JPS63151855A - Flowcell/nozzle - Google Patents

Flowcell/nozzle

Info

Publication number
JPS63151855A
JPS63151855A JP29959386A JP29959386A JPS63151855A JP S63151855 A JPS63151855 A JP S63151855A JP 29959386 A JP29959386 A JP 29959386A JP 29959386 A JP29959386 A JP 29959386A JP S63151855 A JPS63151855 A JP S63151855A
Authority
JP
Japan
Prior art keywords
nozzle
flow
sample
cell
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29959386A
Other languages
Japanese (ja)
Inventor
Masao Yamazaki
山崎 真雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP29959386A priority Critical patent/JPS63151855A/en
Publication of JPS63151855A publication Critical patent/JPS63151855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To secure a sorting with a stable photometry, by building up a jet nozzle of a light transmitting material to irradiate the coaxial flow of a sample liquid and a sheath liquid flowing therethrough with a laser beam. CONSTITUTION:A flowcell/nozzle 22 is mounted at the lower end of a flow chamber 21, which is provided with a sample tube 23 and a sheath tube 24. The tip of the sample tube 23 is extended to the center of the chamber 21, a sample suspension 25 is wrapped with the sheath liquid 26 and jetted from the nozzle 22 in a coaxial flow 27. The nozzle 2 is built up of a light transmitting material and irradiated with a laser beam 32 to measure optical characteristic of fine particle of the sample suspension. An ultrasonic vibrator 20 is provided at the upper end of the chamber 21 to turn the coaxial flow 27 from the nozzle 22 into drops 28 and sorting of the sample particle and the liquid is performed with a deflection plate to which a voltage is applied. This achieves the stability of photometry as well as the sureness of sorting by employing the flowcell/nozzle 22 made of a light transmitting material.

Description

【発明の詳細な説明】 本発明は、細胞等微小粒子の光学特性を分析し、その特
性に応じて細胞を振り分は分取するセルソータで使われ
るフローセル兼用ノズル及び該ノズルを備えたセルソー
タやフローサイトメータに関するものである。
Detailed Description of the Invention The present invention relates to a flow cell nozzle used in a cell sorter that analyzes the optical properties of microparticles such as cells and sorts the cells according to the properties, and a cell sorter equipped with the nozzle. It relates to a flow cytometer.

l米q技玉 サンプル懸濁液をシース液で包み込んだ同軸流がジェッ
トノズルから噴出する前又は噴出した後にレーザ光を照
射し、サンプルがレーザ光を通過するときに出る散乱光
、けい光等を測定してサンプル中の1個1個の細胞を分
析すると共に、噴出流全体に振動をかけて液滴化し、上
記測定分析に基いて液滴形成点で液滴に電荷を与えて帯
電し、高電圧を印加した偏向板の間に通し各帯電液滴を
偏向させて分取するいわゆるセルソータは、分析の結果
判明した光学特性に基き高速で細胞を分離採取できるた
めに、細胞の一般分析、DNA測定、染色体測定、細胞
融合等細胞に関する諸研究1.細胞診(血球検査)やガ
ン検診等の病状診断、遺伝子生物学の分野等で幅広く利
用されている。
Before or after a coaxial flow containing a sample suspension wrapped in a sheath liquid is ejected from a jet nozzle, it is irradiated with laser light, and the sample passes through the laser light to emit scattered light, fluorescent light, etc. In addition to measuring and analyzing each cell in the sample, the entire jet stream is vibrated to form droplets, and based on the above measurement and analysis, the droplets are charged and charged at the droplet formation point. The so-called cell sorter, which deflects and separates each charged droplet by passing it between deflection plates to which a high voltage is applied, can separate and collect cells at high speed based on the optical characteristics found as a result of analysis, so it is useful for general cell analysis and DNA analysis. Various research on cells such as measurement, chromosome measurement, cell fusion, etc. 1. It is widely used in the fields of cytology (blood cell tests), medical diagnosis such as cancer screening, and gene biology.

