JPS59213180A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS59213180A
JPS59213180A JP58086561A JP8656183A JPS59213180A JP S59213180 A JPS59213180 A JP S59213180A JP 58086561 A JP58086561 A JP 58086561A JP 8656183 A JP8656183 A JP 8656183A JP S59213180 A JPS59213180 A JP S59213180A
Authority
JP
Japan
Prior art keywords
type
layer
active layer
diameter
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086561A
Other languages
Japanese (ja)
Inventor
Akihiro Hachiman
八幡 彰博
Tadashi Komatsubara
小松原 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58086561A priority Critical patent/JPS59213180A/en
Publication of JPS59213180A publication Critical patent/JPS59213180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the titled device excellent in mass production having a high luminous efficiency and a high speed response by doping an N type GaAlAs active layer with Si and Te, and putting the diameter of a current structure hole within a specific range. CONSTITUTION:An N type GaAs current stricture layer 3 having said hole 2, a P type GaAlAs clad layer 4, the N type GaAlAs active layer 5 doped with Si and Te, and an N type GaAlAs clad layer 6 are formed by successive lamination on a P type GaAs substrate 1. The first electrode 7 is formed on the lower surface of the substrate 1, and the second electrode 8 on the upper surface of the clad layer 6 in a ring form. In this case, when the diameter of said hole become smaller, response improves but the light emitting output decreases; when the diameter is controlled at 20-40mum, the response becomes more than 20MHz and said output more than 3mW. Besides, a stable N type active layer can be obtained by doping the active layer 5 with Si and Te and making them coexistent.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は発光ダイオード(以下LEDと略称する)に係
り、特に電流狭窄層を有するダブルへテロ型のGaAl
As LEDに関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to a light emitting diode (hereinafter abbreviated as LED), and particularly relates to a double hetero type GaAl light emitting diode having a current confinement layer.
Regarding As LED.

〔従来技術とその問題点〕[Prior art and its problems]

近年、光を利用した情報伝送が盛んになっている。 In recent years, information transmission using light has become popular.

情報伝送に於いては、できるだけ多くの情報を−FWに
伝送することが望ましい。この要求を満たすためには、
光源の応答速度が速いことが必要である。光源としてr
、’r>nを用いる場合、応答速度を速くするため、ダ
ブルへテロ型GaAlAs−LP3Dが多く用いられる
。このダブルへテロ型0aAlAs −LRDは、通常
N型GaAs基板の上にN型GaAlAsクラッド層、
N型若しくはP型のGaAdAs活性層、P型層akl
Asクラット冒崎を順次積層して形成した構造となって
いる。このような構造で応答速度を速くする為には活性
層を1μm以下に薄くし、高濃度のP型にすると効果が
あることが知られている。しかしながら、活性層の厚み
を1t1m以Fに制御することは容易でなく、量産性に
乏しい。また、活性層を高濃度のP型層にすると、発光
効率が極端に低下することがあり大きな問題であった。
In information transmission, it is desirable to transmit as much information as possible to -FW. To meet this requirement,
It is necessary that the light source has a fast response speed. r as a light source
, 'r>n, double hetero type GaAlAs-LP3D is often used to increase response speed. This double hetero-type 0aAlAs-LRD usually has an N-type GaAlAs cladding layer on an N-type GaAs substrate.
N-type or P-type GaAdAs active layer, P-type layer akl
The structure is formed by sequentially laminating Asaki cracks. In order to increase the response speed in such a structure, it is known that it is effective to make the active layer thinner than 1 μm and to make it highly concentrated P type. However, it is not easy to control the thickness of the active layer to 1t1m or more, and mass productivity is poor. Furthermore, when the active layer is made of a highly concentrated P-type layer, the luminous efficiency may be extremely reduced, which is a major problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、量産性に優れた高発光効率でかつ・高
速応答の発光ダイオードを提供することである。
An object of the present invention is to provide a light emitting diode with high luminous efficiency and high speed response, which is excellent in mass production.

