JPS59228147A - Particle measuring apparatus - Google Patents

Particle measuring apparatus

Info

Publication number
JPS59228147A
JPS59228147A JP58104660A JP10466083A JPS59228147A JP S59228147 A JPS59228147 A JP S59228147A JP 58104660 A JP58104660 A JP 58104660A JP 10466083 A JP10466083 A JP 10466083A JP S59228147 A JPS59228147 A JP S59228147A
Authority
JP
Japan
Prior art keywords
blood
electrolyte
flow path
flow
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58104660A
Other languages
Japanese (ja)
Inventor
Isao Shindo
勲夫 進藤
Hatsue Shinohara
篠原 初恵
Shinichi Sakuraba
桜庭 伸一
Sumio Abe
阿部 寿美雄
Toshiaki Aritomi
有冨 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58104660A priority Critical patent/JPS59228147A/en
Publication of JPS59228147A publication Critical patent/JPS59228147A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To stabilize a flow path volume and optically measure, with a high accuracy, particles in a sample liquid within a short period of time by previously applying a predetermined pressure to the flow path for trickles of a sample suspension and for sheath flows of a clean fluid passing by the surroundings. CONSTITUTION:The blood is conveyed to a dilute blood tank 13b. A two-way valve 31 is opened and a measuring part 23 of a changeover valve 2 is actuated. Thereupon, a flow path 22 is communicated with flow paths 24 and 25 for an electrolyte 10, which electrolyte containing the dilute blood flows into an optical cell 26 from an inlet. Inside the optical cell 26, a pressurized electrolyte circulates from a pressurized electrolyte tank 27 through flow paths 29, 38 and is pressurized at a given pressure, whereby the electrolyte 10 flows at a stable flow rate from the inlet such as to promptly form sheath flows. The laser light from a light source 20 passes through, in the form of a thin luminous flux, the sheath flow portion inside the cell 26 and is absorbed by a blocker 19. However, the front scattering light which is diffused by blood cells is detected by an optical detector 12 and is then counted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体中に浮遊する血球等の粒子測定装置に係り
、特に、流通する溶液中の粒子測定装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for measuring particles such as blood cells floating in a liquid, and particularly to a device for measuring particles in a circulating solution.

〔発明の背景〕[Background of the invention]

流通液中に含まれる粒子の数を測定する装置は種々の用
途が考えられるが、差し当り血球力つ/りは最も適切な
用途例であるのでこれについて説明する。従来の血球計
数方式として、電気抵抗法と光散乱法とがある。
A device for measuring the number of particles contained in a circulating fluid can be used for various purposes, but for the time being, the most suitable example of this application is blood cell strength, so this will be explained. Conventional blood cell counting methods include the electrical resistance method and the light scattering method.

電気抵抗法による測定方式は一定量の血液を電解質液で
希釈攪拌して一様に分散させた後、細孔を設けた検出セ
ルの細孔両側に電極を設けて一定の電流を流し、上記細
孔を通して希釈血液を吸引又は加圧により通過させる。
The measurement method using the electrical resistance method involves diluting a certain amount of blood with an electrolyte solution, stirring it, and uniformly dispersing it. After that, electrodes are installed on both sides of the pore of a detection cell with pores, and a constant current is applied. The diluted blood is passed through the pores by suction or pressure.

この希釈血液は上記の如く血液を電解質液で希釈したも
ので、その中には白血球、赤血球、血小板等が浮遊して
おり、細孔をこれらが通過する時は所定の抵抗値が変化
する。即ち、電流の通路である細孔が血球で狭められる
ので抵抗値が増加する。この抵抗変化をパルスとして取
り出して計数すれば、溶液中に浮遊する血球数が計数で
きる。
This diluted blood is blood diluted with an electrolyte solution as described above, and white blood cells, red blood cells, platelets, etc. are suspended in it, and when these pass through the pores, a predetermined resistance value changes. That is, the resistance value increases because the pores, which are current paths, are narrowed by blood cells. By extracting and counting this resistance change as a pulse, the number of blood cells floating in the solution can be counted.

