JP3189055B2 - Compound semiconductor device wafer and method of manufacturing the same - Google Patents

Compound semiconductor device wafer and method of manufacturing the same

Info

Publication number
JP3189055B2
JP3189055B2 JP14870791A JP14870791A JP3189055B2 JP 3189055 B2 JP3189055 B2 JP 3189055B2 JP 14870791 A JP14870791 A JP 14870791A JP 14870791 A JP14870791 A JP 14870791A JP 3189055 B2 JP3189055 B2 JP 3189055B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
semiconductor substrate
gaas
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14870791A
Other languages
Japanese (ja)
Other versions
JPH05109592A (en
Inventor
照夫 横山
晴彦 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14870791A priority Critical patent/JP3189055B2/en
Publication of JPH05109592A publication Critical patent/JPH05109592A/en
Application granted granted Critical
Publication of JP3189055B2 publication Critical patent/JP3189055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Dicing (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体装置を安
価に製造するのに有用な化合物半導体装置用ウエハ及び
その化合物半導体装置用ウエハを製造するのに好適な方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor device wafer useful for inexpensively manufacturing a compound semiconductor device and a method suitable for manufacturing the compound semiconductor device wafer.

【0002】三・五族、或いは、二・四族の化合物半導
体、例えば、GaAsなどは、高速で低消費電力である
集積回路装置、或いは、低雑音の半導体装置の構成材料
として使用されている。
[0002] Group 3 or 5 or 2 or 4 compound semiconductors, such as GaAs, are used as constituent materials for high-speed and low-power-consumption integrated circuit devices or low-noise semiconductor devices. .

【0003】今後、このような化合物半導体装置を更に
広い範囲で多用する為には、低コスト化が至上の課題で
あるが、それには、化合物半導体装置用ウエハの大口径
化、及び、低価格化が必要である。
In order to use such compound semiconductor devices in a wider range in the future, cost reduction is the most important issue. However, this involves increasing the diameter of compound semiconductor device wafers and reducing the cost. Is necessary.

【0004】ところが、化合物半導体は一般的に脆いの
で大口径化が困難であり、しかも、ウエハ・プロセス中
に破損する可能性が大きく、加えて、化合物半導体の原
料に稀少価値金属元素が必要であることなどから、その
低価格化も容易ではない。従って、その面での開発・研
究が望まれるところである。
However, compound semiconductors are generally brittle, so that it is difficult to increase the diameter of the compound semiconductor. Moreover, there is a high possibility that the compound semiconductor will be damaged during the wafer process. For some reasons, it is not easy to reduce the price. Therefore, development and research in that respect are desired.

【0005】[0005]

【従来の技術】従来、化合物半導体装置用基板の大口径
化並びに低価格化を実現する為、大口径化が容易で且つ
安価なSi基板上に化合物半導体層を成長させることが
行なわれている。
2. Description of the Related Art Conventionally, in order to realize a large-diameter and low-cost compound semiconductor device substrate, a compound semiconductor layer is grown on a Si substrate which is easy and large in diameter and inexpensive. .

【0006】図12はSi基板上にGaAs層を成長さ
せてなるウエハ(以下、複合ウエハと呼ぶ)の従来例を
表す要部切断側面図である。図に於いて、1はSi基
板、2はGaAs層をそれぞれ示している。
FIG. 12 is a cutaway side view of a main part of a conventional example of a wafer (hereinafter, referred to as a composite wafer) formed by growing a GaAs layer on a Si substrate. In the figure, 1 indicates a Si substrate, and 2 indicates a GaAs layer.

【0007】ところで、この複合ウエハに於いては、S
iとGaAsとの格子定数が異なる為、GaAs中に転
位欠陥が発生する。また、この転位欠陥は、格子定数の
相違のみでなく、半導体装置を形成する工程途中に於け
る熱処理に於いて、熱膨張係数が相違することに依って
も発生するから、その数はかなり多くなってしまう。
By the way, in this composite wafer, S
Since i and GaAs have different lattice constants, dislocation defects occur in GaAs. In addition, since the dislocation defects are generated not only due to the difference in lattice constant but also due to the difference in the coefficient of thermal expansion during the heat treatment in the process of forming the semiconductor device, the number thereof is considerably large. turn into.

