JPS6239389B2 - - Google Patents

Info

Publication number
JPS6239389B2
JPS6239389B2 JP54045378A JP4537879A JPS6239389B2 JP S6239389 B2 JPS6239389 B2 JP S6239389B2 JP 54045378 A JP54045378 A JP 54045378A JP 4537879 A JP4537879 A JP 4537879A JP S6239389 B2 JPS6239389 B2 JP S6239389B2
Authority
JP
Japan
Prior art keywords
liquid
cell chamber
sample
flow
carrier liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54045378A
Other languages
Japanese (ja)
Other versions
JPS55138647A (en
Inventor
Hiroyuki Myagi
Hidejiro Kawana
Kazuo Nihei
Kunio Hirota
Fusao Shirato
Yasuhisa Shibata
Yoshitada Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4537879A priority Critical patent/JPS55138647A/en
Publication of JPS55138647A publication Critical patent/JPS55138647A/en
Publication of JPS6239389B2 publication Critical patent/JPS6239389B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 本発明はキヤリア液が流通されるフローセルに
試料液を導入してイオン選択性電極を用いて試料
液中の電解質を分析測定する電解質分析方法およ
び電解質分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte analysis method and an electrolyte analyzer in which a sample liquid is introduced into a flow cell through which a carrier liquid is passed, and an ion-selective electrode is used to analyze and measure an electrolyte in the sample liquid.

従来生体液などに含まれるナトリウム、カリウ
ム、カルシウムあるいは塩素などの電解質成分は
プローブ形のイオン選択電極と比較電極を用いた
デイスクリート方式の電解質分析装置で測定され
ていたが、近年、装置構成が簡単で操作も容易な
連続フロー方式が注目されるようになつた。しか
し、これまでに開発された連続フロー方式の電解
質分析計では試料吸入部から検出部であるフロー
セルまでの流路に死空間が多く、この流路を移動
する間に試料がこれを挾むキヤリア液内に拡散す
るため、安定な出力を得るためには多量の試料を
必要とした。また、途中配管中に試料が付着し、
キヤリーオーバーの原因となることもある。
Conventionally, electrolyte components such as sodium, potassium, calcium, or chlorine contained in biological fluids have been measured using a discrete electrolyte analyzer that uses a probe-type ion-selective electrode and a reference electrode, but in recent years, the device configuration has changed. Continuous flow methods are attracting attention because they are simple and easy to operate. However, in the continuous flow type electrolyte analyzers that have been developed so far, there is a lot of dead space in the flow path from the sample intake section to the flow cell, which is the detection section. Because it diffuses into the liquid, a large amount of sample is required to obtain stable output. In addition, samples may adhere to the pipes along the way.
It may also cause carry over.

従来の電解質分析方法について図面を用いさら
に若干の説明をする。第1図は従来のフローセル
形電解分析装置の構成を示す。液槽に収容された
キヤリア液をも兼ねる標準試料11,12と試料
液13はサンプリングノズル10から切換器9を
介して流路内に交互に吸引されフローセル1に導
かれる。試料が各イオン選択性電極2,2′,
2″の感応膜8,8′,8″と比較電極3の液絡部
7の間に位置する間に各電極の出力が増幅器18
で増幅され、その出力が演算器19で濃度に変換
されて表示器20に表示される。該試料は送液ポ
ンプ14で吸引、排出される。各電極には、内部
参照溶液5,5′,5″あるいは比較溶液6が収容
されており、内部参照電極4,4′,4″,4が
挿入されている。フローセル1は送液ポンプ14
に接続されており、このポンプ14の動作によつ
て液がノズル10から吸入されフローセル1のセ
ル室30を経て排液口15から排出される。
The conventional electrolyte analysis method will be further explained using drawings. FIG. 1 shows the configuration of a conventional flow cell type electrolytic analyzer. Standard samples 11 and 12 and a sample liquid 13, which also serve as carrier liquid, stored in the liquid tank are alternately sucked into the flow path from the sampling nozzle 10 via the switch 9 and guided to the flow cell 1. The sample is connected to each ion selective electrode 2, 2',
The output of each electrode is connected to an amplifier 18 between the 2" sensitive membranes 8, 8', 8" and the liquid junction 7 of the reference electrode 3.
The output is amplified by the arithmetic unit 19 and displayed on the display 20. The sample is sucked and discharged by the liquid feed pump 14. Each electrode contains an internal reference solution 5, 5', 5'' or a comparison solution 6, and an internal reference electrode 4, 4', 4'', 4 is inserted therein. The flow cell 1 is a liquid pump 14
By the operation of this pump 14, liquid is sucked through the nozzle 10, passes through the cell chamber 30 of the flow cell 1, and is discharged from the drain port 15.