一方、光散乱法は光学セルの側面から光を照射してその
散乱光をホトマル等の検出器で検出する。
On the other hand, in the light scattering method, light is irradiated from the side of an optical cell and the scattered light is detected by a detector such as a photomultiplier.

但し、散乱光のみを検知するために照射光はブロッカと
呼ばれる吸収部材でカントする。この光学セルは上下方
向に希釈血液を流すようになっておリ、このような光学
セルに電解質液で希釈された血液を吸引又は加圧により
流通させると、溶液中に浮遊する血球が光を散乱して検
出器にパルス信号として検出される。し九がってこのパ
ルス数を計数して血球数を求めることができるのである
However, in order to detect only scattered light, the irradiated light is canted by an absorbing member called a blocker. This optical cell allows diluted blood to flow vertically. When blood diluted with an electrolyte solution is passed through such an optical cell by suction or pressure, the blood cells floating in the solution emit light. It is scattered and detected by a detector as a pulse signal. The number of blood cells can then be determined by counting the number of pulses.

しかるに上記のような従来法では、抵抗法の検出セル又
は光散乱法の光学セルに試料を導入して計数を開始して
も、試料液の流し初めは計数値が低く徐々に一定値とな
るので、試料導入後一定時間経過した後に計数していた
。そのために測定時間が長くなると共に、使用血液量も
増加する等の欠点をもっていた。
However, in the conventional method described above, even if a sample is introduced into the detection cell of the resistance method or the optical cell of the light scattering method and counting is started, the counted value is low at the beginning of the flow of the sample liquid and gradually becomes a constant value. Therefore, counting was performed after a certain period of time had passed after the sample was introduced. As a result, the measurement time becomes long and the amount of blood used also increases.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を解消し、測定時間を短縮
すると共に精度を向上し、使用試料液量を節減できる粒
子測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a particle measuring device which can eliminate the drawbacks of the prior art described above, shorten measurement time, improve accuracy, and reduce the amount of sample liquid used.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、透明な流体及び粒子を懸
濁させた試料液を供給する流路に所定のとく構成したこ
とにある。
The present invention is characterized in that the channel for supplying a transparent fluid and a sample liquid in which particles are suspended is configured in a predetermined manner.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例である血球カウンタの系統図
である。この装置は光散乱法によるもので、切換弁1,
2はその中の流路15.22を上下動させることによっ
て切断し、試料液の一部を計量して別の流路に切換導入
するものである。しごきポンプ3は軟式チューブ4をロ
ーラでしごき、軟質チューブ4内の液をローラの回転方
向に移送している。このとき血液槽13a内の血液をノ
ズル11で吸引し、流路15.血液検知器14.軟質チ
ューブ4を介して吸引移送する。
FIG. 1 is a system diagram of a blood cell counter that is an embodiment of the present invention. This device uses the light scattering method, and the switching valve 1,
2 is for cutting the channel 15, 22 therein by moving it up and down, measuring a portion of the sample liquid, and switching it into another channel. The squeezing pump 3 squeezes the soft tube 4 with a roller, and transfers the liquid inside the soft tube 4 in the rotational direction of the roller. At this time, the blood in the blood tank 13a is sucked by the nozzle 11, and the blood in the flow path 15. Blood detector 14. Transfer by suction via the soft tube 4.

夕゛ シリン浜ポンプ5,6.7は電解質液槽9に収容されて
いる電解質液10を吸い上げてその一定量を送出する機
能を備えている。光学セル26は第4図に示すようなシ
ースノロ−セルと呼ばれるもので、流路29よりは電解
質液10を送り、流路25よりは希釈血液を中心ノズル
に送っている。
The Shirinhama pumps 5, 6.7 have a function of sucking up the electrolyte solution 10 contained in the electrolyte solution tank 9 and sending out a certain amount of it. The optical cell 26 is a so-called sheath-snow cell as shown in FIG. 4, and the electrolyte solution 10 is sent through a flow path 29, and diluted blood is sent through a flow path 25 to a central nozzle.