日が”しようとする間 点 従来のセルソータでサンプルにレーザ光を照射するのに
、第1及び2図に示すような2つの方式第1図に示した
いわゆる空気中測定方式の一例では、サンプル液1をシ
ース液2で包み込んだ同軸流3が振動の加わったフロー
チャンバのジェットノズル4から噴出され、この噴出流
にレーザビーム5が照射されて光測定が行なわれる。噴
出流は落下する途中で液滴6に分断され、光測定に応じ
て電荷の加えられた荷電液滴が偏向プレート7によって
振り分けられる。尚図中8はサンプル細胞、9は分離サ
ンプル細胞捕集容器、10は廃液受けである。しかし、
このように、ジェットノズルから噴出する液柱部分に光
を当てる方式では、液柱表面の微小な歪や振動により、
光信号に影響が現れやすく、良いデータを得る為には、
ノズルの洗浄や、光のノイズを避ける為の光学的調整が
必要となる。
In the so-called in-air measurement method shown in Figure 1, two methods are used to irradiate the sample with laser light using a conventional cell sorter. A coaxial flow 3 containing a liquid 1 surrounded by a sheath liquid 2 is ejected from a jet nozzle 4 of a vibrated flow chamber, and the ejected flow is irradiated with a laser beam 5 to perform optical measurement. The charged droplets are divided into droplets 6 and charged according to the optical measurement, and are distributed by the deflection plate 7. In the figure, 8 is a sample cell, 9 is a container for collecting separated sample cells, and 10 is a waste liquid receiver. However,
In this way, with the method of shining light on the part of the liquid column ejected from the jet nozzle, minute distortions and vibrations on the surface of the liquid column cause
The optical signal is easily affected, and in order to obtain good data,
Cleaning of the nozzle and optical adjustment to avoid optical noise are required.

一方第2図に示したいわゆるフローセル方式の一例では
、サンプル液1をシース液2で包み込んだ同軸流が振動
の加わったフローセル11中を流れ、このフローセル1
1中め同軸流にレーザビーム5が照射されて光測定が行
なわれる。フローセル11を出た同軸流は上記と同様に
噴出されて液滴化し、分取される。尚図中12は振動を
与えるための圧電素子である。しかし、このようにフロ
ーセル中で光を当てて、その後で流れを絞り込みジェッ
トにして噴出する方式では、測定に関しては上記の様な
問題が少なく、良いデータを再現性良く得やすいが、測
定領域の後で流れが絞られる為、サンプル粒子の移動速
度がバラつき易く、又、測定点と液滴点との距離も、上
記の空気中測定方式よりも大きくなり、ソーティング(
分取)の確実さがかなり悪くなる。
On the other hand, in an example of the so-called flow cell method shown in FIG.
A laser beam 5 is irradiated onto the coaxial flow in the middle of the first phase, and optical measurement is performed. The coaxial flow exiting the flow cell 11 is ejected into droplets and fractionated in the same manner as described above. In the figure, 12 is a piezoelectric element for applying vibration. However, with this method of shining light in a flow cell and then narrowing the flow and ejecting it as a jet, there are fewer problems with measurement, and it is easy to obtain good data with good reproducibility. Since the flow is constricted later, the moving speed of the sample particles tends to vary, and the distance between the measurement point and the droplet point is also larger than in the above-mentioned in-air measurement method, making it difficult to sort (
The reliability of preparative separation becomes considerably worse.

従って本発明の目的は、上記したジェットの2方式の欠
点を除去して利点を生かし、光測定の安定性とソーティ
ングの確実性を両立させるフローセル兼用ノズルを提供
することにある。
Therefore, an object of the present invention is to provide a flow cell nozzle that eliminates the drawbacks of the two jet methods described above and takes advantage of their advantages, thereby achieving both stability of optical measurement and reliability of sorting.

