JPH0448245A - Particle measuring instrument - Google Patents

Particle measuring instrument

Info

Publication number
JPH0448245A
JPH0448245A JP2157015A JP15701590A JPH0448245A JP H0448245 A JPH0448245 A JP H0448245A JP 2157015 A JP2157015 A JP 2157015A JP 15701590 A JP15701590 A JP 15701590A JP H0448245 A JPH0448245 A JP H0448245A
Authority
JP
Japan
Prior art keywords
opening
particle
particles
nozzle
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157015A
Other languages
Japanese (ja)
Inventor
Junichi Yamayoshi
山吉 純一
Naoki Yuguchi
湯口 直樹
Yoshito Yoneyama
米山 好人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2157015A priority Critical patent/JPH0448245A/en
Priority to EP90119008A priority patent/EP0421406B1/en
Priority to DE69025370T priority patent/DE69025370T2/en
Publication of JPH0448245A publication Critical patent/JPH0448245A/en
Priority to US07/928,773 priority patent/US5275787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of particle measurement by discharging liquid drops which contain individual particles to be inspected from a nozzle opening, and sticking the discharged liquid drops from the opening on a glass plate provided opposite the opening and measuring the object particles. CONSTITUTION:The liquid drops which are discharged from the opening of a nozzle 1 strike on the glass plate 16 slantingly and stick on the glass plate 16 to move on the glass plate 16 by gushing. When a cell in the liquid passes across a measurement position irradiated with a laser beam from a laser light source 7 from the reverse surface of the glass plate 16, scattered light and fluorescent light are emitted by the cell and detectors 5 and 6 detect their intensity values. Liquid drops are discharged from the opening of the nozzle 1, one after another, the cell is measured at the measurement position, and the cell which is already measured is flushed away with following liquid drops which are discharged. Consequently, individual object particles in a particle suspension can securely be measured.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は細胞等の微小な被検粒子が浮遊する浮遊液中の
個々の被検粒子を一個ずつ分離して、これを光学的手法
等を用いて測定する粒子測定装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention involves separating individual test particles one by one in a suspension in which microscopic test particles such as cells are suspended, and separating them one by one using an optical method or the like. This invention relates to a particle measuring device that measures particles using.

[従来の技術] 従来、粒子浮遊液中の多数の粒子を1個ずつ分離する方
法として、第4図に示すようなシースフロ一方式が一般
に知られている。これは粒子浮透液とシース液をそれぞ
れ加圧装置により加圧して、粒子浮遊液をシース液で包
むようにして流し、流体力学的に収斂させて粒子浮遊液
を細い流れにし、個々の粒子を1個ずつ一列に流して分
離する方法である。
[Prior Art] Conventionally, a sheath-flow method as shown in FIG. 4 is generally known as a method for separating a large number of particles one by one in a particle suspension. This involves applying pressure to the particle suspension liquid and the sheath liquid using pressurizing devices, wrapping the particle suspension liquid in the sheath liquid, and then hydrodynamically converging the particle suspension liquid into a thin stream to separate individual particles. This is a method of separating the particles by flowing them one by one in a line.

又、血液等の試料を用意して、このシースフロ一方式に
より分離した試料中の個々の細胞を光学的方法等を利用
して測定し、細胞解析や細胞分取を行う装置が、フロー
サイトメータやセルソータの名称で実用化されている。
In addition, a flow cytometer is a device that prepares a sample such as blood, separates it using this sheath-flow method, measures the individual cells in the sample using optical methods, etc., and performs cell analysis and cell sorting. It has been put into practical use under the names of cell sorter and cell sorter.

244図はフローサイトメータの構成の一例であり、上
記シースフロ一方式で分離され、フローセル内を一列に
流れる個々の細胞に測定用エネルギ、例えば光源24か
らの光ビームを照射し、細胞への光照射による光学的反
作用、例えば細胞から発する散乱光や蛍光を検出器25
.26で測光するものである。測光した出力を基に信号
処理部29にて粒子解析の種類、大きさ等の演算が行な
われる。
Figure 244 shows an example of the configuration of a flow cytometer, in which individual cells that are separated by the above-mentioned sheath-flow method and flowing in a line inside the flow cell are irradiated with measurement energy, for example, a light beam from the light source 24, and the cells are exposed to light. A detector 25 detects optical reactions caused by irradiation, such as scattered light and fluorescence emitted from cells.
.. 26 for photometry. Based on the photometric output, the signal processing unit 29 performs calculations such as particle analysis type, size, etc.