このような従来の電解質分析装置によれば、第
3図に示すような問題がある。すなわち第3図は
従来のフローセル方式電解質分析装置における試
料の拡亜状況を説明したものである。横軸は時間
で示してあるが、配管あるいはフローセル流路の
長さと考えてもよい。実線aで示したものは試料
が吸引ノズルに吸引された時点での濃度プロフア
イルであり、破線bで示したものはフローセル内
での濃度プロフアイルである。試料注入時点では
ほぼ台形の濃度プロフアイルとなるが、流路配管
中を移動する間に、試料前後にあつて試料と同時
に移動するキヤリア液である標準溶液中に拡散
し、フローセル内に到達した時には濃度が一定と
なる範囲が狭くなる。更に、イオン選択性電極の
応答が遅い場合には第4図に示すように電極出力
が一定となる時間は第3図に点線で示した濃度プ
ロフアイルよりも更に狭くなる。したがつて、測
定に必要な試料量はフローセルの流路の容積の3
倍以上にもしなければならない。
According to such a conventional electrolyte analyzer, there are problems as shown in FIG. That is, FIG. 3 explains the state of sample spread in a conventional flow cell type electrolyte analyzer. Although the horizontal axis is shown in time, it may also be considered as the length of the piping or flow cell channel. What is shown by the solid line a is the concentration profile at the time when the sample is sucked into the suction nozzle, and what is shown by the broken line b is the concentration profile within the flow cell. At the time of sample injection, the concentration profile is almost trapezoidal, but while moving through the flow path piping, it diffuses into the standard solution, which is a carrier liquid that is located before and after the sample and moves at the same time as the sample, and reaches the inside of the flow cell. Sometimes the range in which the concentration is constant becomes narrower. Furthermore, when the response of the ion-selective electrode is slow, as shown in FIG. 4, the time period during which the electrode output becomes constant becomes even narrower than the concentration profile shown by the dotted line in FIG. Therefore, the amount of sample required for measurement is 3 times the volume of the flow channel of the flow cell.
It has to be more than doubled.

本発明は上述したような点に鑑みてなされたも
ので、その目的は、フローセルのセル室内部に試
料液が存在するときでも、キヤリア液内への試料
液の拡散が非常に小さい電解質分析方法および装
置を提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide an electrolyte analysis method in which diffusion of the sample liquid into the carrier liquid is extremely small even when the sample liquid is present inside the cell chamber of a flow cell. and equipment.

本発明の特徴は、試料液の分析測定にあたつて
イオン選択性電極の感応面が露出されているセル
室を流通するキヤリア液の流れを停止し、キヤリ
ア液の流れが停止した状態のままセル室内に試料
液を注入し、注入された試料液がセル室内に存在
している間にその試料液中の電解質濃度を測定
し、その後セル室内の試料液をキヤリア液によつ
てセル室から排出するようにしたことにある。
The present invention is characterized by stopping the flow of the carrier liquid flowing through the cell chamber where the sensitive surface of the ion-selective electrode is exposed during analysis and measurement of the sample liquid, and maintaining the flow of the carrier liquid in the stopped state. A sample liquid is injected into the cell chamber, and the electrolyte concentration in the sample liquid is measured while the injected sample liquid is present in the cell chamber.Then, the sample liquid in the cell chamber is removed from the cell chamber by a carrier liquid. This is due to the fact that it was made to be discharged.