その結果として、希釈血液は電解質液の流れの鞘(/−
ス)に包まれだ細い流れとなり、ここにレーザ光束が照
射される。なお、この照射点より放出された前方散乱光
は光検知器12で検出され、上記照射光はブロッカ19
で吸収される。また、希釈血液の流れの太さは電解質液
との流速比で定寸り、任意に選択することができる。
As a result, the diluted blood has an electrolyte flow sheath (/-
It becomes a narrow stream surrounded by water, and the laser beam is irradiated here. Note that the forward scattered light emitted from this irradiation point is detected by the photodetector 12, and the irradiation light is detected by the blocker 19.
It is absorbed by. Further, the thickness of the flow of diluted blood is determined by the flow rate ratio with the electrolyte solution, and can be arbitrarily selected.

なお、8は廃液槽、13bは希釈血液槽、16゜23は
切換弁1,2内の夫々の計量部、17゜18は電解質液
10の流路、20はレーザ光源、21はコンプレッサで
ある。また、24は25と共に電解質液の流路であり、
27は電解質液10を収容した加圧電解質液槽である。
In addition, 8 is a waste liquid tank, 13b is a diluted blood tank, 16° 23 is a measuring section in each of the switching valves 1 and 2, 17° and 18 are flow paths for the electrolyte solution 10, 20 is a laser light source, and 21 is a compressor. . Further, 24 and 25 are flow paths for electrolyte solution,
27 is a pressurized electrolyte tank containing the electrolyte solution 10.

更に、30゜31.32.33は夫々の流路を開閉する
2方弁、34.35は流路を切換える3方弁である。
Furthermore, 30° 31, 32, and 33 are two-way valves that open and close the respective flow passages, and 34.35 are three-way valves that switch the flow passages.

次にこの血球カウンタの操作について説明する。Next, the operation of this blood cell counter will be explained.

患者から血液を採取してその血球数検査の依頼を受ける
と、血液は血液凝固剤入りの採血管内に移されて攪拌さ
れた後血液槽13aとしてセットされる。測定開始スイ
ッチを押すと、しごきポンプ3が作動してノズル11が
血液を吸引し流路15を通って血液検知器14に送る。
When blood is collected from a patient and a request for a blood cell count test is received, the blood is transferred into a blood collection tube containing a blood coagulant, stirred, and then set as a blood tank 13a. When the measurement start switch is pressed, the straining pump 3 is activated, and the nozzle 11 sucks blood and sends it to the blood detector 14 through the channel 15.

次にしごきポンプ3の動作を停止させると、切換弁1の
流路15内は血液が充満しているので、計量部16を作
動させて流路15を電解質液流路17.18と連通弁さ
れて希釈血液槽13b内に移送される。即ち、所定の希
釈度の希釈血液が得られたことになる。
Next, when the operation of the squeezing pump 3 is stopped, the flow path 15 of the switching valve 1 is filled with blood, so the metering section 16 is activated to connect the flow path 15 with the electrolyte fluid flow path 17, 18 through the communication valve. The diluted blood is then transferred into the diluted blood tank 13b. In other words, diluted blood with a predetermined dilution degree has been obtained.