【0008】そこで、Si基板1とGaAs層2との界
面に例えばGaAs/AlGaAsからなる超格子を介
挿したり、或いは、GaAs層2を成長させる際、当初
の温度を低温にして開始し、進行するにつれて高温にし
てゆくことで転位欠陥の発生を抑制するなどの手段が採
られている。
Therefore, when an GaAs / AlGaAs superlattice is inserted at the interface between the Si substrate 1 and the GaAs layer 2 or when the GaAs layer 2 is grown, the initial temperature is lowered and the process is started. Means are taken such that the generation of dislocation defects is suppressed by increasing the temperature as the temperature increases.

【0009】[0009]

【発明が解決しようとする課題】前記説明したように、
複合ウエハに対する種々な手段を採っても、全面に亙る
反り返り、或いは、歪みなどを緩和することは極めて困
難である。本発明は、簡単な手段で、Si基板に化合物
半導体基板を積層し、湾曲や歪みがなく、従って、転位
欠陥が少ないウエハを得られるようにする。
As described above,
Even if various measures are taken for the composite wafer, it is extremely difficult to alleviate warpage or distortion over the entire surface. According to the present invention, a compound semiconductor substrate is laminated on a Si substrate by a simple means so that a wafer having no bending or distortion and therefore having few dislocation defects can be obtained.

【0010】[0010]

【課題を解決するための手段】本発明に依る化合物半導
体装置用ウエハ及びその製造方法に於いては、 (1)シリコン半導体基板(例えばシリコン基板21)上に複
数個に分割された化合物半導体基板(例えばGaAs基
板24A)が相互に間隔をおき且つシリコン半導体基板
と各化合物半導体基板との間に両者を接着する金属膜
(例えばTi・Pd膜27)を介在して取り付けられて
なること を特徴とするか、或いは、
Is In the compound semiconductor device wafer and a manufacturing method thereof according to the present invention, in order to solve the problems], multiple on (1) a silicon semiconductor substrate (e.g. a silicon substrate 21)
Compound semiconductor substrate divided into several pieces (for example, GaAs group
Plates 24A) are spaced from one another and the silicon semiconductor substrate
Metal film that adheres between the substrate and each compound semiconductor substrate
(For example, Ti / Pd film 27)
Or characterized in that it comprises, or,

【0011】(2)シリコン半導体基板の表面に形成された複数個の凹所
(例えば凹所34A)内に複数個に分割された化合物半
導体基板(例えばGaAs基板31A)がそれぞれ別個
に嵌入されて取り付けられてなること を特徴とするか、
或いは、
(2) A plurality of recesses formed on the surface of the silicon semiconductor substrate
(For example, compound half divided into a plurality of portions in the recess 34A)
Conductor substrates (eg, GaAs substrate 31A) are separate
Characterized by being fitted and attached to the
Or,

【0012】(3)前記(2)に於いて、シリコン半導体基板の凹所内と化
合物半導体基板との間に両者を接着する金属膜を介在し
て取り付けられてなること を特徴とするか、或いは、
(3) In the above (2), the inside of the recess of the silicon semiconductor substrate is formed.
A metal film is attached between the compound semiconductor substrate and the
Characterized by being attached by

【0013】[0013]

【0014】(5)シリコン半導体基板の表面に化合物
半導体基板の裏面とを接着して貼り合わせる工程と、次
いで、該シリコン半導体基板上の該化合物半導体基板を
複数個に分割し相互に間隔をもって独立したものとする
工程とが含まれてなることを特徴とするか、或いは、
(5) A step of bonding and adhering the back surface of the compound semiconductor substrate to the front surface of the silicon semiconductor substrate, and then dividing the compound semiconductor substrate on the silicon semiconductor substrate into a plurality of parts and independent of each other at intervals. Or a process that shall be included, or

【0015】(6)シリコン半導体基板の表面に形成さ
れた複数の凹所内に複数個に分割された化合物半導体基
板をそれぞれ別個に対応させ金属膜を挟んで嵌入する工
程と、次いで、熱処理を行なってシリコン半導体基板と
各化合物半導体基板とを貼り合わせる工程とが含まれて
なることを特徴とする。
(6) A plurality of compound semiconductor substrates divided into a plurality of recesses formed on the surface of the silicon semiconductor substrate, each of which is individually made to correspond to each other, and fitted with a metal film interposed therebetween, and then heat treatment is performed. And bonding the silicon semiconductor substrate to each compound semiconductor substrate.