本発明の望ましい実施例は、キヤリア液が流通
されるセル室とイオン選択性電極と比較電極とを
有しイオン選択性電極の感応面および比較電極の
液絡部がセル室に露出するように配置されたフロ
ーセル部と、キヤリア液源からのキヤリア液がセ
ル室内を流通するように送液する手段と、イオン
選択性電極からの電気的出力信号を処理する信号
処理部とを備えた電解質分析装置に適用される。
そして、キヤリア液源から上記セル室を経て液が
排出されるまでのキヤリア液流路上に、セル室の
上流側もしくは下流側の内の一方の流路を実質的
に閉塞する流路閉塞手段を設け、試料液がキヤリ
ア液によつて移送されることなくセル室内に入る
ように流路閉塞手段よりもセル室に近い位置にあ
るキヤリア液流路上に試料液注入部を設けてい
る。
A preferred embodiment of the present invention has a cell chamber through which a carrier liquid flows, an ion-selective electrode, and a reference electrode, such that the sensitive surface of the ion-selective electrode and the liquid junction of the reference electrode are exposed to the cell chamber. An electrolyte analysis system comprising: a flow cell section disposed; a means for transporting a carrier solution from a carrier solution source so that it flows through the cell chamber; and a signal processing section for processing an electrical output signal from an ion-selective electrode. Applies to equipment.
Further, on the carrier liquid flow path from the carrier liquid source until the liquid is discharged through the cell chamber, a flow path blocking means for substantially blocking one of the flow paths on the upstream side or the downstream side of the cell chamber is provided. A sample liquid inlet is provided on the carrier liquid flow path at a position closer to the cell chamber than the flow path closing means so that the sample liquid enters the cell chamber without being transferred by the carrier liquid.

ここで、セル室に面して露出されるイオン選択
性電極は1種でもよいが、生体液を測定するよう
な場合には複数種例えばナトリウム用、カリウム
用、塩素用等を設けるのが望ましい。送液手段と
してはチエツク弁を備えた往復動式ポンプもしく
はシリンジを用いているが、これに限定されるも
のではなく、しごきポンプ等の他の送液機構を用
いることもできる。望ましい実施例では流路閉塞
手段は、送液ポンプによつて兼用されているが、
別に開閉弁を設けてもよく、あるいはセル室の一
方の出入口側の流路抵抗を他方の出入口側の流路
抵抗より著しく大きくしても試料液を流路内の一
方向に注入し得る。試料液注入部は、キヤリア液
流路に連通される試料注入用シリンジを流路管も
しくはフローセル端部に固定取付けたものでもよ
く、また流路管内と大気とを遮断するシリコンゴ
ムなどから成る隔膜を設け、試料液が入つた注射
具の注入針をその隔膜を貫通して流路内に挿入し
試料液を注入し得るようにしたものでもよい。キ
ヤリア液としては通常は電解質の濃度が所定値に
なるように調製された標準液を用いるが、これに
限られるものではなく、電解質が含まれているこ
とがイオン選択性電極の動作の安定性にとつて望
ましいので用いているにすぎない。
Here, only one type of ion-selective electrode is sufficient to be exposed facing the cell chamber, but when measuring biological fluids, it is desirable to provide multiple types, for example, one for sodium, one for potassium, one for chlorine, etc. . Although a reciprocating pump or a syringe equipped with a check valve is used as the liquid feeding means, the present invention is not limited thereto, and other liquid feeding mechanisms such as a squeezing pump may also be used. In a preferred embodiment, the flow passage blocking means is also served by a liquid feeding pump;
A separate opening/closing valve may be provided, or the sample liquid can be injected in one direction within the channel even if the channel resistance on one side of the inlet and outlet of the cell chamber is significantly greater than the channel resistance on the other side. The sample liquid injection part may be a sample injection syringe connected to the carrier liquid flow path fixedly attached to the flow pipe or the end of the flow cell, or a diaphragm made of silicone rubber or the like that blocks the inside of the flow pipe from the atmosphere. An injection needle of an injection device containing a sample liquid may be inserted through the septum and inserted into the channel to inject the sample liquid. The carrier solution is usually a standard solution prepared so that the electrolyte concentration is at a predetermined value, but it is not limited to this, and the stability of the operation of the ion-selective electrode is determined by the presence of the electrolyte. It is only used because it is desirable for people.

第2図は本発明の一実施例の概略構成を示す図
である。第1図と同様の機能を有するものには同
じ符号を付してある。キヤリア液である標準溶液
11,12を送る送液ポンプ14はフローセル1
の上流側に配置され、キヤリア液流路閉塞装置も
兼ねている。一方、排液口15は大気開放されて
いる。セル室30にはイオン選択性電極2,
2′,2″のイオン感応膜8,8′,8″および比較
電極3の液絡部7が露出されている。
FIG. 2 is a diagram showing a schematic configuration of an embodiment of the present invention. Components having the same functions as those in FIG. 1 are given the same reference numerals. A liquid sending pump 14 that sends standard solutions 11 and 12 as carrier liquids is connected to the flow cell 1.
It is placed on the upstream side of the carrier liquid flow path and also serves as a carrier liquid flow path blocking device. On the other hand, the drain port 15 is open to the atmosphere. The cell chamber 30 includes an ion selective electrode 2,
The ion-sensitive membranes 8, 8', 8'' of 2', 2'' and the liquid junction part 7 of the reference electrode 3 are exposed.