この希釈血液は2方弁30を介して導入されたコンプレ
ッサ21の圧縮空気で攪拌されると共に所定の圧力が加
えられているので、2方弁31を開くと切換弁2の流路
22に充満する。次に切換弁2の計量部23を作動させ
ると、流路22は電解質液の流路24.25に連通ずる
。なお、コンプレッサ21の圧縮空気は2方弁33を介
して加圧電解質液槽27内に所定圧力を加えている。し
たがって、流路切換器34を加圧電解質液槽27に連通
させるごとく切換えると、電解質液10は。
This diluted blood is agitated by the compressed air from the compressor 21 introduced through the two-way valve 30 and a predetermined pressure is applied to it, so when the two-way valve 31 is opened, the flow path 22 of the switching valve 2 is filled. do. Next, when the metering section 23 of the switching valve 2 is operated, the flow path 22 communicates with the flow paths 24 and 25 for the electrolyte solution. Note that the compressed air from the compressor 21 applies a predetermined pressure to the pressurized electrolyte liquid tank 27 via the two-way valve 33. Therefore, when the flow path switching device 34 is switched to communicate with the pressurized electrolyte tank 27, the electrolyte solution 10 is changed.

自然に流路24,22.25を流れて光学セル26の中
心を上昇する。このときは流路切換器35も図の如く連
通させることにより、流路29を通って加圧電解質液槽
27内の加圧電解質液10が流れ、上記の希釈血液を含
む加圧電解質液10を鞘状に包囲して上昇する。なお、
32は光学セル26中の流れを制御する2方弁であるが
、これを流出した液は廃液槽8に送られる。
It naturally flows through the channels 24, 22, 25 and rises through the center of the optical cell 26. At this time, by also communicating the flow path switching device 35 as shown in the figure, the pressurized electrolyte solution 10 in the pressurized electrolyte tank 27 flows through the flow path 29, and the pressurized electrolyte solution 10 containing the diluted blood is It surrounds in a sheath and rises. In addition,
32 is a two-way valve that controls the flow in the optical cell 26, and the liquid flowing out from this valve is sent to the waste liquid tank 8.

さて、上記は本実施例の最も重要な改善点であるが、従
来の方法を説明すると、コンプレッサ21、加圧電解質
液槽27は設けないで、シリンダ゛ 哄ポンプ6で流路22の希釈血液を流路25を介して光
学セル26内に押し出すようにしていた。
Now, the above is the most important improvement of this embodiment, but to explain the conventional method, the compressor 21 and the pressurized electrolyte tank 27 are not provided, and the diluted blood in the flow path 22 is pumped by the cylinder pump 6. was extruded into the optical cell 26 through the flow path 25.

ター なお、このときはシリン渓ポンプ7も作動させ流路29
を介して電解質液10を流して鞘流を形成させていたの
である。しかしこの方法は光学セル26を含む流路の抵
抗に打勝つ圧力による流路の膨張で電解質液流が安定す
るまでに時間を要し、数秒間経過しないと安定した測定
値が得られなかった。これを改善するために流路24,
25に金属管を用いて膨張しないようにしていたが大巾
に測定8度を改善することはできないし、作業性が悪く
て組立時間が増加する結果を招いていたのである。
In addition, at this time, the Shirinkei pump 7 is also activated to drain the flow path 29.
The electrolyte solution 10 was caused to flow through the tube to form a sheath flow. However, with this method, it takes time for the electrolyte solution flow to stabilize due to the expansion of the flow path due to the pressure that overcomes the resistance of the flow path including the optical cell 26, and stable measurement values could not be obtained until several seconds had elapsed. . In order to improve this, the flow path 24,
Although a metal tube was used at 25 to prevent expansion, it was not possible to significantly improve the measurement of 8 degrees, and the workability was poor, resulting in an increase in assembly time.

本実施例では上記の如く切換弁2の流路22に希釈血液
が満された時に計量部23が移動して流路22中の希釈
血液を圧送することができる。このときは加圧電解質液
槽27より流路29 、、38を介して加圧電解質液が
流通して光学セル2G内は一定圧に加圧されている。こ
のように流路系内ンプ6,7を同時に駆動する。したが
って、電解質液10は第4図の液注入口37と試料注入
口36から光学セル26内に流入し流速の安定した鞘状
流を迅速に作ることができる。
In this embodiment, as described above, when the flow path 22 of the switching valve 2 is filled with diluted blood, the measuring section 23 moves to force-feed the diluted blood in the flow path 22. At this time, the pressurized electrolyte liquid flows from the pressurized electrolyte liquid tank 27 through the channels 29, , 38, and the inside of the optical cell 2G is pressurized to a constant pressure. In this way, the flow path system internal pumps 6 and 7 are driven simultaneously. Therefore, the electrolyte liquid 10 flows into the optical cell 26 from the liquid injection port 37 and the sample injection port 36 shown in FIG. 4, and a sheath-like flow with a stable flow rate can be rapidly created.

