JPH01124271A - Formation of gaas solar cell - Google Patents

Formation of gaas solar cell

Info

Publication number
JPH01124271A
JPH01124271A JP62281094A JP28109487A JPH01124271A JP H01124271 A JPH01124271 A JP H01124271A JP 62281094 A JP62281094 A JP 62281094A JP 28109487 A JP28109487 A JP 28109487A JP H01124271 A JPH01124271 A JP H01124271A
Authority
JP
Japan
Prior art keywords
solar cell
gaas
epitaxial layer
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281094A
Other languages
Japanese (ja)
Inventor
Toshio Ueda
登志雄 上田
Futatsu Shirakawa
白川 二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62281094A priority Critical patent/JPH01124271A/en
Publication of JPH01124271A publication Critical patent/JPH01124271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form a lightweight and high-efficiency GaAs solar cell by a method wherein only a high-quality GaAs epitaxial layer obtained by using a low-cost heterogeneous substrate is built in the solar cell. CONSTITUTION:A strain superlattice layer 2 with a thickness of 0.02mum and a GaAs epitaxial layer 3 with a thickness of 3mum are formed on an Si substrate by an MBE method and an MOCVD method. An electrode 4 using AuGeNi as its material is formed by a vacuum evaporation operation; a glass sheet 5 with a thickness of about 1 mm is pasted on it by using an epoxy resin. The Si substrate 1 is removed while this assembly has been treated at 90 deg.C for 1-2 hours by using an aqueous solution of KOH with a weight concentration of 50%; then, the strain superlattice layer 2 is removed while this assembly has been treated for 0.5 min by using an aqueous solution containing sulfuric acid and hydrogen peroxide with a weight ratio of H2SO4:H2O:H2O2=1:1:100. As a result, the GaAs epitaxial layer 3 of 2mum is left on the glass sheet; an electrode 6 is formed on the etched surface in the same manner as the above method; a GaAs solar cell is completed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高品質のGaAsエピタキシャル層を用いた
太陽電池の作成方法に関し、宇宙での使用を可能とする
経世で、耐放射線特性に優れた太陽電池の作成方法に関
する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a method for producing a solar cell using a high-quality GaAs epitaxial layer, which has excellent radiation resistance properties and can be used in space. This invention relates to a method for making solar cells.

(従来の技術) 従来のGaAs太陽電池は、GaAs単結晶基板の上に
エピタキシャル層を形成したものをもちいていた。Ga
AsはSiに比べて吸収係数が大きいので、エピタキシ
ャル層の厚さは3μm程度で十分太陽電池の機能を確保
することh<−できるため軽量化に適している。
(Prior Art) A conventional GaAs solar cell uses one in which an epitaxial layer is formed on a GaAs single crystal substrate. Ga
Since As has a larger absorption coefficient than Si, the thickness of the epitaxial layer of about 3 μm is enough to ensure the function of the solar cell (h<−), making it suitable for weight reduction.

しかし、基板としてG a A s !11結晶を用い
るために高価となる。
However, as a substrate, GaAs! Since it uses 11 crystals, it is expensive.

一方、Si基板など安価な異種基板上にGaAsエピタ
キシャル層を形成することが試みられている。このエピ
タキシャル成長技術は最近進歩が著しく歪超格子層を介
してエピタキシャル成長を行うときには、格子不整合に
よる転位などの欠陥は歪み超格子層でストツブさせるこ
とができ、活性層であるエピタキシャル層に欠陥が侵入
することを防止することができ、高品質のGaAsエピ
タキシャル層を得ることができる。
On the other hand, attempts have been made to form a GaAs epitaxial layer on an inexpensive foreign substrate such as a Si substrate. This epitaxial growth technology has recently made significant progress. When epitaxial growth is performed through a strained superlattice layer, defects such as dislocations due to lattice mismatch can be stopped in the strained superlattice layer, and defects can invade the epitaxial layer, which is the active layer. This makes it possible to obtain a high quality GaAs epitaxial layer.

しかし、3μmという薄膜状のGaAsエピタキシャル
層を取り出して太陽電池を形成することはできず、基板
とともに組み込むことになるので、基板とエピタキシャ
ル層との界面の高密度の欠陥層を包含することになり、
太陽電池の性能低下を避けることができない。
However, it is not possible to take out a GaAs epitaxial layer as thin as 3 μm to form a solar cell; it must be incorporated together with the substrate, which results in a high-density defect layer at the interface between the substrate and the epitaxial layer. ,
Deterioration in the performance of solar cells cannot be avoided.