〔発明の概要〕[Summary of the invention]

P型GaAs基板にに、電流狭窄穴を有するN型GaA
s電流狭窄層、P型GaAlAsクラッド層、N型GI
IAlAs活性層、N型GaAlAsクラッド層を順次
積層して形成されたダブルへテロ型の発光ダイオードに
於いて、N型GaAlAs活性層に8i及びTeがドー
プされており、電流狭窄部の直径が20μm乃至40μ
mである発光ダイオードを得るようにし、たものである
N-type GaAs with a current confinement hole in a P-type GaAs substrate
s current confinement layer, P type GaAlAs cladding layer, N type GI
In a double hetero type light emitting diode formed by sequentially laminating an IAlAs active layer and an N-type GaAlAs cladding layer, the N-type GaAlAs active layer is doped with 8i and Te, and the diameter of the current confinement portion is 20 μm. ~40μ
This is to obtain a light emitting diode of m.

〔発明の効果〕〔Effect of the invention〕

N型GaAlAs活性層に81及びTeがドープされて
いることにより、この活性層を安定してN型化すること
ができ、またN型GaAs電流狭窄層の電流狭窄穴の直
径を20μm乃至40μmに制御することで応答が20
 MHz Sd 、hで、発光出力が3mW以−ヒの光
通信用光源として適した発光ダイオードを得ることがで
きる。
By doping the N-type GaAlAs active layer with 81 and Te, this active layer can be stably made into the N-type, and the diameter of the current confinement hole in the N-type GaAs current confinement layer can be set to 20 μm to 40 μm. The response is 20 by controlling
A light emitting diode suitable as a light source for optical communication with a light emission output of 3 mW or more at MHz Sd, h can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

即ち、P型GaAs基板(1)上に、電流狭窄穴(2)
を有するN型GaA、s電流狭窄層(3)、P型Ga 
A1.Asクラッド層(4)、SlとTeをドープした
N型GaAlA、s活性層(5)、N型GaAlAsク
ラッド層(6)が順次積層して形成されている。
That is, a current constriction hole (2) is formed on a P-type GaAs substrate (1).
N-type GaA with s current confinement layer (3), P-type Ga
A1. An As cladding layer (4), an N-type GaAlA doped with Sl and Te, an s active layer (5), and an N-type GaAlAs cladding layer (6) are sequentially laminated.

また、P型GaAs基板(1)のF部表面には、例えば
金ベリリウム合金からなる第1の電極(力が形成され、
N型層’aAIAsクラッド層(6)の上部表面には、
例えば金ゲルマニウム合金からなる第2の電極(8)が
環状に形成されている。
Further, on the F section surface of the P-type GaAs substrate (1), a first electrode made of, for example, a gold beryllium alloy (a force is formed,
On the upper surface of the N-type layer'aAIAs cladding layer (6),
A second electrode (8) made of, for example, a gold-germanium alloy is formed in an annular shape.

本実施例のLlは、上述の構造からなり、その特徴とす
るところは、N型(]aAlAs活性層(5)に、例え
ば83mgの81と、例えば1 mgのTeがドープさ
れており、またN型0aAs電流狭窄層(3)の電流狭
窄穴(2)の直径が20μmから40μmの間に制御さ
れていることである。尚、このLEI)のチップサイズ
は0.5間角である。
Ll of this example has the above-mentioned structure, and its characteristics include that the N-type (]aAlAs active layer (5) is doped with, for example, 83 mg of 81 and, for example, 1 mg of Te; The diameter of the current confinement hole (2) of the N-type 0aAs current confinement layer (3) is controlled between 20 μm and 40 μm.The chip size of this LEI) is 0.5 square.

次に、上述の一実施例を製造工程に従い、第2図及び第
3図を参照して説明する。
Next, the above embodiment will be explained according to the manufacturing process with reference to FIGS. 2 and 3.

第2図に示す液相成長用ボートは、ボート本体αυとス
ライダー(14)から構成される。ボート本体山)には
少なくとも一つの溶液留め(12)とこの溶液留め((
鎧に対応したフタ(13)が設けられている。溶液留め
(121の一つにC3a金rm、 10011 、 G
aAs多結晶7.517.Te6 mllから成るGa
溶液(I8)を入れる。スライダー(14)には、凹部
(16)が設けられており、この凹部(1G)にP型(
]aAs基板(1′0を入れる。このスライダー(14
1は、石英製の操作棒(15)により移動させることが
できる。
The boat for liquid phase growth shown in FIG. 2 is composed of a boat body αυ and a slider (14). At least one solution stopper (12) and this solution stopper ((
A lid (13) corresponding to the armor is provided. Solution fixing (C3a gold rm in one of 121, 10011, G
aAs polycrystalline 7.517. Ga consisting of Te6 ml
Add solution (I8). The slider (14) is provided with a recess (16), and this recess (1G) has a P-type (
] aAs board (1'0 is inserted. This slider (14
1 can be moved by a quartz operating rod (15).