電解質液に光束を照射したときの散乱光は無視できる程
度であるが、希釈血液が通るとその中に浮遊している血
球が光を散乱させパルス状の信号を生じさせる。しだが
ってこのパルス状信号を計数すれば血球数が求められる
ことになる。なお、パルス信号の大きさは散乱光量と血
球の大きさ:こ比例するので、パルス波高値を解析する
ことによって血球数と血球の粒度分布が求められる。こ
の測定は5〜10秒間測定した結果から判定される。
When the electrolyte solution is irradiated with a light beam, the scattered light is negligible, but when diluted blood passes through it, the blood cells floating in it scatter the light and generate a pulse-like signal. Therefore, by counting this pulsed signal, the number of blood cells can be determined. Note that since the magnitude of the pulse signal is proportional to the amount of scattered light and the size of the blood cells, the number of blood cells and the particle size distribution of the blood cells can be determined by analyzing the pulse height value. This measurement is determined from the results of measurement for 5 to 10 seconds.

第2図は第1図の切換弁の動作説明図である。FIG. 2 is an explanatory diagram of the operation of the switching valve shown in FIG. 1.

第2図(a)は流路15が第1図の血液の流路に接続さ
れている状態であるが、計量部16が回転すると一定量
の血液を収容しだ流路15は電解質液の流路17.18
に連通して希釈血液槽13bへ送られる。
FIG. 2(a) shows a state in which the flow path 15 is connected to the blood flow path shown in FIG. Channel 17.18
and is sent to the diluted blood tank 13b.

第3図は第1図の光学セルの拡大断面図である。FIG. 3 is an enlarged sectional view of the optical cell of FIG. 1.

希釈血液入口36より入った電解質液は希釈血液を含ん
でその細い上端へ上昇する。これを包むようにして電解
質液入口37から入った電解質液も上昇して流出する。
The electrolyte solution entering through the diluted blood inlet 36 rises to the narrow upper end containing the diluted blood. The electrolyte solution that entered from the electrolyte solution inlet 37 so as to surround this also rises and flows out.

一方、光源20よりのレーザ光は透明な光学セル26内
の鞘状流の部分を細い光束となって通過してブロッカ1
9に吸収される。
On the other hand, the laser beam from the light source 20 passes through the sheath-shaped flow part in the transparent optical cell 26 as a thin beam and passes through the blocker 1.
Absorbed by 9.

しかし、鞘状流の中心の血球によって拡散させられた前
方散乱光は光検知器12によって検知される。
However, the forward scattered light scattered by the blood cells at the center of the sheath flow is detected by the photodetector 12.

第4図は従来の血球カウンタの検知曲線を示し、第5図
は第1図の本実施例の血球カウンタの検知曲線である。
FIG. 4 shows a detection curve of a conventional blood cell counter, and FIG. 5 shows a detection curve of the blood cell counter of this embodiment shown in FIG.