又、345図はセルソータの構成の一例を示すものであ
る。血液等の細胞浮遊液が外部の加圧装置によりノズル
内に導かれ、シースフロー原理によってノズル内では細
胞浮遊液を軸とした層流が形成され、ノズル出口のオリ
フィス(70〜100μm)では、細胞浮遊液の平均径
が15〜20μmのジェット流として空中に放出される
。空中に出たジ主ット流にノズル先端から100〜20
0μmの所で光源24からの励起光を照射する。予め蛍
光染色されている細胞に励起光が照射されると、細胞か
ら散乱光及び蛍光が放射され、検出器25及び26でそ
れぞれを検出して電気信号に変換する。
Further, FIG. 345 shows an example of the configuration of a cell sorter. A cell suspension such as blood is guided into the nozzle by an external pressure device, and a laminar flow centered around the cell suspension is formed within the nozzle by the sheath flow principle, and at the orifice (70 to 100 μm) at the nozzle exit, The cell suspension is released into the air as a jet stream with an average diameter of 15-20 μm. 100 to 20 from the nozzle tip to the main jet stream in the air
Excitation light from the light source 24 is irradiated at 0 μm. When cells that have been fluorescently stained in advance are irradiated with excitation light, scattered light and fluorescence are emitted from the cells, which are detected by detectors 25 and 26 and converted into electrical signals.

一方、ノズルは加振回路27の制御によって振動子21
で40KHz程度に加振されており、オリフィスを出た
ジェット流はノズル先端から数mm下方で均一な液滴と
なる。細胞から検出された信号が予め決められた条件を
満たすかどうかに応じて、信号処理部29からチャージ
ング回路28へ信号が送られ、液滴化に同期してチャー
ジング信号がノズルに加えられ、液滴が軽く帯電させら
れる。所望の細胞を含む帯電した液滴が強い電場を生じ
る2つの電極22.23間を通過する間に、静電気によ
って液滴は細胞の種類等に応じて右又は左方向へ偏向さ
れて振り分けられ、別々の試験管に集められる。
On the other hand, the nozzle is operated by the vibrator 21 under the control of the excitation circuit 27.
The jet stream exiting the orifice becomes uniform droplets several mm below the nozzle tip. Depending on whether the signal detected from the cells satisfies a predetermined condition, a signal is sent from the signal processing unit 29 to the charging circuit 28, and a charging signal is applied to the nozzle in synchronization with the formation of droplets. , the droplet becomes lightly charged. While the charged droplet containing the desired cells passes between two electrodes 22 and 23 that generate a strong electric field, the droplet is deflected and distributed to the right or left depending on the type of cell etc. by static electricity. collected in separate test tubes.

上記フローサイトメータやセルソータに利用されるシー
スフロ一方式では、細胞浮遊液及びシース液をノズルに
導くのに加圧系で各液を加圧することによって導いてい
るが、そのための配管及びポンプ等の加圧装置が必要な
ため、装置が大掛かりで制御も複雑になる問題点を有し
ている。
In the sheath-flow type used in the above-mentioned flow cytometers and cell sorters, the cell suspension and sheath liquid are guided to the nozzle by pressurizing each liquid with a pressure system, but this requires the use of piping, pumps, etc. Since a pressurizing device is required, there are problems in that the device is large-scale and the control is complicated.

又、シースフロ一方式は、細胞浮遊液及びシース液への
加圧力によって流れの流速が決り、この流速及び細胞浮
遊液の希釈の度合いによって粒子の分離の時間間隔が決
められるが、この間隔を広い範囲で変更することは困難
であった。
In addition, in the sheath flow type, the flow rate is determined by the pressure applied to the cell suspension and the sheath liquid, and the time interval for particle separation is determined by this flow rate and the degree of dilution of the cell suspension. It was difficult to change in range.

