JPS6060736A - Manufacture of semicondutor integrated circuit device - Google Patents

Manufacture of semicondutor integrated circuit device

Info

Publication number
JPS6060736A
JPS6060736A JP16826783A JP16826783A JPS6060736A JP S6060736 A JPS6060736 A JP S6060736A JP 16826783 A JP16826783 A JP 16826783A JP 16826783 A JP16826783 A JP 16826783A JP S6060736 A JPS6060736 A JP S6060736A
Authority
JP
Japan
Prior art keywords
film
substrate
main surface
oxide film
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16826783A
Other languages
Japanese (ja)
Other versions
JPH0420267B2 (en
Inventor
Akira Kawakatsu
川勝 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16826783A priority Critical patent/JPS6060736A/en
Publication of JPS6060736A publication Critical patent/JPS6060736A/en
Publication of JPH0420267B2 publication Critical patent/JPH0420267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76221Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO with a plurality of successive local oxidation steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To realize a semiconductor integrated circuit device, wherein the width of each interelement isolating region is narrow and there is little parasitic capacity, by a method wherein, after the surface of the substrate was oxidized using an oxidation-resistant film formed selectively on the substrate as a mask, grooves are formed in parts of the substrate with a fixed width on the periphery of the oxidation-resistant film and the grooves are filled with an oxide film. CONSTITUTION:A first oxidation-resistant film 4 is selectively formed on the main surface of a substrate 1, whereon a diffusion layer 2 and an epitaxial layer 3 having been formed, and moreover, a CVD oxide film 5 is formed on the film 4 excluding parts of the film 4 with a fixed width on the periphery of the film 4. Then, after a thermal oxide film 7 was formed on the surface of the substrate 1, parts of the film 4, where have not been covered with the film 5, are removed and grooves 8 are formed there. A thin oxide film is respectively formed on the inner walls of the grooves 8 and after ions were implanted in the bottom parts of the grooves 8, a silicon nitride film 13 is formed on the whole surface including the surfaces of the inner walls of the grooves 8. A CVD oxide film 14 is deposited on the whole surface of the film 13 and after the grooves 8 were filled, the film 14 is removed, being left the film 14 only in the grooves 8 intact.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体集積回路装置の製造方法に関し、特に
バイポーラ型半導体集積回路装置に好適な素子分離領域
の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and particularly to a method of forming an element isolation region suitable for a bipolar semiconductor integrated circuit device.

(従来技術) バイポーラ型半導体集積回路装置の素子分離は。(Conventional technology) Element isolation for bipolar semiconductor integrated circuit devices.

古くはPN接合分離法によっていたが、素子が微細化さ
れ集積度が増大するにつれ、分離領域の面積を削減する
必要が生じ、シリコン基板の選択酸化による厚いシリコ
ン酸化膜を利用した酸化膜分離法(いわゆるアイソプレ
ーナ)に移行してきた。
In the past, the PN junction isolation method was used, but as devices become smaller and the degree of integration increases, it becomes necessary to reduce the area of the isolation region, so an oxide film isolation method that uses a thick silicon oxide film by selective oxidation of the silicon substrate has been adopted. (so-called isoplanar).

酸化膜分離法は、PN分離法に比べて著しく分離領域を
減少させるのみならず、素子領域以外のすべての領域(
以下フィールド領域と呼ぶ)を厚い酸化膜に変換するた
め、配線−基板間の浮遊容量が減少し、高速化にも寄与
する効果的な方法である。
The oxide film isolation method not only significantly reduces the isolation area compared to the PN isolation method, but also eliminates all areas other than the element area (
This is an effective method that reduces the stray capacitance between the wiring and the substrate and contributes to speeding up since the area (hereinafter referred to as a field region) is converted into a thick oxide film.

酸化膜分離法は、電子形成領域を、薄いシリコン酸化膜
上にシリコン窒化膜を積層した2層膜よシなる耐酸化性
マスクで覆い、しかも厚い酸化膜を形成する領域に酸化
による体積の増大を防ぐためにエツチングにより溝を形
成したのち熱酸化し、素子領域と分離領域をほぼ平坦面
とする方法である。
In the oxide film isolation method, the electron formation region is covered with an oxidation-resistant mask such as a two-layer film consisting of a silicon nitride film laminated on a thin silicon oxide film, and the volume is increased by oxidation in the region where a thick oxide film is to be formed. In order to prevent this, a groove is formed by etching and then thermally oxidized to make the element region and the isolation region into substantially flat surfaces.

したがって、溝の側面方向にも酸化が進み、分離領域の
幅は写真食刻によって規定される幅よシも必ず太←■、
埋込拡散層とのマスク合わせ余裕なども考慮すると、約
10μm程度が限界となる。
Therefore, oxidation progresses in the side direction of the groove, and the width of the separation region is always wider than the width defined by photoetching.
Considering the margin for mask alignment with the buried diffusion layer, the limit is about 10 μm.

さらに、素子領域のシリコン基板と耐酸化性マスク層と
の間には、分離領域からくさび状に張シ出した酸化膜、
即ちパース・ピークが形成されること、および素子領域
の周囲での酸化膜の盛シ上り即ちバーズ・ヘッドが形成
されることにより、完全には平坦な表面が得られないと
いう欠点があった。
Furthermore, between the silicon substrate in the element region and the oxidation-resistant mask layer, an oxide film extending in a wedge shape from the isolation region,
That is, there is a drawback that a perfectly flat surface cannot be obtained due to the formation of perspective peaks and the formation of a raised oxide film, that is, a bird's head, around the device region.

一方、素子の微細化は更に進み、高集積化のためには更
に分離領域の面積を縮小する必要が生じた。
On the other hand, the miniaturization of elements has progressed further, and it has become necessary to further reduce the area of isolation regions in order to achieve higher integration.