[1−のような液相成長[11ボートを石英反応管に入
れ、水素ガス雰囲気内で850℃まで昇温する。
Liquid phase growth as in [1-1] Place the boat in a quartz reaction tube and raise the temperature to 850°C in a hydrogen gas atmosphere.

850℃で120分保持した後、05’C/分の冷却速
度で30分冷却する。835℃になったところで冷却速
度を01℃/分に新町し、50分経過した時操作棒(1
511を操作してスライダー(14)を動かし、P型(
1a As基板(1力を(1a溶液(181に接触させ
る。この状態で2分経過した後スライダー(Iを動かし
、P型0aAs基板(17)をGa溶液(I8)から分
離する。その後冷却速度を05℃/分に変化させ、20
分経過した後、炉の電源を切り放冷する。放冷しより室
温に達した後、P型GaAs基板07)を取り出す。P
型GaAs基板面上に厚さ約2μm電子濃度5 X 1
017C:n+、−” のN型GaAs層が形成されて
いる。このN型層aAs層トにレジスト膜を塗布する。
After holding at 850°C for 120 minutes, it is cooled for 30 minutes at a cooling rate of 05'C/min. When the temperature reached 835℃, the cooling rate was increased to 01℃/min, and when 50 minutes had passed, the operating rod (1
Operate 511 to move the slider (14) and select the P type (
The 1a As substrate (1 force) is brought into contact with the 1a solution (181).After 2 minutes in this state, move the slider (I) to separate the P-type 0aAs substrate (17) from the Ga solution (I8).Then, the cooling rate was changed to 05°C/min, 20
After a few minutes have elapsed, turn off the power to the furnace and allow it to cool. After cooling to room temperature, the P-type GaAs substrate 07) is taken out. P
A type GaAs substrate with a thickness of about 2 μm and an electron concentration of 5 x 1
017C: An N-type GaAs layer of "n+, -" is formed. A resist film is applied to this N-type layer aAs layer.

電流狭窄穴(2)を形成したい部分のN型(1a A 
s層に塗布したレジス) l]iXをフォト・エングレ
イヴイング・ブロセヌによって除去する。このレジスト
膜の穴の直径は、10μin乃至60μinである。レ
ジスト1換をマスクとしてN型Ga、As11vlを選
択的にエツチングする。
N type (1a A
The resist (1)iX applied to the s layer is removed by photo-engraving. The diameter of the hole in this resist film is 10 μin to 60 μin. Using the resist as a mask, N-type Ga and As11vl are selectively etched.

この場合のエンチャントの組成はr−+、po4:n、
、t1. :C11,0H=1:1:3である。エツチ
ング屋は約25μmである。
The composition of the enchantment in this case is r-+, po4:n,
, t1. :C11,0H=1:1:3. The etching depth is approximately 25 μm.

レジスト膜を除去した後表面を清浄化し、このウェハー
上に再び液相成長を行う。
After removing the resist film, the surface is cleaned and liquid phase growth is performed again on this wafer.

第3図は2回目の液相成長を説明するための図である。FIG. 3 is a diagram for explaining the second liquid phase growth.

P型GaAs基板上に選択的に穴あけされたN型GaA
s層を持つウェハー(2ηがスライダーe4Jの凹部(
、l!6)に置かれている。
N-type GaA selectively drilled on a P-type GaAs substrate
Wafer with s layer (2η is the recess of slider e4J (
, l! 6).

第1の溶液留め(22−1)には、Oa金属100g、
GaAs多結晶4.3g、A、ll金属150mg、G
e 1.5 gがら成る第1のGa溶液(28−1)を
入れる。
For the first solution retainer (22-1), 100 g of Oa metal,
GaAs polycrystal 4.3g, A, ll metal 150mg, G
e A first Ga solution (28-1) consisting of 1.5 g is introduced.