そこで本願出願人は先に特願平1−260707号にお
いて1粒子浮遊液を収容する収容部内に吐出エネルギを
与えて液滴を吐出させる方法、−例として熱エネルギを
与えて気泡を発生させ、気泡の膨張のflJ撃によりて
個々の被検粒子を含んだ液滴を開口から吐出させる方法
を用いた新規な粒子測定装置を提案した。
Therefore, the applicant of the present application has previously proposed a method of ejecting droplets by applying ejection energy into a container containing a one-particle suspended liquid, for example, applying thermal energy to generate air bubbles. We proposed a new particle measuring device that uses a method in which droplets containing individual particles to be detected are ejected from an opening by the flJ impact of expanding bubbles.

[発明の目的] 本発明は先に提案した粒子測定装置を更に改良して、粒
子測定の精度をより向上させることを目的とする。
[Object of the Invention] An object of the present invention is to further improve the particle measuring device proposed above to further improve the accuracy of particle measurement.

[目的を達成するための手段] 上記目的を達成するための本発明は、粒子浮遊液中の被
検粒子を一個ずつ分離し、該分離された被検粒子を測定
する粒子測定装置において、粒子浮遊液を収容する収容
部と、前記収容部に設けられ、前記粒子浮遊液を外部に
吐出させるための開口と、前記収容部内に吐出エネルギ
を与λて、個々の被検粒子を含む液滴を前記開口から吐
出させる手段と、前記開口に対向した位置に設けられ、
前記開口からの吐出液滴を付着させる測定部と、前記測
定部において被検粒子を測定する手段を有することを特
徴とするものである。
[Means for Achieving the Object] The present invention for achieving the above object is a particle measuring device that separates test particles one by one in a particle suspension and measures the separated test particles. A storage section for storing a suspended liquid; an opening provided in the storage section for discharging the particle suspension liquid to the outside; and a liquid droplet containing individual particles to be detected by applying ejection energy to the storage section. means for discharging from the opening, and a means provided at a position opposite to the opening,
The present invention is characterized in that it includes a measuring section to which the droplets discharged from the opening are attached, and a means for measuring the particles to be detected in the measuring section.

[実施例1] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example 1] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図、第2図は本発明の実施例の構成図である。FIGS. 1 and 2 are configuration diagrams of an embodiment of the present invention.

図中1は被検粒子である細胞が浮遊する細胞浮遊液を収
容するための、50μmX50μm程度の矩形断面を有
するノズルで、一端が開放され開口部を形成している。
In the figure, reference numeral 1 denotes a nozzle having a rectangular cross section of about 50 μm×50 μm for accommodating a cell suspension in which cells, which are test particles, are suspended, and one end is open to form an opening.

該ノズルの作成方法の例として、エツチングやフォトレ
ジスト工程により基板上に微細な溝を設け、その上に平
面板を張り合せる方法が一般的であるが、これに限定さ
れるわけでは無い、なおノズル断面のサイズは測定対象
とする被検粒子のサイズに応じてそれに通したサイズと
する0本実施例では測定対象を血液と考え、血液中に含
まれる種々の血球のサイズが5μm〜30μm程度であ
ることから、ノズルサイズを最大血球サイズよりもやや
大きい50μmX50μmと設定した。
As an example of a method for creating the nozzle, a common method is to create fine grooves on a substrate by etching or a photoresist process, and then laminate a flat plate on top of the grooves, but the method is not limited to this. The size of the nozzle cross section is determined according to the size of the test particles to be measured. In this example, the measurement target is considered to be blood, and the size of various blood cells contained in the blood is about 5 μm to 30 μm. Therefore, the nozzle size was set to 50 μm×50 μm, which is slightly larger than the maximum blood cell size.

2は細胞浮遊液を順次ノズル1内に供給する供給口でノ
ズル1の出口近傍に接続されている。3はノズル内に設
けられる加熱部であり、具体的には加熱ヒータであって
電極が後述の制御回路に接続されている。なお加熱部3
はノズル外にあフてノズル内を加熱するものであっても
良い、又、加熱部3は加熱ヒータには限られず、熱エネ
ルギを発生する手段であれば良く、例えば熱吸収部材に
レーザ光線等の電磁波エネルギを与えて加熱するような
構成をとっても良い、4はノズル1の外側に設けられ、
加熱ヒータからの熱伝導でノズル1が温度上昇するのを
抑えるための放熱部材である。
Reference numeral 2 denotes a supply port that sequentially supplies cell suspension into the nozzle 1 and is connected near the outlet of the nozzle 1. Reference numeral 3 denotes a heating section provided within the nozzle, specifically a heater whose electrodes are connected to a control circuit to be described later. Note that the heating section 3
The heating unit 3 may be heated outside the nozzle to heat the inside of the nozzle. Also, the heating unit 3 is not limited to a heater, but may be any means that generates thermal energy, such as a laser beam applied to a heat absorbing member. 4 may be provided on the outside of the nozzle 1,
This is a heat dissipation member for suppressing the temperature of the nozzle 1 from rising due to heat conduction from the heater.