最hvcなって、基板面に対して垂直に膜をエツチング
する異方性エツチング技術である反応性イオンエッチ(
以下RI Eと呼ぶ)が実用化され、酸化膜分離法に代
わる新たな素子分離法が開発さノ]、つつある。
HVC is an anisotropic etching technique that etches the film perpendicular to the substrate surface.
RIE (hereinafter referred to as RIE) has been put into practical use, and new device isolation methods are being developed to replace oxide film isolation methods.

これ捷でに提案された種々の新分離技術を大別すると以
下の2つに分類される。
The various new separation techniques that have been proposed can be broadly classified into the following two categories.

一つは、RIEによって深い溝を掘り、二酸化シリコン
や多結晶シリコンなどによって埋め戻して平坦化する方
法(以下、溝掘り法と呼ぶ)であり、他の一つは、素子
領域の表面のみならず、溝の側壁も耐酸化性マスク層で
被覆して、横方向酸化による分離領域幅の増大とパーク
・ピーク、バーズ・ヘッドの形成を防止する方法(以下
、改良型選択酸化法と呼ぶ)である。
One is to dig a deep trench by RIE and flatten it by backfilling it with silicon dioxide or polycrystalline silicon (hereinafter referred to as the trenching method). First, the sidewalls of the trench are also covered with an oxidation-resistant mask layer to prevent the increase in isolation region width and the formation of park peaks and bird's heads due to lateral oxidation (hereinafter referred to as improved selective oxidation method). It is.

溝堀り法は、溝を形成した後、二酸化シリコンなどの絶
縁物あるいは、溝内壁に絶縁膜を形成後したのち多結晶
シリコンなどを厚く堆積させ、エッチパックして平坦化
するものであり、バイポーラ型半導体集積回路装置に適
用する場合r(は、基板全面に形成した埋込拡散層を貫
く深い溝を形成して埋゛込拡散用のマスクを省略できる
利点があるが、素子分離用の幅の狭い溝部と、幅の広い
フィールド領域の溝部とを同時に平坦化することが困難
であり、そのため、平坦化用のマスクが必要となり、厳
しい合わせ精度が要求され、さらに工程も複雑化すると
いう欠点がある。
In the trenching method, after forming a trench, an insulating material such as silicon dioxide or an insulating film is formed on the inner wall of the trench, and then polycrystalline silicon or the like is deposited thickly, and the trench is flattened by etch-packing. When applied to a bipolar semiconductor integrated circuit device, there is an advantage that a deep groove penetrating the buried diffusion layer formed on the entire surface of the substrate can be formed and a mask for buried diffusion can be omitted; It is difficult to planarize narrow grooves and wide field area grooves at the same time, which requires a planarization mask, requires strict alignment accuracy, and complicates the process. There are drawbacks.

一方、改良型選択鹸化法は分離幅によらず平坦化が可能
であり、工程も比較的簡単であるが、埋込拡散層を貫く
分離は実用的には不可能であるため埋込拡散用マスクを
必要とし、分離領域が狭くなるほど埋込拡散と分離のマ
スク合わせ精度が厳しくなるので、溝掘り法はど分離領
域幅を狭められない。また、選択酸化膜直下に設けるチ
ャンネルストップ用のP層がN埋込層と接触するため。
On the other hand, with the improved selective saponification method, flattening is possible regardless of the separation width, and the process is relatively simple, but separation through the buried diffusion layer is practically impossible, so A mask is required, and as the isolation region becomes narrower, the accuracy of mask alignment for buried diffusion and isolation becomes more difficult, so the trenching method cannot reduce the width of the isolation region. Also, the P layer for channel stop provided directly under the selective oxide film contacts the N buried layer.

寄生容址が溝堀シ法に比べて大きいという欠点がある。The disadvantage is that the parasitic mass is larger than that of the Mizohori method.

さらに、横方向酸化が少ないため、チャンネルストップ
用2層が拡散にょ力分離酸化膜の外側に広がり、リーク
や耐圧低下の原因と々る恐れがある、。
Furthermore, since there is little lateral oxidation, the two channel stop layers spread outside the diffusion isolation oxide film, which may cause leaks and a drop in breakdown voltage.

(発明の目的) この発明はとわらの欠点に鑑みなされたもので、ただ一
度の写真蝕刻法のみによって分離領域幅によらず平坦化
された表面を形成することができるとともに、素子間分
離領域幅を狭くでき、さらには寄生容蓋を低減できると
ともに、バイポーラ型に適用]−た場合は埋込拡散用マ
スクを省略できる半導体集積回路装置の製造方法を提供
することを目的とする。
(Object of the Invention) The present invention was made in view of the drawbacks of Towara, and it is possible to form a flat surface regardless of the width of the isolation region by just one photolithography process, and It is an object of the present invention to provide a method for manufacturing a semiconductor integrated circuit device that can reduce the width, reduce parasitic capacitance, and omit a buried diffusion mask when applied to a bipolar type.