第2の溶液留め(22−2)には、Ga金属1rlO#
The second solution retainer (22-2) includes Ga metal 1rlO#
.

GaAs多結晶75g、Al金属15mg、5183m
、?、Te1mgから成る第2のGa溶液(28−2)
を入れる。
GaAs polycrystal 75g, Al metal 15mg, 5183m
,? , a second Ga solution (28-2) consisting of 1 mg of Te.
Put in.

第3の溶液留め(22−3)には、Ga 100 &、
G aAs多結晶43g、Al金属150mg、Te 
6+ngから成る第3の()a溶液(28−3)を入れ
る。
The third solution retainer (22-3) contains Ga 100 &,
GaAs polycrystal 43g, Al metal 150mg, Te
Add the third ()a solution (28-3) consisting of 6+ng.

ポート全体を石英反応管に入れ、水素ガス雰囲気中で8
50℃まで昇温する。
Place the entire port in a quartz reaction tube and incubate for 8 hours in a hydrogen gas atmosphere.
Raise the temperature to 50°C.

850”Cで120分保持した後05℃/分の冷却速度
で30分冷却する。
After holding at 850"C for 120 minutes, it was cooled for 30 minutes at a cooling rate of 05C/min.

835℃になったところで冷却速度を01’C/分に変
更し、50分経過した時外部から操作棒α9を操作する
ことでスライダー(1滲を動かし、ウェハー(2?)を
第1のGa溶液(2B−1)に接触させる。
When the temperature reached 835°C, the cooling rate was changed to 01'C/min, and after 50 minutes, the slider (1) was moved by operating the operating rod α9 from the outside, and the wafer (2?) was placed in the first Ga. Contact with solution (2B-1).

その状態で10分経過した後スライダー(24)を動か
し、ウェハー (2iを第2のGa溶液(28−2) 
 に接触させる。1分経過した後更にスライダー(2(
イ)を動かし1、ウェハー(271をfja33のGa
溶液(2B−3)に接触させる。10分経過した後ウニ
ノー−(2ηをGa溶液(28−1,28−2,28−
3)から分離する、冷却速度を05’C/分に変化さ1
±、20分経過した後炉の電源を切り放冷する。
After 10 minutes in this state, move the slider (24) and transfer the wafer (2i) to the second Ga solution (28-2).
contact with. After 1 minute has passed, move the slider (2 (
Move the wafer (271) to fja33 Ga
Contact with solution (2B-3). After 10 minutes, Uninova (2η) was added to Ga solution (28-1, 28-2, 28-
3) Separate from 1, changing the cooling rate to 05'C/min.
± After 20 minutes, turn off the power to the furnace and allow it to cool.

室温に達した後、ウェハー(:)ηを取り出す。ウェハ
ー七に厚さ約10 ttm正孔+1full: 2 X
 ] 0”+r+’のP型GaA4Asクラ4ド層、厚
さ約1 /1m電了濶度I X 10”鍜−3のN型G
aAlA、s活性層、19さ約10 fim 79’>
子濃度5)/ 1017’ cnL−3のN型GaAl
Asクラッド層が順次形成されている。
After reaching room temperature, take out the wafer (:)η. Wafer 7 has a thickness of about 10 ttm holes + 1 full: 2
] P-type GaA4As cladding layer of 0"+r+', thickness approximately 1/1 m, N-type G of 10"-3
aAlA, s active layer, 19 ~ 10 fim 79'>
N-type GaAl with concentration 5)/1017' cnL-3
As cladding layers are sequentially formed.

このウェハーの両面の表t61層を約1μm酸エツチン
グによって除去する。
The top T61 layer on both sides of this wafer is removed by acid etching to approximately 1 μm.

P型OaA、s&根板上は金ベリウム合金を、N型層a
A/Asクラッド層十には金ゲルマニウム合金を形成す
る。金ゲルマニウム合金層に対してフォト・エングレイ
ヴイング・プロセスをイjうことにより電極のパターニ
ングを行う。
P-type OaA, s&Gold beryllium alloy on the root plate, N-type layer a
A gold-germanium alloy is formed on the A/As cladding layer. Electrodes are patterned by applying a photo-engraving process to the gold-germanium alloy layer.

