び底面に膜厚2000人の第2のシ
リコン酸化膜6を形成し、tg4の内部を多結晶シリコ
ン7で埋設する。再びシリコン窒化膜3をマスクとして
酸化を行ない、多結晶シリコン7の表面に第3のシリコ
ン酸化膜8を1000人形成する。
Next, this manufacturing method will be explained based on FIG. 1. As shown in FIG. 1(a), a first silicon oxide film 2 of 500 layers is formed by oxidizing the main surface of a P-type silicon substrate 1, and a silicon nitride film 3 of 1000 layers is formed by vapor phase growth. After depositing the silicon nitride film 3, the first silicon oxide film 2, and the silicon substrate 1 by anisotropic dry etching using the photoresist pattern as a mask, the silicon nitride film 3, first silicon oxide film 2, and silicon substrate 1 are sequentially etched to a width of 1.
A groove 4 of 5 μm and 4 μm deep is formed. B at the bottom of groove 4
After + ions are implanted to form a P+ channel stopper layer 5, the photoresist material is removed. Here, the region A divided by the groove 4 is a field region in which no element is formed, and the region B
is the active region forming the device. Next, (b) in Figure 1
As shown in FIG. 3, a second silicon oxide film 6 with a thickness of 2,000 thick is formed on the side and bottom surfaces of the trench 4 by oxidation using the silicon nitride film 3 as a mask, and the inside of the tg4 is filled with polycrystalline silicon 7. Oxidation is performed again using the silicon nitride film 3 as a mask to form a third silicon oxide film 8 on the surface of the polycrystalline silicon 7.

次にフィールド領域上のシリコン窒化膜3を除去する為
にホトレジストパターン9を形成し、プラズマエツチン
グを行なって露出しているシリコン窒化膜3を除去する
。次に第1図の(c)に示すように、ホトレジスト材9
を除去した後、シリコン窒化膜3をマスクとして酸化を
行ない多結晶シリコン7の上部及びフィールド領域上に
6000人の厚さの第4のシリコン酸化膜10を形成し
て絶縁分離領域が完成する。この後、活性領域Bに素子
を形成し、素子の間を接続する金属配線層を形成する。
Next, a photoresist pattern 9 is formed to remove the silicon nitride film 3 on the field region, and plasma etching is performed to remove the exposed silicon nitride film 3. Next, as shown in FIG. 1(c), the photoresist material 9
After removing the silicon nitride film 3, oxidation is performed using the silicon nitride film 3 as a mask to form a fourth silicon oxide film 10 having a thickness of 6,000 wafers on the top of the polycrystalline silicon 7 and on the field region, thereby completing an insulating isolation region. After this, elements are formed in the active region B, and a metal wiring layer is formed to connect the elements.

本実施例では溝4の食刻で形成したシリコン窒化膜パタ
ーンを活性領域上にのみ残す事により、溝に対して自己
整合的に第4のシリコン酸化膜10を形成している。
In this embodiment, by leaving the silicon nitride film pattern formed by etching the groove 4 only on the active region, the fourth silicon oxide film 10 is formed in a self-aligned manner with respect to the groove.

〔実施例2〕 第2の実施例として第2図の(c)にその構造の縦断面
図を示した。分離溝の内壁はシリコン酸化膜11その上
にシリコン窒化膜があり多結晶シリコン7で埋設されて
おり、領域B(素子形成領域)の表面にはシリコン酸化
膜11とその上にシリコン窒化膜3があり、領域A(素
子を形成しない領域)の表面には厚い(5000Å以上
)シリコン酸化膜14がある。
[Example 2] As a second example, a longitudinal sectional view of the structure is shown in FIG. 2(c). The inner wall of the isolation trench has a silicon oxide film 11 on which a silicon nitride film is buried and is buried in polycrystalline silicon 7, and the surface of region B (element formation region) has a silicon oxide film 11 and a silicon nitride film 3 thereon. There is a thick (5000 Å or more) silicon oxide film 14 on the surface of region A (region where no element is formed).