(発明のイず4成) この発明の半導体集積回路装置の製造方法は、半導体基
体主表面に耐酸化性の第1の膜を選択的に形成すると共
に前記第1の膜の周辺一定幅の領域1を除<該第1の膜
上に、この膜のエツチングマスクと々る第2の膜を形成
する工程、前記第1の膜で被覆され々い前記主表面を酸
化膜に変換する工程、前記第2の膜で被覆されない前記
第1の膜を除去して前記基体主表面を露出する工程、こ
の露出した前記基体にこの基体主表面とほぼ垂直な側壁
を持つ溝を形成する工程、前記溝の内壁を含む主表面全
面に耐酸化性の第3の膜を形成する工程、該第3の膜上
に第4の膜を堆積し前記溝を前記第4の膜で埋める工程
、前記酸化膜及び前記第2の膜上の前記第3の膜が露出
する迄前記第4の膜を除去する工程、この露出した前記
第3の膜を除去し更に前記酸化膜を除去し、この酸化膜
直下の前記基体主表面を露出する工程、この篠山した前
記基体主表面若しくは該露出した前記基体主表面及び前
記溝内の第4の膜表面を所定の厚さ蝕刻する工程、該蝕
刻によシくほんだ表面が前記第1の膜直下の前記基体表
面とほぼ同じ高さになる迄酸化する工程とを有する事を
特徴とする。
(Part 4 of the Invention) The method for manufacturing a semiconductor integrated circuit device of the present invention includes selectively forming an oxidation-resistant first film on the main surface of a semiconductor substrate, and forming a constant width around the periphery of the first film. A step of forming a second film on the first film except for region 1 using an etching mask of this film, and a step of converting the main surface that is not covered with the first film into an oxide film. , removing the first film that is not covered with the second film to expose the main surface of the substrate; forming a groove in the exposed substrate with sidewalls substantially perpendicular to the main surface of the substrate; a step of forming an oxidation-resistant third film on the entire main surface including the inner wall of the trench; a step of depositing a fourth film on the third film and filling the trench with the fourth film; removing the fourth film until the oxide film and the third film on the second film are exposed; removing the exposed third film and then removing the oxide film; a step of exposing the main surface of the substrate immediately below the film; a step of etching the polished main surface of the substrate or the exposed main surface of the substrate and the fourth film surface in the groove to a predetermined thickness; The method is characterized by comprising a step of oxidizing the thinned surface until it becomes approximately at the same height as the surface of the substrate immediately below the first film.

また、この発明の半導体集積回路装置の製造方法は、半
導体基体主表面に耐酸化性の第1の膜を選択的に形成す
ると共に前記第1の膜の周辺一定+1Vifの領域上を
除く該第1の膜上に、この膜のエツチングマスクとなる
第2の膜を形成する工程、前記第1の膜で被覆されない
前記主表面を酸化膜に変換する工程、前記第2の膜で被
覆され々い前記第1の膜を除去して前記基体主表面を露
出する工程、この露出した前記基体にこの基体主表面と
ほぼ垂直々側壁を持つ溝を形成する工程、前記溝の内壁
を含む主表面全面に耐酸化性の第3の膜を形成する工程
、前記溝の側壁の前記第3の膜及び前記第1の膜を残す
様に残余の部分の前記膜を除去し前記半導体基体を部分
的に露出する工程、この露出した前記基体を含む表面全
面に第4の膜を堆積し、前記構をこの第4の膜で埋める
工程、前記溝内の前記第4の膜がこの溝の深さの半分以
上残存する様に該第4の膜及びこの第4の膜直下の前記
基体主表面を蝕刻する工程、この蝕刻によシくほんだ表
面が前記第1の膜直下の前記基体表面と181、 ?!
同じ高さになる迄酸化する工程とを有する事を特徴とす
る。
Further, in the method of manufacturing a semiconductor integrated circuit device of the present invention, an oxidation-resistant first film is selectively formed on the main surface of a semiconductor substrate, and the first film is formed on the main surface of the semiconductor substrate except on a region of constant +1 Vif around the first film. forming a second film on the first film to serve as an etching mask for this film; converting the main surface not covered with the first film into an oxide film; removing the first film to expose the main surface of the substrate; forming a groove in the exposed substrate with side walls substantially perpendicular to the main surface of the substrate; a main surface including the inner wall of the groove; a step of forming an oxidation-resistant third film on the entire surface, removing the remaining part of the film so as to leave the third film and the first film on the side walls of the trench, and partially forming the semiconductor substrate; a step of depositing a fourth film on the entire surface including the exposed substrate and filling the structure with the fourth film; a step of etching the fourth film and the main surface of the substrate directly under the fourth film so that more than half of the fourth film remains; , ? !
It is characterized by having a step of oxidizing until the height becomes the same.

(実施例) 以下この発明の実施例を図面な蕗照して851明する。(Example) Embodiments of the present invention will be explained below with reference to the drawings.

実施例は、この発明をバイポーラ型半緩1体m積回路装
置に適用したものであるが、この発明の適用範囲はこれ
に限るものではなく、MOS型その他の半導体集積回路
装置に適用することも可能である。
In the embodiment, the present invention is applied to a bipolar type semi-loose 1-volume circuit device, but the scope of application of the present invention is not limited to this, and can be applied to MOS type and other semiconductor integrated circuit devices. is also possible.

第1図(A)ないしくI)はこの発明の第1の実施例を
示す工程断面図である。
FIGS. 1(A) to 1(I) are process cross-sectional views showing a first embodiment of the present invention.

第1図(A)において、1はP−型シリコン基板、2は
その基板1に形成されたN″−型埋込拡散層、3はその
拡散層2上に形成されたN−型エピタキシャル層である
。以下、これら基板1および層2,3を総称してシリコ
ン基体(半導体基体)と記す。
In FIG. 1(A), 1 is a P-type silicon substrate, 2 is an N''-type buried diffusion layer formed on the substrate 1, and 3 is an N-type epitaxial layer formed on the diffusion layer 2. Hereinafter, these substrate 1 and layers 2 and 3 will be collectively referred to as a silicon substrate (semiconductor substrate).