【0016】[0016]

【作用】本発明に依れば、Si基板上の化合物半導体層
は分割されていることから、化合物半導体層の成長時、
或いは、その後の熱処理工程で生ずる反りや歪みを小さ
くすることができ、従って、転位欠陥の発生を抑制する
ことができる。しかも、化合物半導体層の分割領域をウ
エハに形成する化合物半導体装置の分割領域と同一にす
ることで、その後の化合物半導体装置の形成工程を化合
物半導体基板を用いた場合と全く同様に進行させること
ができる。
According to the present invention, the compound semiconductor layer on the Si substrate is divided, so that the
Alternatively, warpage and distortion generated in the subsequent heat treatment step can be reduced, and therefore, generation of dislocation defects can be suppressed. Moreover, by making the divided region of the compound semiconductor layer the same as the divided region of the compound semiconductor device to be formed on the wafer, the subsequent formation process of the compound semiconductor device can proceed in exactly the same manner as when a compound semiconductor substrate is used. it can.

【0017】[0017]

【実施例】図1乃至図4は本発明の第一実施例を解説す
る為の工程要所に於けるウエハの要部切断側面図(図1
乃至図3)及び要部平面説明図(図4)を表し、以下、
これ等の図を参照しつつ詳細に説明する。
1 to 4 are side views (FIG. 1) of a main part cut of a wafer at a process point for explaining a first embodiment of the present invention.
3 to 3) and a plan view (FIG. 4) of a main part.
The details will be described with reference to these figures.

【0018】図1参照 1−(1) 真空蒸着法を適用することに依り、Si基板21の表面
にTi膜22並びにPd膜23を順に形成する。この場
合の主要なデータを例示すると次の通りである。 Si基板21について 直径:約10〔cm〕(4〔吋〕) Ti膜22について 厚さ:500〔Å〕 Pd膜23について 厚さ:500〔Å〕
FIG. 1 1- (1) A Ti film 22 and a Pd film 23 are sequentially formed on the surface of a Si substrate 21 by applying a vacuum evaporation method. Examples of main data in this case are as follows. About the Si substrate 21 Diameter: about 10 cm (4 inches) About the Ti film 22 Thickness: 500 [Å] About the Pd film 23 Thickness: 500 [Å]

【0019】1−(2) 真空蒸着法を適用することに依り、GaAs基板24の
裏面にTi膜25並びにPd膜26を順に形成する。こ
の場合の主要なデータを例示すると次の通りである。 GaAs基板24について 直径:約10〔cm〕(4〔吋〕) Ti膜25について 厚さ:500〔Å〕 Pd膜26について 厚さ:500〔Å〕 尚、工程1−(1)と1−(2)とは逆になっても、或
いは、同時であっても良いことは云うまでもない。
1- (2) A Ti film 25 and a Pd film 26 are sequentially formed on the back surface of the GaAs substrate 24 by applying a vacuum evaporation method. Examples of main data in this case are as follows. About the GaAs substrate 24 Diameter: about 10 [cm] (4 [inch]) About the Ti film 25 Thickness: 500 [Å] About the Pd film 26 Thickness: 500 [Å] The steps 1- (1) and 1- It goes without saying that (2) may be reversed or simultaneous.

【0020】図2参照 2−(1) ランプ・アニール法を適用することに依って、Si基板
21とGaAs基板24とをTi・Pd膜27を介して
貼り合わせて複合ウエハとする。即ち、Si基板21の
表面側とGaAs基板24の裏面側とを合わせ、真空中
で温度を例えば400〔℃〕程度に昇温する処理を行な
うと両者を貼り合わせることができる。
FIG. 2 2- (1) By applying the lamp annealing method, the Si substrate 21 and the GaAs substrate 24 are bonded together via the Ti / Pd film 27 to form a composite wafer. That is, when the front side of the Si substrate 21 and the back side of the GaAs substrate 24 are combined, and the temperature is increased to, for example, about 400 ° C. in a vacuum, the two can be bonded together.

【0021】図3及び図4参照 3−(1) GaAs基板24並びにTi・Pd膜27のみを例えば
化合物半導体装置の1チップ分をダイ化する分割領域に
沿って切断する。尚、ダイ状に切断されたGaAs基板
を記号24Aで指示してある。この切断には、ダイシン
グ・ソーを用いたり、或いは、エッチング技術に依って
も良い。
3 and FIG. 4 3- (1) Only the GaAs substrate 24 and the Ti.Pd film 27 are cut along, for example, a divided region for dicing one chip of a compound semiconductor device. Note that the GaAs substrate cut into a die shape is indicated by a symbol 24A. For this cutting, a dicing saw may be used or an etching technique may be used.