ウェハーをダイシングしてチィップとしたものが第1図
に示すようなものである。
The wafer is diced into chips as shown in FIG.

この第1図に示すようなIJDの電流狭窄穴(2)直径
に対する応答と100mAI)Cの発光出力との関係を
第4図に示す。
FIG. 4 shows the relationship between the response of the IJD shown in FIG. 1 to the diameter of the current constriction hole (2) and the light emission output of 100 mAI)C.

第4図の応答−電流狭窄穴直径特性曲線(41)で示す
ように、電流狭さく穴直径が小さくなると応答は良くな
る。この応答はネットワークアナライザーで発光出力が
I MHzから1.5dBダウンする周波数で定義する
As shown by the response-current constriction hole diameter characteristic curve (41) in FIG. 4, the response improves as the current constriction hole diameter becomes smaller. This response is defined by a network analyzer as the frequency at which the light emission output is 1.5 dB down from I MHz.

しかしながら、第4図の発光出カー昂;流狭窄穴直径特
性曲線(42)で示すように、発光出力は電流狭窄穴(
2)直径が小さくなると低くなる。
However, as shown by the light emission output current constriction hole diameter characteristic curve (42) in FIG.
2) The smaller the diameter, the lower the value.

この原因は、電流密度の上昇によって局部的な温度−1
−昇が発生したためと考えられる。光通信用光源として
使用する場合には、適当な応答及び発光出力が求められ
るが、これは通常応答が20MHz以上で、発光出力が
3mW以上である。従って、第3図に示すようなLF、
、1)の電流狭窄穴直径を20/lnTから40μII
+に制御すれば応答は20MHz以上、発光出力は3m
W以−ヒとなる。
The cause of this is that the local temperature -1 due to the increase in current density.
- This is thought to be due to the occurrence of a rise. When used as a light source for optical communication, appropriate response and light emission output are required, and the normal response is 20 MHz or more and the light emission output is 3 mW or more. Therefore, the LF as shown in FIG.
, 1) the current constriction hole diameter from 20/lnT to 40 μII
If controlled to +, the response is 20MHz or more and the light output is 3m.
It becomes W.

また、N型0aAIAs活性層(5)に81とTeをド
ープし共存させることにより安定したN型活性層を得る
ことができる。この場合、Stは発光効率を高めるため
、即ち発光中心となるためにドープされており、Teは
安定したN型化を図るためにドープされている。
Further, by doping the N-type OaAIAs active layer (5) with 81 and Te so that they coexist, a stable N-type active layer can be obtained. In this case, St is doped to increase luminous efficiency, that is, to serve as a luminescent center, and Te is doped to ensure stable N-type formation.

以ト、本実施例により光通信用光源として適したLED
を得ることができる。
Hereinafter, according to this example, an LED suitable as a light source for optical communication will be described.
can be obtained.

尚、上述の実施例に於いては各層のA1組成比及びドー
ピング条件の一例を示したに:(H’6ぎない。
In the above embodiment, an example of the A1 composition ratio and doping conditions of each layer was shown: (H'6 only).

また、通常GaAlAsのダブル−\テロ構造を形成す
るのに用いられるd 40. l戊比及びドーピング条
件に於いても第4図にホずよ・うな!I:1性が見られ
ることを確認している。
Also, d 40. which is usually used to form a double-\telo structure of GaAlAs. The ratio and doping conditions are also similar to Figure 4! It has been confirmed that I:1 characteristics are observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図及び第3図
は第1図に示す一実施例の製造上程を示す図、第4図は
第1図に示す一実施例の特性曲線を示す図である。 J・・・P型層aAs基扱、    2・・・電流狭窄
穴、3・・・N型GaAs電流狭窄層、 4・・・P型GaAlAsクラッド層、5・・・St、
TeをドープしたN型GaAlAs活性層、6・・N型
(lal!Asクラッド層、7,8・・・電極。 代理人 弁理士 則 近 憲 佑そのほか1名第  2
 図 第3図 二二二二二) 第  4 図 を六m)
FIG. 1 is a diagram showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the manufacturing process of the embodiment shown in FIG. 1, and FIG. 4 is a diagram showing the manufacturing process of the embodiment shown in FIG. It is a figure showing a characteristic curve. J... P-type layer aAs-based treatment, 2... Current confinement hole, 3... N-type GaAs current confinement layer, 4... P-type GaAlAs cladding layer, 5... St,
N-type GaAlAs active layer doped with Te, 6...N-type (lal!As cladding layer, 7,8...electrodes. Agent: Patent attorney Noriyuki Chika and 1 other person 2nd)
Figure 3: 22222) Figure 4: 6m)