このシリコン基体の主表面に、同第1図(A)に示すよ
うに第1の耐酸化性膜(第1の膜)4とCVD酸化膜(
第2の膜)5を順次堆積させる。ここで、第1の耐酸化
性膜4は、たとえば300〜1000人の薄い熱酸化膜
に1000〜3000X厚のシリコン窒化膜を積層した
2層膜とすることが望ましい。
As shown in FIG. 1(A), a first oxidation-resistant film (first film) 4 and a CVD oxide film (
A second film) 5 is sequentially deposited. Here, the first oxidation-resistant film 4 is desirably a two-layer film in which a silicon nitride film with a thickness of 1000 to 3000 times is laminated on a thin thermal oxide film of, for example, 300 to 1000 times.

次に、第1図ωンのように1通常の写真蝕刻法によりレ
ジスト層6をマスクとしてCVD酸化膜5を蝕刻する。
Next, as shown in FIG. 1, the CVD oxide film 5 is etched using the resist layer 6 as a mask by a conventional photolithography method.

この時、たとえば0.5〜2μm程度のサイドエッチを
行う。このサイドエッチは、たとえば弗化水素酸−弗化
アンモニウム系水溶液などににって精度よく行うことが
できる。
At this time, side etching of approximately 0.5 to 2 μm is performed, for example. This side etching can be performed with high precision using, for example, a hydrofluoric acid-ammonium fluoride aqueous solution.

続いて、第1図(C)に示すように、レジスト層6をマ
スクとしてRIEによって第1の耐酸化性膜4を垂直に
エツチングする。これにより、第1の耐酸化性[4はシ
リコン基体の選択された主表面に形成されるようになり
、さらにc V D 酸化膜5は、その第10it酸化
性膜4の周辺の一定幅の領域上を除く該第1の銅酸化性
膜4上に形成される。
Subsequently, as shown in FIG. 1C, the first oxidation-resistant film 4 is vertically etched by RIE using the resist layer 6 as a mask. As a result, the first oxidation resistant [4] is formed on the selected main surface of the silicon substrate, and furthermore, the c V D oxide film 5 is formed on the periphery of the 10th oxidized film 4 with a constant width. It is formed on the first copper oxide film 4 except on the region.

なお、第1図(qの形状を得るには、レジスト層6と同
寸法にCVD酸化膜5と第1の耐酸化性膜4を連続的に
形成した後、CV D F&化膜5のサイトエッチを行
うようにしてもよい。
Note that in order to obtain the shape shown in FIG. You may also perform sex.

次に、レソスト層6を除去した後、シリコン基体の露出
面(第1の耐酸化性膜4で被覆されていない部分)を熱
酸化することによシ、この部分に第1図(D)K示すよ
うVC1000〜5000人程度0tW−さの熱酸化膜
7を形成する。
Next, after removing the resist layer 6, the exposed surface of the silicon substrate (the portion not covered with the first oxidation-resistant film 4) is thermally oxidized to form a surface as shown in FIG. 1(D). A thermal oxide film 7 with a thickness of about 0 tW is formed as shown in FIG.

その後、熱酸化膜7とCVD酸化膜5をマスクとして、
CVD酸化膜5で被覆されていない部分の第1の耐酸化
性膜4を除去し、その部分のシリコン基体を露出させる
After that, using the thermal oxide film 7 and the CVD oxide film 5 as a mask,
The portions of the first oxidation-resistant film 4 that are not covered with the CVD oxide film 5 are removed to expose the silicon substrate in those portions.

しかる後、露出部のシリコン基体に第1図(6)に示す
ように溝8を形成する。ここで、溝8は、エピタキシャ
ル層3および埋込拡散層2を貫いてシリコン基板1に達
するように、しかもシリコン基体主表面とほぼ垂直な側
壁を持つようにRIEによって形成される。なお、この
溝8を形成した状態を示す前記第1図(ト)において、
CV D Aj?化膜5と第1の耐酸化性膜4で被覆さ
れたシリコン基体の部分を素子形成領域9. 、92と
する。また、この素子形成領域9Iと92の間を素子間
分離領域1oとする。また、周辺の部分を、幅の広いフ
ィールド領域11とする。
Thereafter, a groove 8 is formed in the exposed portion of the silicon substrate as shown in FIG. 1(6). Here, trench 8 is formed by RIE so as to penetrate epitaxial layer 3 and buried diffusion layer 2 and reach silicon substrate 1, and to have sidewalls substantially perpendicular to the main surface of the silicon substrate. In addition, in the said FIG. 1 (G) which shows the state in which this groove 8 was formed,
CV D Aj? The portion of the silicon substrate covered with the oxide film 5 and the first oxidation-resistant film 4 is placed in the element formation region 9. , 92. Further, the space between the element formation regions 9I and 92 is defined as an element isolation region 1o. Further, the peripheral portion is made into a wide field region 11.

続いて、熱酸化により、溝8の内壁に200〜1000
A程度の薄い酸化膜を形成する。次に、p−型シリコン
基板】の不純物濃度により必要に応じてfII8の底部
にP型不純物をイオン注入することにより、第1図(ト
)に示すようにチャンネルストップ用(N型反転層の発
生防止用)のP型層12を形成する。その後、前記薄い
酸化膜で&われた溝8の内壁を含む全表面に、第3の膜
として500〜2000に厚程度のシリコン窒化膜(以
下、第2の耐酸化性膜という)13を同第1図的に示す
ように形成する。なお、第1図(ト)において、溝8の
内面においては、前記薄い酸化膜を含めて第2の而を酸
化性Hg13として示す。しかる後、第2の耐酸化性膜
13上の全面にCVD酸化膜(第4の膜)14を厚く堆
積して、前記第1図面に示すように溝8をCVD酸化膜
14で埋める。
Subsequently, by thermal oxidation, the inner wall of the groove 8 is coated with 200 to 1000
Form an oxide film as thin as A. Next, depending on the impurity concentration of the p-type silicon substrate, a P-type impurity is ion-implanted into the bottom of the fII8 as necessary to form a channel stop (N-type inversion layer) as shown in FIG. Form a P-type layer 12 (for prevention of occurrence). After that, a silicon nitride film (hereinafter referred to as a second oxidation-resistant film) 13 with a thickness of about 500 to 2000 mm is applied as a third film to the entire surface including the inner wall of the groove 8 cut with the thin oxide film. It is formed as shown in FIG. In FIG. 1(G), on the inner surface of the groove 8, the second layer including the thin oxide film is shown as oxidizing Hg 13. Thereafter, a CVD oxide film (fourth film) 14 is thickly deposited on the entire surface of the second oxidation-resistant film 13, and the groove 8 is filled with the CVD oxide film 14 as shown in the first drawing.