16は固設された透明なガラス板で、ノズル1の吐出軸
1上に対して斜めに傾けて配置されている。7は測定用
エネルギ発生手段であるレーザ光源、5.6は光照射に
よる粒子からの光学的反作用を検出するためのフォトマ
ル等の検圧器である。レーザ光源7から出射するレーザ
ビームはガラス板16の裏面から入射し、ノズル1の吐
出軸1とレーザ光軸0はガラス板16近傍で交差するよ
うに配置されている。検出器5はレーザ光軸0上に配置
され、該検出器5の手前にはレーザビームが直接検出器
に入力するのを防ぐための不図示のビームストッパが光
軸上に設けられ、ガラス板16上のレーザビームが照射
される測定位置の粒子Sによって光路前方に散乱される
散乱光が検出器5にて測光されるようになっている。又
、検出器6はレーザ光軸0及び液滴吐出軸1のそれぞれ
に交差する方向に配され、該検出器6の手前には目的と
する蛍光波長のみを選択透過するバンドパスフィルタ1
5が設けられ、測定位置の粒子Sから発する蛍光が選択
的に検出器6にて測光されるようになっている。
Reference numeral 16 denotes a fixed transparent glass plate, which is arranged obliquely with respect to the discharge axis 1 of the nozzle 1. 7 is a laser light source which is a measurement energy generating means, and 5.6 is a pressure detector such as a photomultiplier for detecting an optical reaction from particles caused by light irradiation. The laser beam emitted from the laser light source 7 enters the back surface of the glass plate 16, and the ejection axis 1 of the nozzle 1 and the laser optical axis 0 are arranged so as to intersect near the glass plate 16. The detector 5 is placed on the laser optical axis 0, and a beam stopper (not shown) is provided on the optical axis in front of the detector 5 to prevent the laser beam from directly entering the detector. Scattered light scattered forward in the optical path by the particles S at the measurement position irradiated with the laser beam on the laser beam 16 is photometered by the detector 5 . Further, the detector 6 is arranged in a direction intersecting each of the laser optical axis 0 and the droplet ejection axis 1, and in front of the detector 6 is a bandpass filter 1 that selectively transmits only the target fluorescence wavelength.
5 is provided, and the fluorescence emitted from the particles S at the measurement position is selectively measured by the detector 6.

次に、以上のような構成における動作について説明する
Next, the operation in the above configuration will be explained.

十分希釈され、必要に応じて蛍光試薬等で染色処理を施
した血液試料等の測定用試料を用意し、この試料を供給
口2に供給し、そこからノズル1内に供給してノズル1
内を満たした状態とする。
Prepare a measurement sample such as a blood sample that has been sufficiently diluted and stained with a fluorescent reagent if necessary, and supply this sample to the supply port 2 and from there into the nozzle 1.
Let the inside be filled.

ここで第3図の制御系による制御を具体的に説明する。Here, control by the control system shown in FIG. 3 will be specifically explained.