第4図の場合は光学セル26に流れる電解質液流はシリ
ンダポンプ6.7で与えられ、予め電解質液に予圧は加
えていない。しだがって、光学セル26の光透過部を通
る電解質液流は約5秒間後に安定するので、安定したの
を確がめで約8秒後に測定を開始していた。一方、本実
施例の血球カウンタの場合は、上記の如く電解質液に予
圧を与えているのでその流路及び光学セル26内の容積
は安定し、1秒以内で定常流となり、安定した血球のカ
ウント数を得ることができる。したがって従来に比べて
測定能率は大巾に向上している。なお、この血球カウン
タは緊急検査装置用として開発されたものであるので、
このように迅速測定が可能になったことによる効果は大
きい。
In the case of FIG. 4, the electrolyte flow to the optical cell 26 is provided by a cylinder pump 6.7, and no prepressure is applied to the electrolyte in advance. Therefore, since the electrolyte liquid flow passing through the light transmitting part of the optical cell 26 stabilized after about 5 seconds, measurement was started after about 8 seconds after confirming that the electrolyte flow had stabilized. On the other hand, in the case of the blood cell counter of this embodiment, since a pre-pressure is applied to the electrolyte solution as described above, the flow path and the volume inside the optical cell 26 are stable, and a steady flow is achieved within 1 second, resulting in a stable flow of blood cells. You can get the count. Therefore, measurement efficiency has been greatly improved compared to the conventional method. Please note that this blood cell counter was developed as an emergency testing device, so
The effect of being able to perform rapid measurements in this way is significant.

第6図は第1図の血球カウンタの制御系統図である。病
院の検査技師が第1図の血液槽13aをセットしてスタ
ートスイッチ46を押すと、コノピユータ40より出さ
れた指令信号は制御バス45で伝達され機構制御部41
を作動させる。この機構制御部41には切換弁1,2.
シリンダポンプ5,6,7.Lどきポンプ3及び2方弁
30〜33.流路切換器34.35等が電気的に接続さ
れている。
FIG. 6 is a control system diagram of the blood cell counter shown in FIG. 1. When a laboratory technician at a hospital sets the blood tank 13a shown in FIG.
Activate. This mechanism control section 41 includes switching valves 1, 2, .
Cylinder pumps 5, 6, 7. L pump 3 and two-way valves 30 to 33. Flow path switching devices 34, 35, etc. are electrically connected.

次に光検知器12で検知された信号はパルス波高分析器
42によって解析され、プリンタ43及び陰極線管(C
RT)44に血球数及び粒度分布値等を表示する。なお
、コンピュータ40は各部をモニタし故障個所が発生す
るとそれをCRT 44に表示すると共に、警報音を発
生させる等の仕事実施例 本実施例の血球カウンタは、希釈血液を収容する希釈血
液槽及び電解質液を収容する電解質液槽を加圧して光学
セルへの流路を予め拡張し、その後にシリンジポンプを
作動させて光学セル内の安定したシース流を迅速に得る
ように構成することによって、高精度の測定値を能率良
く得ることができるという効果が得られる。
Next, the signal detected by the photodetector 12 is analyzed by a pulse height analyzer 42, and a printer 43 and a cathode ray tube (C
RT) 44 displays the blood cell count, particle size distribution value, etc. The computer 40 monitors each part, and when a malfunction occurs, it displays it on the CRT 44 and also generates an alarm.The blood cell counter of this embodiment has a diluted blood tank and a diluted blood tank for storing diluted blood. By pressurizing an electrolyte reservoir containing an electrolyte solution to pre-expand the flow path to the optical cell, and then activating the syringe pump to quickly obtain a stable sheath flow within the optical cell, The effect is that highly accurate measurement values can be obtained efficiently.

上記実施例は血球カウンタを例として説明したが一般に
液中の種々の粒子を測定するのに適用できる。
Although the above embodiment has been described using a blood cell counter as an example, it is generally applicable to measuring various particles in liquid.

〔発明の効果〕〔Effect of the invention〕

本発明の粒子測定装置は、測定精度を向上させると共に
測定能率を向上させ、かつ、試料液量を節減できるとい
う効果をもっている。
The particle measuring device of the present invention has the effect of improving measurement accuracy, improving measurement efficiency, and reducing the amount of sample liquid.