次に、この製造方法を第2図にもとすいて説明する。第
2図(a)に示すようにP型シリコン基板1に異方性ド
ライエツチングにより幅1.5μm1深さ4.0μmの
溝4を食刻し、溝の底部にB+イオンを注入しP+チャ
ネルストッパ層5を形成する。次に第2図の(b)に示
すように、シリコン基板Iの表面及び溝4の側面と底面
に膜厚500人の第1のシリコン酸化膜11及び100
0人のシリコン窒化膜12を順次形成する。溝4の内部
を多結晶シリコン7で埋設し、多結晶シリコン7の表面
を酸化して膜厚1000人の第2のシリコン酸化膜13
を形成した後、第1の実施例と同じくホトレジストパタ
ーン9をマスクとしてフィールド領域上のシリコン窒化
膜12を除去する。次に第2図の(c)に示すように、
活性領域上に残したシリコン窒化膜12をマスクとして
酸化を行ない多結晶シリコン7の上部及びフィールド領
域上に6000人の厚さの第3のシリコン酸化膜14を
得る。
Next, this manufacturing method will be explained with reference to FIG. As shown in FIG. 2(a), a groove 4 with a width of 1.5 μm and a depth of 4.0 μm is etched into a P-type silicon substrate 1 by anisotropic dry etching, and B+ ions are implanted into the bottom of the groove to form a P+ channel. A stopper layer 5 is formed. Next, as shown in FIG. 2(b), first silicon oxide films 11 and 100 with a film thickness of 500 are coated on the surface of the silicon substrate I and the side and bottom surfaces of the trench 4.
0 silicon nitride films 12 are sequentially formed. The inside of the groove 4 is filled with polycrystalline silicon 7, and the surface of the polycrystalline silicon 7 is oxidized to form a second silicon oxide film 13 with a thickness of 1000.
After forming, the silicon nitride film 12 on the field region is removed using the photoresist pattern 9 as a mask as in the first embodiment. Next, as shown in Figure 2(c),
Using the silicon nitride film 12 left on the active region as a mask, oxidation is performed to obtain a third silicon oxide film 14 with a thickness of 6000 nm over the polycrystalline silicon 7 and on the field region.

ここで溝4に対して自己整合的にフィールド酸化膜であ
る第3のシリコン酸化膜が得られる事は第1の実施例と
同様である。また第2の実施例では溝の側面がシリコン
窒化膜で覆われている為、フィールド領域の酸化を厚く
行なっても活性領域への酸化の食い込みは全く生じない
Here, the third silicon oxide film, which is a field oxide film, is obtained in a self-aligned manner with respect to the trench 4, as in the first embodiment. Further, in the second embodiment, since the side surfaces of the trench are covered with a silicon nitride film, even if the field region is oxidized thickly, the oxidation does not penetrate into the active region at all.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、深い溝による絶縁分離を
行なうにあたり、素子を形成しないフィールド領域のシ
リコン基板表面に5000Å以上の厚さのシリコン酸化
膜を形成することにより、配線層とシリコン基板との間
の浮遊容量を低減し、高集積度でかつ高速動作の可能な
半導体装置が実現可能である。
As explained above, the present invention enables isolation between wiring layers and silicon substrate by forming a silicon oxide film with a thickness of 5000 Å or more on the surface of the silicon substrate in the field region where no elements are formed, when performing insulation isolation using deep trenches. It is possible to reduce the stray capacitance between the semiconductor devices and realize a semiconductor device that is highly integrated and capable of high-speed operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図の(c)は本発明の第1の実施例の縦断面図であ
り、その(a)〜(c)は主要工程における縦断面図、
第2図の(c)は本発明の第2の実施例の縦断面図であ
り、その(a)〜(c)は主要工程における縦断面図で
ある。 1・・・・・・P型シリコン基板、2・・・・・・第1
のシリコン酸化膜、3・・・・・・シリコン窒化膜、4
・・・・・・分離溝、5・・・・・・P″チヤネルスト
ツフ層6・・・・・・第2のシリコン酸化膜、7・・・
・・・多結晶シリコン、8・・・・・・第3のシリコン
酸化膜、9・・・・・・ホトレジスト、10・・・・・
・第4のシリコン酸化膜、11・・・・・・第1のシリ
コン酸化膜、12・・・・・・シリコン窒化膜、13・
・・・・・第2のシリコンM([,14・・・・・・第
3のシリコン酸化膜、A・・・・・・フィールド領域、
B・・・・・・活性領域。
FIG. 1(c) is a longitudinal cross-sectional view of the first embodiment of the present invention, and (a) to (c) are longitudinal cross-sectional views in main steps,
FIG. 2(c) is a longitudinal cross-sectional view of a second embodiment of the present invention, and (a) to (c) thereof are longitudinal cross-sectional views in main steps. 1... P-type silicon substrate, 2... First
silicon oxide film, 3...silicon nitride film, 4
...Separation trench, 5...P'' channel stop layer 6...Second silicon oxide film, 7...
... Polycrystalline silicon, 8 ... Third silicon oxide film, 9 ... Photoresist, 10 ...
- Fourth silicon oxide film, 11... First silicon oxide film, 12... Silicon nitride film, 13.
...Second silicon M ([,14...Third silicon oxide film, A...Field region,
B...Active region.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に多結晶シリコンで内部を充填した分離
溝によって素子領域とフィールド領域とを分離形成した
半導体装置において、前記フィールド領域に前記分離溝
の幅の範囲で自己整合的に形成され、かつ前記素子領域
上の絶縁膜の厚さより厚いシリコン酸化膜を有すること
を特徴とする半導体装置。
In a semiconductor device in which an element region and a field region are separated from each other by an isolation trench filled with polycrystalline silicon on the surface of a semiconductor substrate, the field region is formed in a self-aligned manner within the width of the isolation trench; A semiconductor device comprising a silicon oxide film that is thicker than an insulating film on an element region.
JP18101388A 1988-07-19 1988-07-19 Semiconductor device Pending JPH0230160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18101388A JPH0230160A (en) 1988-07-19 1988-07-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18101388A JPH0230160A (en) 1988-07-19 1988-07-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0230160A true JPH0230160A (en) 1990-01-31