続いて、熱酸化膜7およびCVD9化膜5上の第2の耐
酸化性膜13が露出するまでCVD酸化膜14をエッチ
パックして、第1図1に示すようにCVD酸化膜14を
溝8内にのみ残す。
Subsequently, the CVD oxide film 14 is etched and packed until the second oxidation-resistant film 13 on the thermal oxide film 7 and the CVD 9 film 5 is exposed, and the CVD oxide film 14 is grooved as shown in FIG. Leave only within 8.

その後、平坦面上に露出した第2の耐酸化性膜13およ
びその下のCVD酸化膜5ならびに熱酸化膜7を自己整
合的に除去する。そして、第1図Iに示すように、熱酸
化膜7の除去によって紐出したシリコン基体を素子領域
9Iのシリコン基体表面より0.5〜2μm程度低い面
までエツチングする。
Thereafter, the second oxidation-resistant film 13 exposed on the flat surface and the CVD oxide film 5 and thermal oxide film 7 thereunder are removed in a self-aligned manner. Then, as shown in FIG. 1I, the silicon substrate stretched out by removing the thermal oxide film 7 is etched to a surface approximately 0.5 to 2 μm lower than the surface of the silicon substrate in the element region 9I.

続いて熱酸化を行う。この熱酸化により、第1図(I)
に示すように、素子間分離領域10およびフィールド領
域11のシリコン基体露出部に1〜4μm程度の厚い熱
酸化膜15が形成されその際の体積の増大によシ、くほ
んだ表面が第1の耐酸化性膜4直下の基体主表面と平坦
になる。この時の熱処理により、溝8内に埋設されたC
VD酸化膜14は緻密化し、熱酸化膜とほぼ同質の膜に
なる。
Next, thermal oxidation is performed. This thermal oxidation causes the
As shown in FIG. 2, a thick thermal oxide film 15 of about 1 to 4 μm is formed on the exposed silicon substrate of the element isolation region 10 and the field region 11, and due to the increase in volume at that time, the rounded surface becomes the first layer. It becomes flat with the main surface of the substrate directly under the oxidation-resistant film 4. Due to the heat treatment at this time, the C buried in the groove 8
The VD oxide film 14 becomes dense and has almost the same quality as a thermal oxide film.

その後、素子領域9. 、92の第1のFM酸化性膜4
を除去して、素子領域9. 、92のエピタキシャル層
3に素子を形成し、半導体集積回路装置とするなお、第
1図(ト)において膜14を多結晶シリコンとし、第1
図0においてシリコン基体のエツチングと同時に溝8内
の多結晶シリコンをエツチングし、第1図(I)におい
てシリコン基体の酸化と同時に多結晶シリコンの表面を
酸化する方法を採つてもよい。この場合には、シリコン
基体上の厚い熱酸化膜15と同時に同質の厚い酸化膜が
溝8内の多結晶シリコン上に形成される。
After that, element region 9. , 92 first FM oxidizing film 4
is removed to form the element region 9. , 92 to form a semiconductor integrated circuit device. In FIG. 1(G), the film 14 is made of polycrystalline silicon,
0, the polycrystalline silicon in the groove 8 may be etched at the same time as the silicon substrate is etched, and the surface of the polycrystalline silicon may be oxidized simultaneously with the oxidation of the silicon substrate in FIG. 1(I). In this case, a homogeneous thick oxide film is formed on the polycrystalline silicon in the groove 8 at the same time as the thick thermal oxide film 15 on the silicon substrate.

以上説明したように、この発明の第1の実施例によれば
、1回の写真蝕刻法のみにより、分離領域幅依存性がな
く表面が平坦化された素子分離が可能と々す、平坦化用
のマスクが不要なので、マスク合わせ精度の問題は解消
される。また、素子形成領域9. 、92の周囲に極め
て幅が狭くかつ深い分離用の溝8を形成することが可能
であるから、埋込拡散用のマスクも省略できる。
As explained above, according to the first embodiment of the present invention, element isolation with a flattened surface without dependence on the isolation region width is possible with only one photolithography process. Since a separate mask is not required, the problem of mask alignment accuracy is solved. In addition, the element formation region 9. , 92 can be formed with an extremely narrow and deep isolation groove 8, so that a mask for buried diffusion can also be omitted.

さらに、素子間分離領域10の幅は、紫外光による通常
の写真蝕刻技術によっても3〜5μm程度とすることが
可能であシ、従来のアイソプレーナ法に比較して1/2
〜1/3に縮小することができ、熱論バーズビーク・バ
ーズヘッドの発生はない。
Furthermore, the width of the inter-element isolation region 10 can also be reduced to about 3 to 5 μm using ordinary photolithography using ultraviolet light, which is 1/2 that of the conventional isoplanar method.
It can be reduced to ~1/3, and no thermal bird's beak or bird's head occurs.