サンプリング同期回路31で生成される吐出タイミング
信号に従って0N−OFF発生回路32がノズル1内に
設けられた加熱ヒータ3を駆動して発熱させると、加熱
された細胞浮遊液内の水分が瞬時に気化して341図の
ように気泡8が発生する。すると気化した分だけ体積が
詑張するので、その?#撃によってノズル1の開口付近
にある細胞Sがノズルの開口から外側に押し出され、細
胞Sが含まれる細胞浮遊液がノズル1の外へ吐出される
。始め膨張を続けていた気泡8は冷却されて収縮を始め
、体積の縮小により開口から吐出した細胞浮遊液に対し
て引込力が働く、このようにして開口から外に吐出した
細msを含む細胞浮遊液は液滴となフて空中に飛翔する
。この吐出の基本原理は例えば特開昭54−59938
号公報や特開昭55−27282号公報に記載される。
When the ON-OFF generation circuit 32 drives the heater 3 provided in the nozzle 1 to generate heat according to the ejection timing signal generated by the sampling synchronization circuit 31, the water in the heated cell suspension is instantly vaporized. As a result, bubbles 8 are generated as shown in Fig. 341. Then, the volume increases by the amount of vaporization, so what? # The cells S near the opening of the nozzle 1 are pushed out from the opening of the nozzle, and the cell suspension containing the cells S is discharged out of the nozzle 1. The bubbles 8, which initially continued to expand, cool and begin to contract, and due to the reduction in volume, a pulling force acts on the cell suspension discharged from the opening.In this way, the cells containing fine ms discharged from the opening. The suspended liquid turns into droplets and flies into the air. The basic principle of this discharge is disclosed in, for example, Japanese Patent Application Laid-Open No. 54-59938.
It is described in Japanese Patent Application Laid-Open No. 55-27282.

細胞浮遊液は吐出した分だけ毛細管現象により供給口2
から供給され、初期状態に戻る。細胞浮遊液の供給は毛
細管現象により自然に行なわれるため、従来のような加
圧系は必要としない。
The amount of cell suspension that is discharged is transferred to the supply port 2 by capillary action.
is supplied and returns to the initial state. Since the cell suspension is supplied naturally by capillary action, there is no need for a conventional pressurized system.

この気泡の発生と消滅は、′!J3図のサンプリング同
期回路31で作られるサンプリング周波数に従って非常
に短時間の内に行なわれ、1秒間に最高数千個の液滴を
連続的に吐出させることが可能である。これにより多数
の細胞を高速に分離することができる。
The generation and disappearance of this bubble is ′! This is done in a very short time according to the sampling frequency created by the sampling synchronization circuit 31 shown in Figure J3, and it is possible to continuously eject up to several thousand droplets per second. This allows a large number of cells to be separated at high speed.

又、サンプリング同期回路31で生成される信号は検出
系33のデータ取込みタイミング信号としても利用され
、サンプリング同期回路31の吐出タイミング信号によ
って吐出した液滴が所定時間の後に測定位置を通過する
期間にのみ、検出器5.6からデータを取込むようにな
っている。これにより被検粒子以外からのノイズ成分の
取込みを極力排除することができる。
In addition, the signal generated by the sampling synchronization circuit 31 is also used as a data acquisition timing signal for the detection system 33, and the ejection timing signal of the sampling synchronization circuit 31 allows the ejected droplet to pass through the measurement position after a predetermined time. Only the detector 5.6 is configured to take in data from the detector 5.6. This makes it possible to eliminate as much as possible the intake of noise components from particles other than the test particles.

ノズルから吐出される液滴は直径50μm〜80μm程
度となるように開口の大きさ及び加熱ヒータの容量が設
定されており、この吐出された液滴中に細胞粒子が1個
だけ含まれるよう粒子浮遊液の希釈度を設定しておく。
The size of the aperture and the capacity of the heater are set so that the droplet discharged from the nozzle has a diameter of approximately 50 μm to 80 μm, and the particle size is set so that only one cell particle is included in the droplet discharged. Set the dilution of the suspension.

開口から吐出した液滴はガラス板16に斜め方向から衝
突してガラス板16上に付着し、吐出の勢いによってガ
ラス板16上を移動する。そして液中の細胞がレーザビ
ームがガラス板16の裏面から照射される測定位置を横
切フて通過する際に細胞から散乱光及び蛍光が発生し、
検出器5.6から成る検出系にてそれぞれ強度検出され
る。液滴はノズルの開口から次々と吐出して測定位置に
おいて細胞が測定され、測定済みの細胞は後から吐出し
た液滴によって押し流される。
The droplets discharged from the opening collide with the glass plate 16 from an oblique direction, adhere to the glass plate 16, and move on the glass plate 16 due to the force of the discharge. Then, when the cells in the liquid pass across the measurement position where the laser beam is irradiated from the back surface of the glass plate 16, scattered light and fluorescence are generated from the cells.
Each intensity is detected by a detection system consisting of detectors 5 and 6. Droplets are discharged one after another from the opening of the nozzle to measure cells at the measurement position, and the cells that have been measured are swept away by the droplets discharged later.