Family

ID=16093224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18101388A Pending JPH0230160A (en) 1988-07-19 1988-07-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0230160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283305A (en) * 1994-01-19 1995-10-27 Hyundai Electron Ind Co Ltd Semiconductor device with trench element separation film andmanufacture thereof
KR20030057282A (en) * 2001-12-28 2003-07-04 미쓰비시덴키 가부시키가이샤 Semiconductor device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060736A (en) * 1983-09-14 1985-04-08 Oki Electric Ind Co Ltd Manufacture of semicondutor integrated circuit device
JPS60136327A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Manufacture of semiconductor device
JPS6379343A (en) * 1986-09-24 1988-04-09 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060736A (en) * 1983-09-14 1985-04-08 Oki Electric Ind Co Ltd Manufacture of semicondutor integrated circuit device
JPS60136327A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Manufacture of semiconductor device
JPS6379343A (en) * 1986-09-24 1988-04-09 Hitachi Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283305A (en) * 1994-01-19 1995-10-27 Hyundai Electron Ind Co Ltd Semiconductor device with trench element separation film andmanufacture thereof
KR20030057282A (en) * 2001-12-28 2003-07-04 미쓰비시덴키 가부시키가이샤 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH03155151A (en) Manufacture of semiconductor structure
JPS6118147A (en) Method of forming semiconductor device
JPS6348180B2 (en)
TW200418130A (en) Semiconductor-on-insulator chip and method thereof
JPS6325947A (en) Manufacture of semiconductor device
US5061653A (en) Trench isolation process
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPS5898943A (en) Manufacture of semiconductor device
JPS61247051A (en) Manufacture of semiconductor device
JPH05849B2 (en)
JPH0230160A (en) Semiconductor device
JPH06326091A (en) Formation method for field oxide film in semiconductor element
JPS61228650A (en) Manufacture of semiconductor device
JPH0513535B2 (en)
JP2812013B2 (en) Method for manufacturing semiconductor device
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
JP2568638B2 (en) Method for manufacturing semiconductor device
JPH08195436A (en) Contact hole formation of semiconductor element
JP3321613B2 (en) Method for forming shallow and deep grooves in silicon substrate
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH06104334A (en) Semiconductor device
JP2767104B2 (en) Method for manufacturing semiconductor device
JP3059749B2 (en) Method for manufacturing semiconductor device
JPH0834241B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS63122239A (en) Manufacture of semiconductor device