また、素子形成領域90,9□に対して埋込拡散層2の
横方内拡がりがなく、さらに、チャンネルストップ用P
型層12と、埋込拡散層2は完全に離間しているので、
素子領域一基板間の寄生容量は極めて小さく、また、フ
ィールド領域11は極めて厚い熱酸化膜15に覆われて
いるので、この上に形成される配線−基板間容量も小さ
く、低消費電力化・高速化に適した構造となる。
Further, the buried diffusion layer 2 does not expand laterally inward with respect to the element forming regions 90, 9□, and furthermore, the channel stop P
Since the mold layer 12 and the buried diffusion layer 2 are completely separated,
The parasitic capacitance between the element region and the substrate is extremely small, and since the field region 11 is covered with an extremely thick thermal oxide film 15, the capacitance between the wiring formed thereon and the substrate is also small, resulting in lower power consumption and The structure is suitable for high speed.

さらに、溝8内に埋設されたCVD酸化膜14は、フィ
ールド領域11に厚い熱酸化膜15を形成する際の熱処
理によって緻密化し、熱酸化膜とほぼ同等の膜質となシ
、あるいは膜14を多結晶シリコンとした場合には、多
結晶シリコン上にフィールド領域のシリコン基体上と全
く同質の犀い熱酸化膜が形成されるので、後の素子形成
工程において自己整合技術を積極的に使用することがで
きる。
Further, the CVD oxide film 14 buried in the trench 8 is densified by the heat treatment when forming the thick thermal oxide film 15 in the field region 11, and has almost the same quality as the thermal oxide film, or the film 14 is If polycrystalline silicon is used, a thermal oxide film with exactly the same quality as that on the silicon substrate in the field region is formed on the polycrystalline silicon, so self-alignment technology is actively used in the subsequent device formation process. be able to.

第2図はこの発明の第2の実施例を示す工程断面図であ
る。この第2の実施例では、第1図(ト)の工8までは
第1の実施例と同一工程である。
FIG. 2 is a process sectional view showing a second embodiment of the present invention. In this second embodiment, the steps up to step 8 in FIG. 1(g) are the same as those in the first embodiment.

第2の実施例では、第1図(ト)の工程に引続きCVD
酸化膜5と熱酸化膜7を除去しく残存させてもよい)、
溝8の内壁を含むシリコン基体露出面に薄い熱酸化膜を
形成し、次いで溝8の内壁を含む全面にシリコン窒化膜
を被着する。この熱酸化膜と窒化膜を合わせて第2の耐
酸化性膜13とする。
In the second embodiment, following the step in FIG.
The oxide film 5 and the thermal oxide film 7 may be left without being removed),
A thin thermal oxide film is formed on the exposed surface of the silicon substrate including the inner wall of the groove 8, and then a silicon nitride film is deposited on the entire surface including the inner wall of the groove 8. This thermal oxide film and nitride film are combined to form a second oxidation-resistant film 13.

その後、RIEを用いたエツチングを行う。すると、第
2図(5)のように、素子形成領域上の第1の耐酸化性
膜4と、@Sの内壁の第2の耐酸化性膜13が残存し、
その他の酸化膜および窒化膜は除去”されシリコン基体
が露出する。次いで、その露出した基体を含む表面全面
に同第2図(至)に示すように多結晶シリコン(第4の
膜)16を堆積させ、18を多結晶シリコン16で埋め
る。
After that, etching using RIE is performed. Then, as shown in FIG. 2(5), the first oxidation-resistant film 4 on the element formation region and the second oxidation-resistant film 13 on the inner wall of @S remain.
The other oxide films and nitride films are removed to expose the silicon substrate. Next, polycrystalline silicon (fourth film) 16 is applied to the entire surface including the exposed substrate as shown in FIG. and fill 18 with polycrystalline silicon 16.

次に、多結晶シリコン16をエッチバックし、第2図0
3)のように多結晶シリコン16表面が溝8の深さの1
/2を越えない適当な深さとなるようにする。この時、
素子形成領域91 p 92では、第1の耐酸化性膜4
が館山したところでエツチングが停止するが、素子間分
離領域1oおよびフィールド領域11の溝部を除く領域
では、多結晶シリコン16に引続きシリコン基体がエツ
チングされ、表面が、溝8内の多結晶シリコン16表面
と#丘ホ同−探さとなる。
Next, the polycrystalline silicon 16 is etched back, and as shown in FIG.
As shown in 3), the surface of the polycrystalline silicon 16 is 1 of the depth of the groove 8.
Make sure that the depth is at an appropriate depth, not exceeding /2. At this time,
In the element formation regions 91 p 92, the first oxidation-resistant film 4
Etching stops when etching is completed, but in regions other than the trenches of the element isolation region 1o and the field region 11, the silicon substrate is etched following the polycrystalline silicon 16, and the surface becomes the same as the surface of the polycrystalline silicon 16 in the trench 8. And #Okaho Dosato becomes Sato.

続いて、第2図(C)のようにシリコン基体と多結晶シ
リコン16を熱酸化し、表面に厚い熱酸化膜15を形成
して、くほんだ表面が第1の耐酸化性膜4直下の基体表
面と平坦化されるようにする。
Next, as shown in FIG. 2(C), the silicon substrate and polycrystalline silicon 16 are thermally oxidized to form a thick thermal oxide film 15 on the surface, and the hollowed surface is directly under the first oxidation-resistant film 4. Make it flat with the substrate surface.