送液ポンプ14は標準溶液の切替器9とフロー
セル1の間に位置し、フローセルの上流側にフロ
ーセルと一体化された試料注入口21が設置され
ている。試料注入時には送液ポンプ14の稼動を
停止し、キヤリア液の流れを停止する。試流液は
隔膜を有する試料注入口21よりマイクロシリン
ジ22などを用いて直接フローセルの測定流路内
に打込まれる。試料量としては最少限試料注入口
21と比較電極の液絡部7の間を満たす量でよ
い。マイクロシリンジ22の針は注入口21の隔
膜を貫入し、針先端開口部が流路内に完全に達し
た後、シリンジ内の試料液が流路内に注入され
る。セル室30の上流側は停止された送液ポンプ
14によつて流路が閉塞されているので、注入さ
れた試料液は注入にともなつてセル室内を排液口
15の方へ向かつて満たしていく。試料液はイオ
ン感応膜8,8′,8″および液絡部7と接触され
る。試料注入後10秒ほどで電極出力(電位)が安
定するので、その安定した時点の表示値を読みと
るかプリントアウトさせる。次いで、送液ポンプ
14を稼動し、キヤリア液を送つてセル室30内
の試料液を排液口15より排出する。
The liquid feed pump 14 is located between the standard solution switch 9 and the flow cell 1, and a sample injection port 21 integrated with the flow cell is installed on the upstream side of the flow cell. At the time of sample injection, the operation of the liquid feeding pump 14 is stopped, and the flow of the carrier liquid is stopped. The test fluid is directly injected into the measurement channel of the flow cell from a sample injection port 21 having a diaphragm using a microsyringe 22 or the like. The sample amount may be at least enough to fill the space between the sample injection port 21 and the liquid junction 7 of the reference electrode. The needle of the microsyringe 22 penetrates the septum of the injection port 21, and after the needle tip opening completely reaches the inside of the flow path, the sample liquid in the syringe is injected into the flow path. Since the flow path on the upstream side of the cell chamber 30 is blocked by the stopped liquid pump 14, the injected sample liquid fills the cell chamber toward the drain port 15 as it is injected. To go. The sample liquid is brought into contact with the ion-sensitive membranes 8, 8', 8'' and the liquid junction 7.The electrode output (potential) stabilizes approximately 10 seconds after sample injection, so read the displayed value at that stable point. Then, the liquid sending pump 14 is operated to send the carrier liquid to discharge the sample liquid in the cell chamber 30 from the liquid drain port 15.

第5図は、第2図の実施例装置における電極出
力を示すものであり、時間軸は第4図と同じ目盛
数にしてある。フローセルの流路容積30μl、試
料注入量50μlで実験した。送液ポンプを停止
し、Aの時点で試料を注入したところ、先にセル
室内に導入されていたキヤリア液を試料液で送り
出す間にわずかに濃度こう配が現われたが、試料
注入完了時点では電極出力は一定となつた。Bの
時点より、再び送液ポンプを稼動したところ、短
時間で電極出力は再び標準試料の出力電位に戻つ
た。
FIG. 5 shows the electrode output in the embodiment device of FIG. 2, and the time axis has the same number of scales as in FIG. 4. The experiment was conducted with a flow cell channel volume of 30 μl and a sample injection volume of 50 μl. When the liquid pump was stopped and the sample was injected at point A, a slight concentration gradient appeared while the sample liquid was pumping out the carrier liquid that had been introduced into the cell chamber, but when the sample injection was completed, the electrode The output remained constant. When the liquid pump was operated again from point B, the electrode output returned to the output potential of the standard sample again in a short time.

この実施例によれば、試料液をキヤリア液によ
つて稼動することなくセル室に注入できるので、
試料の拡散を減ずることができ微量の試験で分析
を可能とすることができる。また、試料量はフロ
ーセル流路容積の1.3〜1.5倍ほどあれば十分測定
できるので、流路容積を極端に少なくする必要も
ない。第2図の実施例では比較電極3を介して液
絡部に供給される比較溶液6が水頭を利用して供
給される。
According to this embodiment, the sample liquid can be injected into the cell chamber without being activated by the carrier liquid.
Diffusion of the sample can be reduced and analysis can be performed with a trace amount of the test. Furthermore, since measurement can be carried out sufficiently if the sample amount is about 1.3 to 1.5 times the volume of the flow cell channel, there is no need to reduce the channel volume extremely. In the embodiment shown in FIG. 2, the comparison solution 6 supplied to the liquid junction via the comparison electrode 3 is supplied using a water head.