第3図において光検出器5.6を有する検出系33から
の出力はデータ記憶部34に次々と記憶され、得られた
多数の細胞粒子についての測定データから、信号処理部
35においてヒストグラムやサイトグラム等の統計処理
を用いて細胞粒子の種類判別や性買の解析等、粒子解析
を行なう。
In FIG. 3, the output from the detection system 33 having a photodetector 5.6 is stored one after another in the data storage section 34, and from the obtained measurement data regarding a large number of cell particles, the signal processing section 35 generates a histogram and a site. Particle analysis, such as determining the type of cell particles and analyzing sex purchase, is performed using statistical processing such as gram analysis.

具体的な演算方法については様々な方法が広く一般に知
られているためここでは詳細な説明は省略する。解析結
果はTVモニタへの表示や、プリントアウト等により出
力される。
Since various methods are widely and generally known regarding specific calculation methods, detailed explanations will be omitted here. The analysis results are displayed on a TV monitor, printed out, or otherwise output.

以上のように、飛翔中の液滴に直接レーザビームを照射
する構成ではなく、固定されたガラス板上に細胞粒子を
付着させながら測定部を順次通過させて測定を行なうた
め、以下のような効果が得られる。
As described above, instead of directly irradiating the flying droplets with a laser beam, the measurement is performed by attaching the cell particles to a fixed glass plate and passing it through the measuring section one after another. Effects can be obtained.

′17S1に、細胞粒子を固定されたガラス板上に付着
させるため、被検位置での粒子の位置ずれが少なく、よ
り安定した測定が行なえる。
'17S1, since the cell particles are attached to a fixed glass plate, there is less displacement of the particles at the test position, and more stable measurements can be performed.

第2に、仮に飛翔中の液滴に直接レーザビームを照射す
る構成であるとすると、表面形状が不安的な液滴表面で
乱反射が起き、液滴中の細胞粒子の光学測定に悪影響を
及ぼす畏れがある。これに対して本実施例は透明ガラス
板の裏面からレーザビームを照射し、ガラス板に付着す
る液体中のm胞粒子を測定する構成であるので乱反射は
起きず、フローセル中の粒子を測定するのと同等の信顆
性の高い測定が行なえる。
Second, if the configuration were to directly irradiate a flying droplet with a laser beam, diffuse reflection would occur on the droplet surface with an unstable surface shape, which would adversely affect the optical measurement of cell particles in the droplet. There is fear. On the other hand, this example is configured to irradiate a laser beam from the back side of a transparent glass plate and measure the m-cell particles in the liquid adhering to the glass plate, so diffuse reflection does not occur and the particles in the flow cell can be measured. It is possible to perform measurements with high reliability equivalent to that of

なお以上は、血液細胞等の生物分野の微粒子を解析する
装置に通用したものであるが、本発明はこれに限定され
るものでは無く、例えば工業用の微粒子を計測する装置
等、被検粒子浮遊液を扱う装置全般に通用することが可
能である。
Although the above is applicable to devices that analyze microparticles in the biological field such as blood cells, the present invention is not limited thereto. It can be used in all devices that handle floating liquids.

又、上記実施例は被検粒子を含んだ液滴を吐出させるた
めに、熱エネルギによって気泡を発生させ、その膨張の
衝撃によって液滴を吐出させる方式を示したが、別法と
してピエゾ素子等の振動子を用いて機械的に衝撃を与え
て液滴を吐出させる方式であっても良い。この場合も上
記気泡を利用した実施例と同様、任意の吐出タイミング
信号に従って液体を吐出させる所謂オンデマンド型の吐
出制御が可能である。
In addition, in the above embodiment, in order to eject droplets containing test particles, a method is shown in which bubbles are generated using thermal energy and the droplets are ejected by the impact of the expansion, but an alternative method is to use a piezo element, etc. A method may also be used in which droplets are ejected by mechanically applying impact using a vibrator. In this case, as in the embodiment using bubbles, so-called on-demand ejection control is possible in which liquid is ejected according to an arbitrary ejection timing signal.