以上の第2の実施例においても第1の実施例と全く同様
の効果が得られ、さらに、この例では溝底部と基体とが
St −Stとなるため、N型に反転が起らないから、
チャンネルストップ用のP+層が不要とナシ、また多結
晶シリコン16のエッチパックと、シリコン基体のエツ
チングを連続的r(行うことが可能となるので、第1の
実施例に比べて工程が短縮できる利点がある。
In the second embodiment described above, exactly the same effect as in the first embodiment can be obtained, and furthermore, in this example, since the groove bottom and the base are St-St, no reversal occurs in the N type. ,
There is no need for a P+ layer for channel stop, and the etch pack of polycrystalline silicon 16 and the etching of the silicon substrate can be performed continuously, so the process can be shortened compared to the first embodiment. There are advantages.

(発明の効果) 以上の実施例から明らかなように、この発明の半導体集
積回路装置の製造方法によれば、先に述べたような構成
とすることにより、平坦な表面を有し分離領域幅依存性
のない素子分離が1回の写真蝕刻法によって可能となる
とともに、分離領域面積を著しく縮小することができ、
さらに寄生容菫が/J%さい上に、バイポーラ型に適用
した場合は埋込拡散用マスクを省略できる。この発明の
方法は、バイポーラ型を始めとする各種の高集積・高性
能の半導体集積回路装置の製造方法に広く供することが
できる。
(Effects of the Invention) As is clear from the above embodiments, according to the method of manufacturing a semiconductor integrated circuit device of the present invention, the structure described above provides a flat surface and a width of the isolation region. Dependency-free element isolation is made possible by a single photolithography process, and the area of the isolation region can be significantly reduced.
Furthermore, the parasitic violet is /J% smaller, and when applied to a bipolar type, the buried diffusion mask can be omitted. The method of the present invention can be widely applied to methods of manufacturing various highly integrated and high-performance semiconductor integrated circuit devices including bipolar type devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体集積回路装置の製造方法の第
1の実施例を説明するための工程断面図、第2図はこの
発明の第2の実施例を説明するための工程断面図である
。 1・・・P1シリコン基板、2・・・を型埋込拡散層、
3・・・N−型エピタキシャル層、4・・・第1の酎^
し化性膜、5・・・CVD酸化膜、6・・・レジスト層
、′l・・・熱酸化膜、8・・・溝、13・・・第2の
耐酸化性膜、14・・・CVDM化膜、15・・・熱酸
化膜、16・・・多結晶シリコン。 特許出願人 沖1に気工業株式会社 手続補正書 昭和jパ)年1月18日 4.1゛許庁長官若杉和夫殿 1、事件の表示 昭和58年 特 許 願第 168267 号2、発明
の名称 半導体集積回路装置の製造方法 3、補正をする者 事件との関係 特 許 出願人 (029)沖電気工業株式会社 5、補正命令の日付 昭和 年 月 日 (自発)(1
)明細書6頁3行および4行「形rft後したのち」を
「形成したのち」と訂正する。
FIG. 1 is a process sectional view for explaining a first embodiment of the method for manufacturing a semiconductor integrated circuit device of the present invention, and FIG. 2 is a process sectional view for explaining a second embodiment of the invention. be. 1... P1 silicon substrate, 2... a mold buried diffusion layer,
3... N-type epitaxial layer, 4... First sake ^
oxidation film, 5...CVD oxide film, 6...resist layer,'l...thermal oxide film, 8...groove, 13...second oxidation resistant film, 14... -CVDM film, 15...thermal oxide film, 16...polycrystalline silicon. Patent Applicant Oki 1 ni Ki Kogyo Co., Ltd. Procedural Amendments January 18, 1949 4.1 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of the Case 1982 Patent Application No. 168267 2, Invention Name: Manufacturing method for semiconductor integrated circuit devices 3, Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 5, Date of amendment order Showa year, month, day (self-motivated) (1
) On page 6 of the specification, lines 3 and 4, "after forming RFT" should be corrected to "after forming".