【図面の簡単な説明】 第1図は本発明の一実施例である血球カウンタの系統図
、第2図は第1図の切換弁の動作説明図、第3図は第1
図の光学セルの拡大断面図、第4図は従来の血球カウン
タの検知曲線図、第5図は第1図の血球カウンタの検知
曲線図、第6図は第1図の血球カウンタの制御系統図で
ある。 1.2・・・切換弁、3・・・しごきポンプ、4・・・
軟質チタ゛ ユーズ、5,6.7・・・シリンダポンプ、8・・・廃
液槽、9・・・電解質液槽、10・・・電解質液、11
・・−ノズル、12・・・光検知器、13a・・・血液
槽、13b・・・希釈血液槽、14・・・血液検知器、
15,17゜18.22,24,25,28,2.9・
・・流路、16・・・計量部、19・・・ブロッカ、2
0・・・レーザ光源、21・・・コンプレッサ、23・
・・計量部、26・・・光学セル、27・・加圧電解質
液槽、30〜33・・・2方弁、34.35・・流路切
換器(3方弁)、36・・希釈血液入口、37・・・電
解に液入口、38・・・流出口、40・ コンピュータ
、41・・・機構制御部、42・・・パルス波高分析器
、43・・・プリンタ、44・・01M”、45・・制
御バス、46・・スタートスイッチ。 代理人 弁理士 長崎博男 (ほか1名) 第Z(2] 第30 $4 図 f     /θ ftfItl(#) $5 月 5     10 珊同 (#)
[Brief Description of the Drawings] Figure 1 is a system diagram of a blood cell counter that is an embodiment of the present invention, Figure 2 is an explanatory diagram of the operation of the switching valve in Figure 1, and Figure 3 is an illustration of the operation of the switching valve in Figure 1.
Fig. 4 is a detection curve diagram of the conventional blood cell counter, Fig. 5 is a detection curve diagram of the blood cell counter shown in Fig. 1, and Fig. 6 is a control system of the blood cell counter shown in Fig. 1. It is a diagram. 1.2...Switching valve, 3...Stretching pump, 4...
Soft titanium use, 5, 6.7... Cylinder pump, 8... Waste liquid tank, 9... Electrolyte liquid tank, 10... Electrolyte liquid, 11
...-nozzle, 12... photodetector, 13a... blood tank, 13b... diluted blood tank, 14... blood detector,
15,17°18.22,24,25,28,2.9・
...Flow path, 16...Measuring section, 19...Blocker, 2
0...Laser light source, 21...Compressor, 23.
...Measuring part, 26...Optical cell, 27...Pressurized electrolyte liquid tank, 30-33...2-way valve, 34.35...Flow path switch (3-way valve), 36...Dilution Blood inlet, 37... Liquid inlet for electrolysis, 38... Outlet, 40. Computer, 41... Mechanism control unit, 42... Pulse height analyzer, 43... Printer, 44... 01M ”, 45...Control bus, 46...Start switch. Agent Patent attorney Hiroo Nagasaki (and 1 other person) No. Z (2) No. 30 $4 Figure f /θ ftfItl (#) $5 Month 5 10 Same #

Claims (1)

【特許請求の範囲】 1、粒子を懸濁させた試料液の細流の周囲を清浄な流体
が通過するシース流とし、とのシース流を横断して測定
光を透過させるごとく形成した光学セルと、この光学セ
ルに上記試料液と上記流体をり゛ 通過させるだめに夫々設けたシリン憾ポンプとを有する
粒子測定装置において、上記流体及び上記試料液を供給
する流路に所定の予圧を加えて流路り″ 容積を安定させ、上記シリン)ポンプを作動させるごと
く構成したことを特徴とする粒子測定装置。
[Claims] 1. A sheath flow in which a clean fluid passes around a trickle of sample liquid in which particles are suspended, and an optical cell formed so that measurement light is transmitted across the sheath flow. In a particle measuring device having a syringe pump provided to allow the sample liquid and the fluid to pass through the optical cell, a predetermined prepressure is applied to the flow path for supplying the fluid and the sample liquid. A particle measuring device characterized in that it is configured to stabilize the volume of the flow path and operate the above-mentioned syringe pump.
JP58104660A 1983-06-10 1983-06-10 Particle measuring apparatus Pending JPS59228147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104660A JPS59228147A (en) 1983-06-10 1983-06-10 Particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104660A JPS59228147A (en) 1983-06-10 1983-06-10 Particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59228147A true JPS59228147A (en) 1984-12-21