従来技術の問題点を解決し上記の目的を達成するため、
本発明によるフローセル兼用ノズルはセルソータにおい
て、ジェットノズルを光透過材料で形成してフローセル
の機能を持たせ、ジェットノズルを通過するサンプル液
とシース液の同軸流にレーザ光を照射して光測定可能と
したことを特徴とするものである。
In order to solve the problems of the conventional technology and achieve the above objectives,
The flow cell nozzle according to the present invention is used in a cell sorter by forming the jet nozzle with a light-transmitting material to have the function of a flow cell, and by irradiating the coaxial flow of sample liquid and sheath liquid passing through the jet nozzle with a laser beam, it is possible to perform optical measurement. It is characterized by the following.

以下本発明によるフローセル兼用ノズルの実施例を第3
〜8図に基いて説明する。
The following is a third embodiment of the flow cell nozzle according to the present invention.
This will be explained based on FIGS.

第3図は本発明のフローセル兼用ノズルを適用したセル
ソータのフローチャンバ21部分を示しており、フロー
チャンバ21の下方先端に本発明のフローセル兼用ノズ
ル22が取り付けられている。図中23.24はそれぞ
れサンプル管とシース液管で、サンプル管23の先端は
フローチャンバ21の中心にまで延び、サンプル懸濁液
25をシース液26が包み込んだ同軸流27がノズル2
2から噴出され、一定の距離落下したところで液滴28
になる。尚20は超音波振動子である。
FIG. 3 shows a flow chamber 21 portion of a cell sorter to which the flow cell nozzle of the present invention is applied, and the flow cell nozzle 22 of the present invention is attached to the lower tip of the flow chamber 21. In the figure, 23 and 24 are a sample tube and a sheath liquid tube, respectively. The tip of the sample tube 23 extends to the center of the flow chamber 21, and a coaxial flow 27 in which a sample suspension 25 is surrounded by a sheath liquid 26 flows through the nozzle 2.
A droplet 28 is ejected from the droplet 2 and falls a certain distance.
become. Note that 20 is an ultrasonic vibrator.

フローセル兼用ノズル22の一例の拡大縦断面図を第4
図に示す。つまり、本発明では噴出流を形成するための
ジェットノズル部分とフローチャンバ21の本体と別体
として光透過材料で形成し、中央の流通路29と入射面
30及び出射面31を持たせてフローセル兼用ノズル2
2を構成する。このノズル22が例えば溶着によってフ
ローチャンバ21の下端に固定され、ジェットノズルと
して噴出流を生じるとともに、ここを通過するサンプル
にレーザ光32が照射されフローセルとしても機能する
An enlarged vertical cross-sectional view of an example of the flow cell nozzle 22 is shown in FIG.
As shown in the figure. That is, in the present invention, the jet nozzle portion for forming the jet flow is formed separately from the main body of the flow chamber 21 using a light-transmitting material, and the flow cell is provided with a central flow path 29, an entrance surface 30, and an exit surface 31. Dual-purpose nozzle 2
2. This nozzle 22 is fixed to the lower end of the flow chamber 21 by, for example, welding, and generates a jet flow as a jet nozzle, and also functions as a flow cell by irradiating a sample passing through the nozzle with a laser beam 32.

次に、フローセル兼用ノズル22の形状例を説明する。Next, an example of the shape of the flow cell nozzle 22 will be described.

第5図のノズル部分縦断面図に示したノズル22は下端
面に凹部33を存し、こうすれば流通路29の長さが短
くなる。
The nozzle 22 shown in the partial vertical cross-sectional view of the nozzle in FIG. 5 has a recess 33 on the lower end surface, so that the length of the flow path 29 is shortened.

第6図の横断面図に示したノズル22は円筒状で、中心
に同心円状の流通路29が形成しである。ノズルを形成
する材料の屈折率がノズル屈折率〉サンプル・シース液
〉空気の関係を満たすようにし、且つ内外径を適当に選
ぶと、平行に入射したレーザ光32を平行に出射させる
ことができる。メリットとして、前方小角散乱光の測定
がし易(なる。
The nozzle 22 shown in the cross-sectional view of FIG. 6 has a cylindrical shape, and has a concentric flow passage 29 formed in the center. If the refractive index of the material forming the nozzle satisfies the relationship: nozzle refractive index>sample/sheath liquid>air, and if the inner and outer diameters are appropriately selected, the laser beams 32 that are incident in parallel can be emitted in parallel. . The advantage is that it is easy to measure forward small-angle scattered light.