(発明が解決しようとする問題点) 本発明は、上記の問題点を解消し、安価な異種基板を用
いて得た高品質のGaAsエピタキシャル層のみを太陽
電池に組み込むことにより、軽量で、高効率のGaAs
太陽電池の作成を可能とする方法を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention solves the above problems and incorporates only a high-quality GaAs epitaxial layer obtained using an inexpensive heterogeneous substrate into a solar cell, thereby making it lightweight and highly efficient. Efficiency of GaAs
The aim is to provide a method that allows the creation of solar cells.

(問題点を解決するための手段) 本発明は、異種基板上に歪超格子層を介してGaAsエ
ピタキシャル層を形成し、該エピタキシャル層表面に電
極を形成し、その上に透明保護板を張り付けた後、背面
の異種基板及び歪超格子層をエツチングで除去し、次い
で電極を形成することを特徴とするGaAs太陽電池の
作成方法である。
(Means for Solving the Problems) The present invention forms a GaAs epitaxial layer on a heterogeneous substrate via a strained superlattice layer, forms an electrode on the surface of the epitaxial layer, and affixes a transparent protection plate thereon. This is a method for producing a GaAs solar cell characterized in that the dissimilar substrate and strained superlattice layer on the back surface are removed by etching, and then electrodes are formed.

(作用) 第一図は、本発明に係るGaAs太陽電池の作成手順を
示したものである。第一工程では、Si基板の上に歪超
格子層を介してGaAsエピタキシャル層を形成する。
(Function) FIG. 1 shows a procedure for producing a GaAs solar cell according to the present invention. In the first step, a GaAs epitaxial layer is formed on a Si substrate via a strained superlattice layer.

このエピタキシャル成長法はMr3E法、OMVPE法
、MOCVD法等のいずれでもよい。3μm以上のエピ
タキシャル層を形成した後、第二工程ではその上に導電
性フィルムなどの透明電極を付着し、さらに、第三工程
でガラスやアクリルなどの透明保護板を窓材として張り
付ける。その後、第四工程でK OH水溶液などのエツ
チング液をもちいてSi基板を除き、第五工程では硫酸
系のエツチング液で歪超格子層を除去する。なお、K 
OH水溶液はGaAsをほとんど溶かさないので、Si
基板の選択的エツチングが容易である。次に、第六工程
でエツチング後の表面に第二工程と同様に電極を形成し
て太陽電池を完成する。なお、電極の形状は第一図のも
のに限られず、全面電極を用いてもよい。
This epitaxial growth method may be any of the Mr3E method, OMVPE method, MOCVD method, etc. After forming an epitaxial layer of 3 μm or more, a transparent electrode such as a conductive film is attached thereon in a second step, and a transparent protective plate made of glass or acrylic is attached as a window material in a third step. Thereafter, in the fourth step, the Si substrate is removed using an etching solution such as a KOH aqueous solution, and in the fifth step, the strained superlattice layer is removed using a sulfuric acid-based etching solution. In addition, K
Since OH aqueous solution hardly dissolves GaAs, Si
Selective etching of the substrate is easy. Next, in the sixth step, electrodes are formed on the etched surface in the same manner as in the second step to complete the solar cell. Note that the shape of the electrode is not limited to that shown in FIG. 1, and a full-surface electrode may be used.

このように、歪み超格子層を用いて得た高品質のGaA
sエピタキシャル層のみを太陽電池の窓材のうえに取り
出し電池を形成することができたので、軽量で、高効率
のGaAs太陽電池を安価で製造することが可能となっ
た。
In this way, high-quality GaA obtained using a strained superlattice layer
Since it was possible to form a cell by taking out only the s epitaxial layer on the window material of the solar cell, it became possible to manufacture a lightweight, highly efficient GaAs solar cell at low cost.