Family

ID=14386615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104660A Pending JPS59228147A (en) 1983-06-10 1983-06-10 Particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59228147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264237A (en) * 1985-05-17 1986-11-22 Horiba Ltd Measuring instrument for fine particle in liquid
JPS63151855A (en) * 1986-12-16 1988-06-24 Japan Spectroscopic Co Flowcell/nozzle
DE4209127A1 (en) * 1991-03-20 1992-09-24 Hitachi Ltd ZELLANALYSIS APPARATUS
EP0730730A4 (en) * 1993-01-15 1996-04-25 Coulter Corp Liquid metering and transfer valve assembly particularly for flow cytometer
CN104280328A (en) * 2014-06-20 2015-01-14 博奥生物集团有限公司 Flow cytometry analysis device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264237A (en) * 1985-05-17 1986-11-22 Horiba Ltd Measuring instrument for fine particle in liquid
JPS63151855A (en) * 1986-12-16 1988-06-24 Japan Spectroscopic Co Flowcell/nozzle
DE4209127A1 (en) * 1991-03-20 1992-09-24 Hitachi Ltd ZELLANALYSIS APPARATUS
EP0730730A4 (en) * 1993-01-15 1996-04-25 Coulter Corp Liquid metering and transfer valve assembly particularly for flow cytometer
EP0730730A1 (en) * 1993-01-15 1996-09-11 Coulter Corporation Liquid metering and transfer valve assembly particularly for flow cytometer
CN104280328A (en) * 2014-06-20 2015-01-14 博奥生物集团有限公司 Flow cytometry analysis device and method
CN104280328B (en) * 2014-06-20 2017-01-18 博奥生物集团有限公司 Flow cytometry analysis device and method

Similar Documents

Publication Publication Date Title
US12117601B2 (en) Automated microscopic cell analysis
US8821791B2 (en) Monitoring method, monitoring apparatus and liquid sample analyzer
US5380491A (en) Apparatus for pumping and directing fluids for hematology testing
CA2489176C (en) Lysing reagent, cartridge and automatic electronic cell counter for simultaneous enumeration of different types of white blood cells
US4747685A (en) Biological microparticle inspection apparatus
US20190391171A1 (en) Blood measuring device control method
US5728351A (en) Apparatus for making a plurality of reagent mixtures and analyzing particle distributions of the reagent mixtures
US20080314130A1 (en) Detection and Subsequent Removal of an Aperture Blockage
US7294307B2 (en) Apparatus for pumping and directing fluids for hematology testing
US4103229A (en) Continuous-flow, resistive-particle counting apparatus
JPS59228147A (en) Particle measuring apparatus
JP2000187037A (en) Sample analyzing device provided with function of controlling accuracy
CA2060353A1 (en) Method and apparatus for diluting mixing liquid specimen
CN216350218U (en) Electrical impedance counter and sample analyzer
CN116087542A (en) Sample analyzer and sample detection method
KR101807746B1 (en) Multi dispenser for automated hematology analyzer
JPS61203947A (en) On-line monitoring apparatus for living body
CA2777524C (en) Dual analyzer system for biological fluid
CN116068159A (en) Sample analyzer and cleaning method
JPS6097241A (en) Particle analyzing apparatus
JPS60188845A (en) Particle analyzing device
CN111707601A (en) Whole blood biochemical detection method and device
JPS59168340A (en) Liquid-particle measuring apparatus
JPH02213746A (en) Device for inspecting sample
JPS6239389B2 (en)