第6図は本発明の他の実施例の概略構成図で、
送液ポンプ14および試料注入口40がセル室3
0よりもキヤリア液の下流側に配置されている。
ポンプ14を停止し、流路の下流側を閉塞したの
ち、マイクロシリンジ22から試料液を注入する
と、試料液は切換器9の方向へ向かつてセル室3
0内に満たされる。電解質測定後はポンプ14を
稼動して試料排出口41を通して試料液を排出す
る。比較電極3の比較溶液6は送液ポンプ14′
を用いて供給される。この実施例でも、注入する
試料液量はセル室容積の1.3〜1.5倍程度でよい。
FIG. 6 is a schematic configuration diagram of another embodiment of the present invention,
The liquid feed pump 14 and the sample injection port 40 are connected to the cell chamber 3.
The carrier liquid is located downstream of the carrier liquid.
After stopping the pump 14 and closing the downstream side of the flow path, when the sample liquid is injected from the microsyringe 22, the sample liquid heads toward the switch 9 and flows into the cell chamber 3.
Filled within 0. After electrolyte measurement, the pump 14 is operated to discharge the sample liquid through the sample discharge port 41. The comparison solution 6 of the comparison electrode 3 is supplied to the liquid supply pump 14'.
Supplied using In this embodiment as well, the amount of sample liquid to be injected may be about 1.3 to 1.5 times the volume of the cell chamber.

以上説明したように本発明によれば、試料液の
拡散が少ない状態で電解質成分の分析ができるの
で、測定精度を向上できるとともに試料量を減ず
ることができる。
As explained above, according to the present invention, electrolyte components can be analyzed with less diffusion of the sample solution, so that measurement accuracy can be improved and the amount of sample can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解質分析装置の説明図、第2
図は本発明の一実施例の概略構成説明図、第3図
および第4図は従来方式の特性を示す図、第5図
は本発明の実施例に基づく特性を示す図、第6図
は本発明の他の実施例の概略構成説明図である。 1…フローセル、2…イオン選択性電極、3…
比較電極、7…液絡部、8…イオン感応膜、1
1,12…標準溶液、14…送液ポンプ、21,
40…試料注入口、30…セル室。
Figure 1 is an explanatory diagram of a conventional electrolyte analyzer, Figure 2
3 and 4 are diagrams showing the characteristics of the conventional system, FIG. 5 is a diagram showing the characteristics based on the embodiment of the invention, and FIG. FIG. 3 is a schematic configuration explanatory diagram of another embodiment of the present invention. 1...Flow cell, 2...Ion selective electrode, 3...
Reference electrode, 7... Liquid junction, 8... Ion sensitive membrane, 1
1, 12...Standard solution, 14...Liquid pump, 21,
40...Sample injection port, 30...Cell chamber.

Claims (1)