又、上記実施例は粒子測定のための光学系として最も基
本的な形態を示すものであるが、より高精度な測定を行
なうためには様々な改良形態が考えられる。例えば照射
光学系を走査光学系として測定部を高速に光走査するよ
うにすれば、被検粒子の位置ずれに対して更に許容度を
高めることができる。走査するための手段としては、音
響光学偏向素子(AOD)や振動ミラー等が一般的であ
る。又、受光光学系としてCCD等のアレイセンサを用
いれば被検粒子の画像情報を捕らえることができ解析情
報量がより向上する。
Furthermore, although the above embodiment shows the most basic form of an optical system for particle measurement, various improvements can be made in order to perform more accurate measurement. For example, if the irradiation optical system is used as a scanning optical system and the measuring section is optically scanned at high speed, the tolerance to the positional deviation of the particles to be measured can be further increased. Common scanning means include an acousto-optic deflection device (AOD) and a vibrating mirror. Further, if an array sensor such as a CCD is used as the light receiving optical system, image information of the particles to be detected can be captured, and the amount of analysis information can be further improved.

更には、特願平1−280707号に示されるように、
吐出ノズルを複数箇並べて配置し、各ノズルから次々と
液滴を吐出させるような構成とすれば、さらに処理能力
を高めることができる。
Furthermore, as shown in Japanese Patent Application No. 1-280707,
By arranging a plurality of ejection nozzles side by side and ejecting droplets one after another from each nozzle, the throughput can be further improved.

[発明の効果] 以上本発明によれば、簡単な構成で粒子浮遊液中の個々
の被検粒子をより確実に測定することができる。
[Effects of the Invention] As described above, according to the present invention, individual test particles in a particle suspension can be measured more reliably with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の構成図、第3図は制
御系のブロック図、 第4図、1iS5図は従来例の構成図、であり、図中の
主な符号は、 1・・・・ノズル、2・・・・供給口、3・・・・加熱
部、4・・・・放熱部材、5.6・・・・検圧器、7・
・・・レーザ光源、8・・・・気泡、15・・・・バン
ドパスフィルタ、16・・・・透明ガラス板、S・・・
・細胞第1 ¥2田
1 and 2 are block diagrams of the embodiment of the present invention, FIG. 3 is a block diagram of the control system, and FIG. 4 and 1iS5 are block diagrams of the conventional example, and the main symbols in the figures are , 1...nozzle, 2...supply port, 3...heating section, 4...heat radiation member, 5.6...pressure detector, 7...
...Laser light source, 8...Bubble, 15...Band pass filter, 16...Transparent glass plate, S...
・Cell No. 1 ¥2

Claims (4)

【特許請求の範囲】[Claims] (1)粒子浮遊液中の被検粒子を一個ずつ分離し、該分
離された被検粒子を測定する粒子測定装置において、 粒子浮遊液を収容する収容部、 前記収容部に設けられ、前記粒子浮遊液を外部に吐出さ
せるための開口、 前記収容部内に吐出エネルギを与えて、 個々の被検粒子を含む液滴を前記開口から吐出させる手
段、 前記開口に対向した位置に設けられ、前記開口からの吐
出液滴を付着させる測定部、 前記測定部において被検粒子を測定する手段、 を有することを特徴とする粒子測定装置。
(1) A particle measuring device that separates test particles one by one in a particle suspension and measures the separated test particles, comprising: a storage section that stores the particle suspension; an opening for discharging the suspended liquid to the outside; means for applying discharging energy into the storage section to discharge droplets containing individual test particles from the opening; provided at a position opposite to the opening; A particle measuring device comprising: a measuring section to which droplets ejected from the measuring section are attached; and means for measuring test particles in the measuring section.
(2)前記測定部は透明板であり、該透明板に吐出液が
付着した裏面から照射光を照射し、光学的に被検粒子を
測定する請求項(1)記載の粒子測定装置。
(2) The particle measuring device according to claim 1, wherein the measuring section is a transparent plate, and the irradiation light is irradiated from the back side of the transparent plate on which the ejected liquid is attached to optically measure the particles to be detected.
(3)前記測定部は前記開口に対して斜めに傾けて配置
され、吐出液滴が斜め方向から測定部に付着して液滴中
の被検粒子が測定位置を通過する請求項(1)記載の粒
子測定装置。
(3) The measuring section is disposed obliquely with respect to the opening, and the ejected droplet adheres to the measuring section from an oblique direction, and the test particles in the droplet pass through the measuring position. The particle measuring device described.
(4)前記収容部内に熱エネルギを与える手段を有し、
加熱して気泡を発生させることにより液滴を吐出させる
請求項(1)記載の粒子測定装置。
(4) having means for applying thermal energy into the housing part;
The particle measuring device according to claim 1, wherein the droplets are ejected by heating to generate bubbles.
JP2157015A 1989-10-04 1990-06-15 Particle measuring instrument Pending JPH0448245A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2157015A JPH0448245A (en) 1990-06-15 1990-06-15 Particle measuring instrument
EP90119008A EP0421406B1 (en) 1989-10-04 1990-10-04 Apparatus and method for separating or measuring particles to be examined in a sample fluid
DE69025370T DE69025370T2 (en) 1989-10-04 1990-10-04 Device and method for separating or measuring particles to be examined in a liquid sample
US07/928,773 US5275787A (en) 1989-10-04 1992-08-17 Apparatus for separating or measuring particles to be examined in a sample fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157015A JPH0448245A (en) 1990-06-15 1990-06-15 Particle measuring instrument