第7図の横断面図に示したノズル22はほぼ矩形で、同
じく断面矩形の流通路29に対して平行なレーザ光32
を入射する。この例では、ノズルの中心を外れた所をサ
ンプルが流れても、ノズルを平行移動すれば同じ条件で
の測定を行なえるというメリットが得られる。
The nozzle 22 shown in the cross-sectional view of FIG.
is incident. This example has the advantage that even if the sample flows away from the center of the nozzle, measurements can be performed under the same conditions by moving the nozzle in parallel.

第8図の横断面図に示したノズル22もほぼ矩形だが、
流通路29は断面円形である。この例のノズルに収束レ
ーザ光32を入射すると、ノズル表面での入射光の反射
ロスを小さくできるメリットが得られる。
The nozzle 22 shown in the cross-sectional view of FIG. 8 is also approximately rectangular, but
The flow path 29 has a circular cross section. When the convergent laser beam 32 is incident on the nozzle of this example, there is an advantage that the reflection loss of the incident light on the nozzle surface can be reduced.

発JI邦九果 以上述べたように本発明によれば、フローセルの如き固
い光透過壁面で囲まれた測定領域で安定した測定が行な
えると共に、その測定領域を通過したサンプルとシース
液の同軸流はそのままの状態で(サンプルの絞り込みや
、流速の変化が無い状態で)噴出流となり、液滴化され
る為、空中測定方式と同等のソーティングの確実さも得
られる。
As described above, according to the present invention, stable measurement can be performed in a measurement area surrounded by a hard light-transmitting wall surface such as a flow cell, and the sample and sheath liquid passing through the measurement area can be coaxially Since the flow remains as it is (without narrowing the sample or changing the flow velocity) and becomes a jet flow and becomes droplets, it is possible to obtain the same sorting reliability as in the air measurement method.

即ちジェットノズルとフローセル両方の機能を持つノズ
ルが得られることに依り、従来の空気中測定方式が持つ
光測定上の欠点及びフローセル方式が持つソーティング
上の欠点を同時に解消して、光測定の安定性とソーティ
ングの確実性を両立させることができる。
In other words, by obtaining a nozzle that has the functions of both a jet nozzle and a flow cell, the drawbacks of the conventional air measurement method in terms of light measurement and the drawbacks in sorting of the flow cell method can be solved simultaneously, resulting in stable light measurement. It is possible to achieve both accuracy and reliability of sorting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気中測定方式を示す図、第2図は従来
のフローセル方式を示す図、第3図は本発明のフローセ
ル兼用ノズルを取り付けたフローチャンバ部分を示す図
、第4図は本発明のノズルの拡大縦断面図、第5〜8図
は本発明のノズルの異なった形状例を示す断面図である
。 21・・・フローチャンバ、22・・・フローセル兼用
ノズル、25・・・サンプル懸濁液、26・・・シース
液、27・・・同軸流、28・・・液滴、29・・・流
通路、−32・・・レーザ光。
Fig. 1 shows a conventional in-air measurement method, Fig. 2 shows a conventional flow cell method, Fig. 3 shows a flow chamber part equipped with a flow cell nozzle of the present invention, and Fig. 4 5 to 8 are enlarged longitudinal cross-sectional views of the nozzle of the present invention, which are cross-sectional views showing examples of different shapes of the nozzle of the present invention. 21... Flow chamber, 22... Flow cell nozzle, 25... Sample suspension, 26... Sheath liquid, 27... Coaxial flow, 28... Droplet, 29... Distribution Path, -32...Laser light.