【特許請求の範囲】 1 キヤリア液が流通され得るセル室に試料液を
収容し、その試料液中の電解質の濃度をイオン選
択性電極を用いて測定する電解質分析方法におい
て、イオン選択性電極の感応面が露出されている
上記セル室を流通するキヤリア液の流れを停止す
ること、キヤリア液の流れが停止した状態で上記
セル室内に試料液を注入すること、上記注入され
た試料液が上記セル室内にある間にその試料液中
の電解質濃度を測定すること、および上記セル室
内の試料液をキヤリア液によつて上記セル室から
排出すること、を含むことを特徴とする電解質分
析方法。 2 キヤリア液が流通されるセル室とイオン選択
性電極と比較電極とを有し上記イオン選択性電極
の感応面および上記比較電極の液絡部が上記セル
室に露出するように配置されたフローセル部と、
キヤリア液源からのキヤリア液が上記セル室内を
流通するように送液する手段と、上記イオン選択
性電極からの電気的出力信号を処理する信号処理
部とを備えた電解質分析装置において、上記キヤ
リア液源から上記セル室を経て液が排出されるま
でのキヤリア液流路上に、上記セル室の上流側も
しくは下流側の内の一方の流路を実質的に閉塞す
る流路閉塞手段を設け、試料液が上記キヤリア液
によつて移送されることなく上記セル室内に入る
ように上記流路閉塞手段よりも上記セル室に近い
位置にある上記キヤリア液流路上に試料液注入部
を設けたことを特徴とする電解質分析装置。
[Scope of Claims] 1. In an electrolyte analysis method in which a sample solution is stored in a cell chamber through which a carrier solution can flow, and the concentration of an electrolyte in the sample solution is measured using an ion-selective electrode, an ion-selective electrode is used. stopping the flow of the carrier liquid flowing through the cell chamber in which the sensitive surface is exposed; injecting the sample liquid into the cell chamber while the flow of the carrier liquid is stopped; An electrolyte analysis method comprising: measuring the electrolyte concentration in a sample solution while the sample solution is in a cell chamber; and discharging the sample solution in the cell chamber from the cell chamber using a carrier liquid. 2. A flow cell comprising a cell chamber through which a carrier liquid flows, an ion-selective electrode, and a comparison electrode, and arranged so that the sensitive surface of the ion-selective electrode and the liquid junction of the comparison electrode are exposed to the cell chamber. Department and
An electrolyte analyzer comprising means for transporting a carrier liquid from a carrier liquid source to flow within the cell chamber, and a signal processing section for processing an electrical output signal from the ion-selective electrode. Provided on the carrier liquid flow path from the liquid source to the discharge of the liquid through the cell chamber, a flow path closing means for substantially blocking one of the flow paths on the upstream side or the downstream side of the cell chamber, A sample liquid injection part is provided on the carrier liquid flow path at a position closer to the cell chamber than the flow path closing means so that the sample liquid enters the cell chamber without being transferred by the carrier liquid. An electrolyte analyzer featuring:
JP4537879A 1979-04-16 1979-04-16 Method and apparatus for electrolyte analysis Granted JPS55138647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4537879A JPS55138647A (en) 1979-04-16 1979-04-16 Method and apparatus for electrolyte analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4537879A JPS55138647A (en) 1979-04-16 1979-04-16 Method and apparatus for electrolyte analysis

Publications (2)

Publication Number Publication Date
JPS55138647A JPS55138647A (en) 1980-10-29
JPS6239389B2 true JPS6239389B2 (en) 1987-08-22

Family

ID=12717600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4537879A Granted JPS55138647A (en) 1979-04-16 1979-04-16 Method and apparatus for electrolyte analysis

Country Status (1)

Country Link
JP (1) JPS55138647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654375U (en) * 1992-12-29 1994-07-22 株式会社つうけん Communication line switching plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654375U (en) * 1992-12-29 1994-07-22 株式会社つうけん Communication line switching plug

Also Published As

Publication number Publication date
JPS55138647A (en) 1980-10-29

Similar Documents

Publication Publication Date Title
US6080583A (en) Blood analysis system and method for regulating same
US3919051A (en) Biological analyzer and method
US8968660B2 (en) Chemical analyzer
US3658679A (en) System for determining the hydrogen ion concentration of flowing liquids
US3865549A (en) Auto-analytical apparatus and analytical methods
US3964864A (en) Method and apparatus for measuring CO2, O2, and Cl in body fluids
JP4607899B2 (en) Method and system for analyzing a liquid sample
US3661010A (en) Fluid sample analyzing apparatus
JPS5999248A (en) Blood analyzer
US5244561A (en) Process and apparatus for the electrochemical determination of pco2 in blood
US6706527B2 (en) Automated fluid analysis apparatus and techniques
WO2003006953A9 (en) Liquid sample take-up device
CN211424010U (en) Multi-range water quality analyzer flow path system
JPH0222911B2 (en)
JPS6239389B2 (en)
IT9021474A1 (en) PROCEDURE AND EQUIPMENT FOR THE ELECTROCHEMICAL DETERMINATION OF O2 IN A BLOOD-SANITIZER.
CN116087542A (en) Sample analyzer and sample detection method
EP0993618B1 (en) Method and apparatus for determining the content of a component in a fluid sample
JP6130788B2 (en) Sample injection apparatus for biochemical analysis, flow-type biochemical analysis apparatus, and hemoglobin component measurement method
US3926526A (en) Flow cell
CN108279230A (en) A kind of micro-fluidic type water quality toxicity analysis and detection device and its determination method
JPH11153462A (en) Liquid outflow detection mechanism and flow analyzer using the same
JPH0428049Y2 (en)
JPH10142234A (en) Oil content measuring device
JP2003270018A (en) Method and apparatus for measurement and distribution of very small flow rate