(実施例) 厚さ約0.7mmのSi基板の上にMBE法とMOCV
D法で厚さ0.02μmの歪超格子層と厚さ3μmのG
aAsエピタキシャル層を形成した。まず、Si基板を
850℃以上の高温で約15分間熱処理してから、基板
温度を250℃にして、成長速度1000人/ h r
で15分間GaAsのエピタキシャル成長を行い、25
0人の第一バッファ層を得、次いで、基板温度を580
°Cに上げて成長速度1μm/hrで30分間GaAs
−cビタキシャル成長ヲ行い、0.5μmの第二バッフ
ァ層を得、その後、基板温度を再び250℃にしてI 
n o、la a O,QΔs  (10人) / G
 a As(10人)を成長速度0.1μm/hrで1
0周期エピタキシャル成長を行った。そして、3.0μ
mのエピタキシャル層を形成し、太陽電池構造とした。
(Example) MBE method and MOCV on a Si substrate with a thickness of about 0.7 mm
Using the D method, a strained superlattice layer with a thickness of 0.02 μm and a G layer with a thickness of 3 μm are formed.
An aAs epitaxial layer was formed. First, the Si substrate is heat treated at a high temperature of 850°C or higher for about 15 minutes, then the substrate temperature is increased to 250°C, and the growth rate is 1000 people/hr.
Epitaxial growth of GaAs was performed for 15 minutes at 25
Obtain the first buffer layer of 0 and then increase the substrate temperature to 580
GaAs was grown at a growth rate of 1 μm/hr for 30 min at a temperature of 1 μm/hr.
-c bitaxial growth was performed to obtain a 0.5 μm second buffer layer, and then the substrate temperature was again raised to 250°C and I
no, la a O, QΔs (10 people) / G
a As (10 people) at a growth rate of 0.1 μm/hr 1
Zero-cycle epitaxial growth was performed. And 3.0μ
m epitaxial layers were formed to form a solar cell structure.

電極は第一図に示した形状で、材質としてはAuGeN
 iを用いて真空蒸行により形成した。そして、その」
;に厚さ約1mmのガラス板をエポキシ樹脂を用いて張
り付けた。エツチングは、重量濃度50%のK O+(
水溶液を用いて90℃で1〜2時間処理してSi基板を
除去し、次いで、重量比II、So、: II、O: 
H,O,= 1 : I : 100とする硫酸と過酸
化水素含有水溶液を用いて0.5分間処理して歪超格子
層を除去した。
The electrode has the shape shown in Figure 1 and is made of AuGeN.
It was formed by vacuum evaporation using i. And that'
A glass plate with a thickness of about 1 mm was attached to the plate using epoxy resin. Etching was performed using K O+ (with a weight concentration of 50%).
The Si substrate was removed by treatment with an aqueous solution at 90° C. for 1 to 2 hours, and then the weight ratio II, So: II, O:
The strained superlattice layer was removed by treatment for 0.5 minutes using an aqueous solution containing sulfuric acid and hydrogen peroxide with H,O,=1:I:100.

その結果、ガラス板の上に2.5μmのGaAsエピタ
キシャル層が残った。次に、エツチング表面に上記と同
様に電極を形成してGaAs太陽電池を完成した。
As a result, a 2.5 μm GaAs epitaxial layer remained on the glass plate. Next, electrodes were formed on the etched surface in the same manner as above to complete a GaAs solar cell.

この太陽電池の効率は8.5%であった。The efficiency of this solar cell was 8.5%.

(発明の効果) 本発明は、上記の構成を採用することによ超格子層を介
してGaΔSエピタキシャル層を形成することにより、
高品質のエピタキシヤル層を得、太陽電池の窓材上に該
エピタキシ會ル層のみを取り出して太陽電池を作成する
ことができたので、高効率のGaAs太陽電池を安価に
製造することができるようになった。
(Effects of the Invention) The present invention employs the above configuration to form a GaΔS epitaxial layer via a superlattice layer, thereby achieving
Since we were able to obtain a high-quality epitaxial layer and create a solar cell by extracting only the epitaxial layer onto the window material of a solar cell, it is possible to manufacture highly efficient GaAs solar cells at low cost. It became so.

この太陽電池は軽量で、耐放射線性に優れているところ
から、宇宙の使用に適したものである。
This solar cell is lightweight and has excellent radiation resistance, making it suitable for use in space.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は、本発明のGaAs太陽電池の作成方法の手順
を説明するための図である。 代理人(弁理士)平hイS1」ナ レ  1 り   4
FIG. 1 is a diagram for explaining the procedure of the method for producing a GaAs solar cell of the present invention. Agent (patent attorney) Hirai S1” story 1 ri 4

Claims (1)