Claims (1)

【特許請求の範囲】 1、サンプル懸濁液をシース液で包み込んだ同軸流がジ
ェットノズルから噴出する前又は噴出した後にレーザ光
を照射し、サンプルがレーザ光を通過するときに出る散
乱光、けい光等を測定してサンプル中の1個1個の細胞
を分析すると共に、噴出流全体に振動をかけて液滴下し
、上記測定分析に基いて液滴形成点で液滴に電荷を与え
て帯電し、高電圧を印加した偏向板の間に通し各帯電液
滴を偏向させて分取するセルソータにおいて上記ジェッ
トノズルを光透過材料で形成してフローセルの機能を持
たせ、ジェットノズルを通過するサンプル液とシース液
の同軸流にレーザ光を照射して光測定可能としたことを
特徴とするフローセル兼用ノズル。 2、サンプル懸濁液をシース液で包み込んだ同軸流がジ
ェットノズルから噴出する前又は噴出した後にレーザ光
を照射し、サンプルがレーザ光を通過するときに出る散
乱光、けい光等を測定してサンプル中の1個1個の細胞
を分析すると共に、噴出流全体に振動をかけて液滴下し
、上記測定分析に基いて液滴形成点で液滴に電荷を与え
て帯電し、高電圧を印加した偏向板の間に通し各帯電液
滴を偏向させて分取するセルソータにおいて上記ジェッ
トノズルを光透過材料で形成してフローセルの機能を持
たせ、ジェットノズルを通過するサンプル液とシース液
の同軸流にレーザ光を照射して光測定可能としたことを
特徴とするフローセル兼用ノズルを使用したセルソータ
。 3、サンプル懸濁液をシース液で包み込んだ同軸流がジ
ェットノズルから噴出する前又は噴出した後にレーザ光
を照射し、サンプルがレーザ光を通過するときに出る散
乱光、けい光等を測定してサンプル中の1個1個の細胞
を分析すると共に、噴出流全体に振動をかけて液滴下し
、上記測定分析に基いて液滴形成点で液滴に電荷を与え
て帯電し、高電圧を印加した偏向板の間に通し各帯電液
滴を偏向させて分取するセルソータにおいて上記ジェッ
トノズルを光透過材料で形成してフローセルの機能を持
たせ、ジェットノズルを通過するサンプル液とシース液
の同軸流にレーザ光を照射して光測定可能としたことを
特徴とするフローセル兼用ノズルを使用した分析専用装
置であるフローサイトメータ。
[Claims] 1. A coaxial flow containing a sample suspension surrounded by a sheath liquid is irradiated with laser light before or after it is ejected from a jet nozzle, and scattered light is emitted when the sample passes through the laser light; In addition to analyzing each cell in the sample by measuring fluorescence, etc., the entire jet stream is vibrated to cause droplets to fall, and based on the above measurement and analysis, an electric charge is applied to the droplets at the droplet formation point. In the cell sorter, the jet nozzle is made of a light-transmitting material to have the function of a flow cell, and the sample passes through the jet nozzle. A flow cell nozzle that is characterized by being able to perform optical measurements by irradiating a coaxial flow of liquid and sheath liquid with laser light. 2. Irradiate the sample suspension with a laser beam before or after it is ejected from the jet nozzle, and measure the scattered light, fluorescence, etc. emitted when the sample passes through the laser beam. At the same time, each cell in the sample is analyzed one by one, and the droplet is dropped by vibrating the entire jet flow, and based on the above measurement analysis, the droplet is charged at the point where the droplet is formed, and a high voltage is applied. In a cell sorter that deflects and separates each charged droplet by passing it between deflection plates to which a A cell sorter that uses a nozzle that also serves as a flow cell, and is characterized by being able to measure light by irradiating a laser beam onto the flow. 3. Irradiate the sample suspension with a laser beam before or after it is ejected from the jet nozzle, and measure the scattered light, fluorescence, etc. emitted when the sample passes through the laser beam. At the same time, each cell in the sample is analyzed one by one, and the droplet is dropped by vibrating the entire jet flow, and based on the above measurement analysis, the droplet is charged at the point where the droplet is formed, and a high voltage is applied. In a cell sorter that deflects and separates each charged droplet by passing it between deflection plates to which a A flow cytometer is a specialized analysis device that uses a nozzle that also functions as a flow cell, and is characterized by the ability to measure light by irradiating a laser beam onto a flow.
JP29959386A 1986-12-16 1986-12-16 Flowcell/nozzle Pending JPS63151855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29959386A JPS63151855A (en) 1986-12-16 1986-12-16 Flowcell/nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29959386A JPS63151855A (en) 1986-12-16 1986-12-16 Flowcell/nozzle