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基体主表面に耐酸化性の第1の膜を選択的
に形成すると共に前記第1の膜の周辺一定幅の領域上を
除く該第1の膜上に、この膜のエツチングマスクとなる
第2の膜を形成する工程、前記第1の膜で被覆されない
前記主表面を酸化膜に変換する工程、前記第2の膜で被
覆されない前記第1の膜を除去して前記基体主表面を露
出する工程、この露出した前記基体にこの基体主表面と
ほぼ垂直な側壁を持つ溝を形成する工程、前記溝の内壁
を含む主表面全面に耐酸化性の第3の膜を形成する工程
、#第3の膜上に第4の膜を堆積し前記溝を前記第4の
膜で埋める工程、前記酸化膜及び前記第2の膜上の前記
第3の膜が露出する迄前記第4の膜を除去する工程、こ
の露出した前記第3の膜を除去し更に前記酸化膜を除去
し、この酸化膜直下の前記基体主表面を露出する工程、
この露出した前記基体主表面基しくは該露出した前記基
体主表面及び前記溝内の第4の膜表面を所定の厚さ蝕刻
する工程、該蝕刻によりくほんだ表面が前記第1の脱血
下の前記基体表面とほぼ同じ高さになる迄酸化する工程
とを有する事を特徴とする半導体集積回路装置の製造方
法。
(1) An oxidation-resistant first film is selectively formed on the main surface of the semiconductor substrate, and an etching mask for this film is formed on the first film except for a region of a constant width around the first film. a step of converting the main surface not covered with the first film into an oxide film; and a step of removing the first film not covered with the second film to form a main surface of the substrate. a step of exposing the surface; a step of forming a groove in the exposed substrate with side walls substantially perpendicular to the main surface of the substrate; and forming an oxidation-resistant third film on the entire main surface including the inner wall of the groove. Step #Depositing a fourth film on the third film and filling the trench with the fourth film, depositing the fourth film on the third film until the oxide film and the third film on the second film are exposed. a step of removing the exposed third film, further removing the oxide film, and exposing the main surface of the substrate immediately below the oxide film;
A step of etching the exposed main surface of the substrate, or the exposed main surface of the substrate and the fourth film surface in the groove to a predetermined thickness, A method for manufacturing a semiconductor integrated circuit device, comprising the step of oxidizing the substrate until the substrate surface is approximately at the same height as the surface of the substrate.
(2)半導体基体主表面に耐酸化性の第1の膜を選択的
に形成すると共に前記第1の膜の周辺一定幅の領域上を
除く該第1の膜上に、この膜のエツチングマスクとなる
第2の膜を形成する工程、前記−第1の膜で被覆されな
い前記主表面を酸化膜に変換する工程、前記第2の膜で
被覆されない前記第1の膜を除去して前記基体主表面を
露出する工程、この露出した前記基体にこの基体主表面
とほぼ垂直な側壁を持つ溝を形成する工程、前記篩の内
壁を含む主表面全面に耐酸化性の第3の膜を形成する工
程、前記溝の側壁の前記第3の膜及び前記第1の膜を残
す様に残余の部分の前記膜を除去し前記半導体基体を部
分的に露出する工程、この露出した前記基体を含む表面
全面に第4の膜を堆積し、前記溝をこの第4の膜で埋め
る工程、前記溝内の前記第4の膜がこの溝の深さの半分
以上残存する様に該第4の膜及びこの第4の膜直下の前
記基体主表面を蝕刻する工程、この蝕刻によりくぼんだ
表面が前記第1の膜直下の前記基体表面とほぼ同じ旨さ
になる迄酸化する工程とを有する事を特徴とする半導体
集積回路装置の製造方法。
(2) An oxidation-resistant first film is selectively formed on the main surface of the semiconductor substrate, and an etching mask for this film is formed on the first film except for a region of a constant width around the first film. forming a second film, converting the main surface not covered with the first film into an oxide film, removing the first film not covered with the second film to form a second film on the substrate; a step of exposing the main surface, a step of forming a groove in the exposed substrate with a side wall substantially perpendicular to the main surface of the substrate, and a step of forming an oxidation-resistant third film on the entire main surface including the inner wall of the sieve. a step of partially exposing the semiconductor substrate by removing the remaining portion of the film so as to leave the third film and the first film on the side wall of the groove, the step of partially exposing the semiconductor substrate; a step of depositing a fourth film on the entire surface and filling the trench with the fourth film; depositing the fourth film in the trench so that more than half of the depth of the trench remains; and a step of etching the main surface of the substrate directly under the fourth film, and a step of oxidizing the surface depressed by this etching until it has almost the same texture as the surface of the substrate directly under the first film. A method for manufacturing a semiconductor integrated circuit device characterized by:
JP16826783A 1983-09-14 1983-09-14 Manufacture of semicondutor integrated circuit device Granted JPS6060736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16826783A JPS6060736A (en) 1983-09-14 1983-09-14 Manufacture of semicondutor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16826783A JPS6060736A (en) 1983-09-14 1983-09-14 Manufacture of semicondutor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6060736A true JPS6060736A (en) 1985-04-08
JPH0420267B2 JPH0420267B2 (en) 1992-04-02

Family

ID=15864843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16826783A Granted JPS6060736A (en) 1983-09-14 1983-09-14 Manufacture of semicondutor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6060736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230160A (en) * 1988-07-19 1990-01-31 Nec Corp Semiconductor device
JPH11289006A (en) * 1998-03-02 1999-10-19 Samsung Electronics Co Ltd Method for formation of trench isolation in integrated circuit
US8774367B2 (en) 2008-10-22 2014-07-08 Koninklijke Philips N.V. Bearing within an X-ray tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230160A (en) * 1988-07-19 1990-01-31 Nec Corp Semiconductor device
JPH11289006A (en) * 1998-03-02 1999-10-19 Samsung Electronics Co Ltd Method for formation of trench isolation in integrated circuit
US8774367B2 (en) 2008-10-22 2014-07-08 Koninklijke Philips N.V. Bearing within an X-ray tube

Also Published As

Publication number Publication date
JPH0420267B2 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
JP3157357B2 (en) Semiconductor device
JPS6039846A (en) Manufacture of semiconductor integrated circuit device
JPS6054453A (en) Manufacture of semiconductor integrated circuit device
JPH0555364A (en) Method of forming isolating film of semiconductor element
JPH09148578A (en) Trench dmos transistor and its manufacture
JPS5992548A (en) Semiconductor device and manufacture thereof
JPH02119238A (en) Semiconductor device and manufacture thereof
JPH01282839A (en) Manufacture of element isolation
JPS6060736A (en) Manufacture of semicondutor integrated circuit device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPH05291395A (en) Method of manufacturing semiconductor device
JPS60105247A (en) Manufacture of semiconductor device
KR19990006000A (en) Device Separation Method of Semiconductor Device
JPS6060735A (en) Manufacture of semiconductor integrated circuit device
JPS61137341A (en) Semiconductor device and manufacture thereof
JPS58190040A (en) Preparation of semiconductor device
JPH01286436A (en) Manufacture of semiconductor device
JPS62120040A (en) Manufacture of semiconductor device
JPH05129424A (en) Semiconductor device and manufacture thereof
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element
JPH0423828B2 (en)
JPH04364755A (en) Semiconductor device and manufacture thereof
JPS60206150A (en) Manufacture of semiconductor device
JPS6045037A (en) Substrate structure of semiconductor device and manufacture thereof
JPH02203532A (en) Manufacture of semiconductor integrated circuit device