Claims (1)

【特許請求の範囲】[Claims] (1)P型(JaAs基板上に、電流狭窄穴を有するN
型GaAs電流狭窄層、P型GaAlAsクラッド層、
N型GaAlAs活性層、N型層aAA!Asクラッド
層を順次積層して形成されたダブル−テロ型の発光ダイ
オードに於いて、前記N型層aAA?As活性層に8!
及びTeがドープされており、かつ前記電流狭窄穴の直
径が20μm乃至40μmであることを特徴とする発光
ダイオード。
(1) P type (N type with current confinement hole on JaAs substrate)
type GaAs current confinement layer, P type GaAlAs cladding layer,
N-type GaAlAs active layer, N-type layer aAA! In a double-terror type light emitting diode formed by sequentially laminating As cladding layers, the N-type layer aAA? 8 in the As active layer!
and Te doped, and the current constriction hole has a diameter of 20 μm to 40 μm.
JP58086561A 1983-05-19 1983-05-19 Light emitting diode Pending JPS59213180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086561A JPS59213180A (en) 1983-05-19 1983-05-19 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086561A JPS59213180A (en) 1983-05-19 1983-05-19 Light emitting diode

Publications (1)

Publication Number Publication Date
JPS59213180A true JPS59213180A (en) 1984-12-03

Family

ID=13890420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086561A Pending JPS59213180A (en) 1983-05-19 1983-05-19 Light emitting diode

Country Status (1)

Country Link
JP (1) JPS59213180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228684A (en) * 1985-04-02 1986-10-11 Sumitomo Electric Ind Ltd Semiconductor light emitting element
JPS6436089A (en) * 1987-07-31 1989-02-07 Shinetsu Handotai Kk Light-emitting semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228684A (en) * 1985-04-02 1986-10-11 Sumitomo Electric Ind Ltd Semiconductor light emitting element
JPS6436089A (en) * 1987-07-31 1989-02-07 Shinetsu Handotai Kk Light-emitting semiconductor device

Similar Documents

Publication Publication Date Title
US6528823B2 (en) Semiconductor light-emitting element and method of manufacturing the same
JPH1168157A (en) Semiconductor light-emitting element and manufacture thereof
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JP2001192300A (en) Nitride-based compound semiconductor substrate and method of producing the same
TW200840082A (en) LED structure made of ZnO
JPS59117180A (en) Semiconductor light-emitting element
US4249967A (en) Method of manufacturing a light-emitting diode by liquid phase epitaxy
JP2000091637A (en) Manufacture of semiconductor light emitting element
JPS59213180A (en) Light emitting diode
JP2002050586A (en) Method for manufacturing semiconductor crystal
JP2012131705A (en) Group iii nitride semiconductor and substrate for growing group iii nitride semiconductor
JP2003332237A (en) Method of manufacturing semiconductor thin film
JP2001077480A (en) Gallium nitride compound semiconductor light-emitting element and manufacture thereof
JP2005303252A (en) Nitride light emitting diode and its manufacturing method
JPH0883926A (en) Light-emitting diode
KR20010009602A (en) Gan semiconductor white light emitting device
JPS5893345A (en) Manufacture of semiconductor device
JPS6138877B2 (en)
JP2912780B2 (en) Method for manufacturing semiconductor light emitting device
JP2005079152A (en) Semiconductor light emitting element and its fabrication process
JPH11330547A (en) Semiconductor light emitting element and its manufacture
JP3144247B2 (en) Liquid phase epitaxial growth method
JPH0590639A (en) Manufacture of semiconductor light emitting element
JPS6043879A (en) Manufacture of light-emitting element
JPS63187A (en) Semiconductor laser and manufacture thereof