Publications (1)

Publication Number Publication Date
JPS63151855A true JPS63151855A (en) 1988-06-24

Family

ID=17874642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29959386A Pending JPS63151855A (en) 1986-12-16 1986-12-16 Flowcell/nozzle

Country Status (1)

Country Link
JP (1) JPS63151855A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981537A (en) * 1982-11-01 1984-05-11 Japan Spectroscopic Co Fine particle analyzing equipment
JPS59228147A (en) * 1983-06-10 1984-12-21 Hitachi Ltd Particle measuring apparatus
JPS60152952A (en) * 1984-01-23 1985-08-12 Toshiba Corp Blood corpuscle measuring apparatus
JPS60224040A (en) * 1984-03-26 1985-11-08 ベクトン・デイツキンソン・アンド・カンパニー Fluidized cell counter
JPS60238762A (en) * 1984-05-03 1985-11-27 ベクトン・デイツキンソン・アンド・カンパニー Fluid blood corpuscle inspection device
JPS60252245A (en) * 1984-05-30 1985-12-12 Hitachi Ltd Cell analyzer and cell separator using said analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981537A (en) * 1982-11-01 1984-05-11 Japan Spectroscopic Co Fine particle analyzing equipment
JPS59228147A (en) * 1983-06-10 1984-12-21 Hitachi Ltd Particle measuring apparatus
JPS60152952A (en) * 1984-01-23 1985-08-12 Toshiba Corp Blood corpuscle measuring apparatus
JPS60224040A (en) * 1984-03-26 1985-11-08 ベクトン・デイツキンソン・アンド・カンパニー Fluidized cell counter
JPS60238762A (en) * 1984-05-03 1985-11-27 ベクトン・デイツキンソン・アンド・カンパニー Fluid blood corpuscle inspection device
JPS60252245A (en) * 1984-05-30 1985-12-12 Hitachi Ltd Cell analyzer and cell separator using said analyzer

Similar Documents

Publication Publication Date Title
Steinkamp et al. A new multiparameter separator for microscopic particles and biological cells
US7392908B2 (en) Methods and apparatus for sorting particles hydraulically
Parks et al. [19] Fluorescence-activated cell sorting: Theory, experimental optimization, and applications in lymphoid cell biology
US4988619A (en) Flow cytometry apparatus
FI82772B (en) FLOEDESCYTOMETRISK APPARAT.
US4498766A (en) Light beam focal spot elongation in flow cytometry devices
JP5534214B2 (en) Flow cytometer and flow cytometry method
US3710933A (en) Multisensor particle sorter
JP5487638B2 (en) Apparatus for microparticle sorting and microchip
US7443491B2 (en) System for collecting information on biological particles
WO2001002836A1 (en) Apparatus and method for verifying drop delay in a flow cytometer
US20020064809A1 (en) Focused acoustic ejection cell sorting system and method
JPH0640061B2 (en) Capture tube sorting apparatus and method for flow cytometer
WO2020149042A1 (en) Microparticle isolation device, microparticle isolation system, droplet isolation device, droplet control device, and droplet control program
JP2013210287A (en) Calibration method in microparticle separation device, the device and calibration particle
Van Dilla et al. High-speed cell analysis and sorting with flow systems: biological applications and new approaches
EP0421406B1 (en) Apparatus and method for separating or measuring particles to be examined in a sample fluid
JP2749906B2 (en) Particle measurement device
JPS63151855A (en) Flowcell/nozzle
JPH041499Y2 (en)
WO2024096137A1 (en) Droplet separation device, separation signal generation device, separation signal generation method, and program
JPH03125944A (en) Particle classifying apparatus
KR20230142515A (en) A cuvette assembly, a flow cell containing the cuvette assembly, and a sample processor containing the cuvette assembly or flow cell.
JPH0448245A (en) Particle measuring instrument
JPH058515Y2 (en)