Publications (1)

Publication Number Publication Date
JPH0448245A true JPH0448245A (en) 1992-02-18

Family

ID=15640319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157015A Pending JPH0448245A (en) 1989-10-04 1990-06-15 Particle measuring instrument

Country Status (1)

Country Link
JP (1) JPH0448245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519839A (en) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド Measurement of particle characteristics
JP2013210264A (en) * 2012-03-30 2013-10-10 Sony Corp Microparticle fractionation device and delay time determination method
JP2021522498A (en) * 2018-04-27 2021-08-30 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company A flow cytometer with a sealed droplet sorter with a controlled aerosol content and how to use it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519839A (en) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド Measurement of particle characteristics
JP2013210264A (en) * 2012-03-30 2013-10-10 Sony Corp Microparticle fractionation device and delay time determination method
US9339823B2 (en) 2012-03-30 2016-05-17 Sony Corporation Microparticle sorting apparatus and delay time determination method
US9958375B2 (en) 2012-03-30 2018-05-01 Sony Corporation Microparticle sorting apparatus and delay time determination method
US10876954B2 (en) 2012-03-30 2020-12-29 Sony Corporation Microparticle sorting apparatus and delay time determination method
JP2021522498A (en) * 2018-04-27 2021-08-30 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company A flow cytometer with a sealed droplet sorter with a controlled aerosol content and how to use it

Similar Documents

Publication Publication Date Title
US5275787A (en) Apparatus for separating or measuring particles to be examined in a sample fluid
US5180065A (en) Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
US7392908B2 (en) Methods and apparatus for sorting particles hydraulically
US4778593A (en) Method and apparatus for discriminating minute particles
US9618442B2 (en) Multiple flow channel particle analysis system
US7443491B2 (en) System for collecting information on biological particles
RU2393815C2 (en) High purity sperm cell populations bearing x-chromosome and bearing y-chromosome
JP2020513576A (en) Method and apparatus for bulk sorting of microparticles using microfluidic channels
EP1739402B1 (en) Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
US7639358B2 (en) System and process for sorting biological particles
US8127624B2 (en) Particulate sampling apparatus, particulate sampling substrate and particulate sampling method
WO2001002836A1 (en) Apparatus and method for verifying drop delay in a flow cytometer
JPH0640061B2 (en) Capture tube sorting apparatus and method for flow cytometer
NO802464L (en) PROCEDURE AND APPARATUS FOR PLACING POINT DRAWING FORMS IN THE FLUID DRAW TO AN ELECTROSTATIC SORTING DEVICE
EP0421406B1 (en) Apparatus and method for separating or measuring particles to be examined in a sample fluid
WO2020149042A1 (en) Microparticle isolation device, microparticle isolation system, droplet isolation device, droplet control device, and droplet control program
CN111948118B (en) Liquid drop delay calculating device and calculating method thereof
JP2749906B2 (en) Particle measurement device
JPH0448245A (en) Particle measuring instrument
JPH0367224B2 (en)
JPS62165141A (en) Microparticle analyzer
JPH0229184B2 (en)
JPH04110639A (en) Particle fractionating apparatus
JPH03125944A (en) Particle classifying apparatus
WO2023140188A1 (en) Flow cytometer, and method for setting waveform parameter of signal which drives droplet generation vibrating element of flow cytometer