【特許請求の範囲】  異種基板上に歪超格子層を介してGaAs エピタキシャル層を形成し、該エピタキシャル層表面に
電極を形成し、その上に透明保護板を張り付けた後、背
面の異種基板及び歪超格子層をエッチングで除去し、次
いで電極を形成することを特徴とするGaAs太陽電池
の作成方法。
[Claims] A GaAs epitaxial layer is formed on a different substrate via a strained superlattice layer, an electrode is formed on the surface of the epitaxial layer, and a transparent protective plate is pasted thereon. A method for producing a GaAs solar cell, comprising removing a strained superlattice layer by etching, and then forming an electrode.
JP62281094A 1987-11-09 1987-11-09 Formation of gaas solar cell Pending JPH01124271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281094A JPH01124271A (en) 1987-11-09 1987-11-09 Formation of gaas solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281094A JPH01124271A (en) 1987-11-09 1987-11-09 Formation of gaas solar cell

Publications (1)

Publication Number Publication Date
JPH01124271A true JPH01124271A (en) 1989-05-17

Family

ID=17634254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281094A Pending JPH01124271A (en) 1987-11-09 1987-11-09 Formation of gaas solar cell

Country Status (1)

Country Link
JP (1) JPH01124271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189883A (en) * 1994-08-08 2000-07-11 Tokyo Electron Ltd Method and apparatus for forming coating film
EP1246261A2 (en) * 2001-03-27 2002-10-02 Nagoya Institute of Technoloy Space solar cell
WO2014081048A1 (en) * 2012-11-26 2014-05-30 Ricoh Company, Ltd. Photovoltaic cell and photovoltaic cell manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189883A (en) * 1994-08-08 2000-07-11 Tokyo Electron Ltd Method and apparatus for forming coating film
EP1246261A2 (en) * 2001-03-27 2002-10-02 Nagoya Institute of Technoloy Space solar cell
EP1246261A3 (en) * 2001-03-27 2004-04-21 Nagoya Institute of Technoloy Space solar cell
WO2014081048A1 (en) * 2012-11-26 2014-05-30 Ricoh Company, Ltd. Photovoltaic cell and photovoltaic cell manufacturing method
JP2014123712A (en) * 2012-11-26 2014-07-03 Ricoh Co Ltd Method of manufacturing solar cell
CN104937727A (en) * 2012-11-26 2015-09-23 株式会社理光 Photovoltaic cell and photovoltaic cell manufacturing method
US9450138B2 (en) 2012-11-26 2016-09-20 Ricoh Company, Ltd. Photovoltaic cell and photovoltaic cell manufacturing method
US10008627B2 (en) 2012-11-26 2018-06-26 Ricoh Company, Ltd. Photovoltaic cell and photovoltaic cell manufacturing method

Similar Documents

Publication Publication Date Title
JP3381443B2 (en) Method for separating semiconductor layer from substrate, method for manufacturing semiconductor device, and method for manufacturing SOI substrate
JPH02283077A (en) Manufacture of tandem type solar cell
JPS5951700B2 (en) Method for manufacturing Group 3-5 devices
WO2015196767A1 (en) Manufacturing method for four-junction solar cell
JPH05217823A (en) Manufacture of semiconductor base material
JPH09255487A (en) Production of thin film semiconductor
JP2000100801A (en) Epitaxial wafer, its manufacture and surface cleaning method for compound semiconductor substrate used therefor
JPH01124271A (en) Formation of gaas solar cell
US6607968B1 (en) Method for making a silicon substrate comprising a buried thin silicon oxide film
JPH06224404A (en) Manufacture of integrated circuit device
JPH03235371A (en) Manufacture of tandem type solar battery
TWI451474B (en) Method of fabricating a transferable crystalline thin film
JPH0412092A (en) Compound semiconductor and method for growing the same
JPS62102567A (en) Tandem type solar battery
JPS6338267A (en) Gaas solar cell and manufacture thereof
JP2779954B2 (en) Semiconductor substrate manufacturing method
JPH08195356A (en) Manufacture of semiconductor element and semiconductor device
JPS62234319A (en) Forming method for hetero-epitaxial thin-film
JP2003017726A (en) Method of manufacturing soi substrate and method of manufacturing semiconductor element
JPS6293981A (en) Manufacture of thin semiconductor device
JP2003045798A (en) Manufacturing method of semiconductor substrate using porous film, and semiconductor device
JPS61154091A (en) Manufacture of semiconductor light-emitting element
JP2981673B2 (en) Semiconductor substrate manufacturing method
JPH02280343A (en) Semiconductor device and manufacture of semiconductor integrated device
JPH03180025A (en) Manufacture of semiconductor substrate