【0022】3−(2) この後、通常の技法にしたがって、各GaAs基板24
Aに化合物半導体装置、例えば、GaAs−MESFE
T集積回路装置などを組み込んで完成させる。
3- (2) Thereafter, each GaAs substrate 24 is formed according to a usual technique.
A is a compound semiconductor device, for example, GaAs-MESFE
Complete by incorporating a T integrated circuit device and the like.

【0023】前記第一実施例に依って作成した複合ウエ
ハは、反ったり、或いは、歪んだりすることがなく、従
って、化合物半導体層中の転位欠陥の発生は低減され、
従って、化合物半導体装置を作り込んだ場合に特性は良
好なものとなり、また、製造する際の写真工程も高い精
度で実施することができる。
The composite wafer prepared according to the first embodiment does not warp or warp, and therefore the occurrence of dislocation defects in the compound semiconductor layer is reduced.
Therefore, when the compound semiconductor device is manufactured, the characteristics become good, and the photographic process at the time of manufacturing can be performed with high accuracy.

【0024】ところで、当然のことながら、第一実施例
では、GaAs基板24の口径を越える大口径のウエハ
を得ることはできないが、この問題をブレイク・スルー
する手段を本発明の第二実施例として説明しよう。因み
に、現在、多用されている標準的なGaAs基板の最大
口径は第一実施例に見られるように約10〔cm〕(4
〔吋〕)である。
By the way, as a matter of course, in the first embodiment, it is impossible to obtain a wafer having a large diameter exceeding the diameter of the GaAs substrate 24, but a means for breaking through this problem is provided by the second embodiment of the present invention. Let me explain. Incidentally, the maximum diameter of a standard GaAs substrate which is frequently used at present is about 10 [cm] (4 as shown in the first embodiment).
[Inch]).

【0025】図5乃至図8は本発明の第二実施例を解説
する為の工程要所に於けるウエハの要部切断側面図を表
し、以下、これ等の図を参照しつつ詳細に説明する。
FIGS. 5 to 8 are cutaway side views of a main part of a wafer at important points in a process for explaining a second embodiment of the present invention, and will be described in detail with reference to these drawings. I do.

【0026】図5参照 5−(1) 真空蒸着法を適用することに依り、GaAs基板31の
裏面にTi膜32並びにPd膜33を順に形成する。こ
の場合の主要なデータを例示すると次の通りである。 GaAs基板31について 直径:約10〔cm〕(4〔吋〕) Ti膜32について 厚さ:500〔Å〕 Pd膜33について 厚さ:500〔Å〕
Referring to FIG. 5, 5- (1) a Ti film 32 and a Pd film 33 are sequentially formed on the back surface of a GaAs substrate 31 by applying a vacuum evaporation method. Examples of main data in this case are as follows. About GaAs substrate 31 Diameter: about 10 [cm] (4 [inch]) About Ti film 32 Thickness: 500 [Å] About Pd film 33 Thickness: 500 [Å]

【0027】図6参照 6−(1) 裏面にTi膜32及びPd膜33が積層されているGa
As基板31を例えば化合物半導体装置の1チップ分よ
りも若干大きく切断してダイ化する。尚、ダイ状になっ
たGaAs基板を記号31Aで指示してある。ここで、
GaAs基板31をダイ化する際に若干大きめに切断す
る理由は、Si基板34にダイ化されたGaAs基板3
1Aを貼り着ける場合の精度を考慮しなければならない
ことに依る。例えば、5〔mm〕×5〔mm〕の集積回
路チップであれば、5.5〔mm〕×5.5〔mm〕程
度の大きさに分割すると良い。
6- (1) Ga having Ti film 32 and Pd film 33 laminated on the back surface
The As substrate 31 is cut into a die slightly larger than, for example, one chip of a compound semiconductor device. The die-shaped GaAs substrate is indicated by a symbol 31A. here,
The reason why the GaAs substrate 31 is cut to be slightly larger when it is formed into a die is that the GaAs substrate 3 which is formed into a die on the Si substrate 34 is formed.
This is because the accuracy in attaching 1A must be considered. For example, in the case of an integrated circuit chip of 5 [mm] × 5 [mm], it is preferable to divide it into a size of about 5.5 [mm] × 5.5 [mm].

【0028】図7参照 7−(1) リソグラフィ技術に於けるレジスト・プロセス及びエッ
チャントを例えば硝酸+H2 2 とするウエット・エッ
チング法を適用することに依り、直径が例えば約15
〔cm〕(6〔吋〕)のSi基板34の表面に、ダイ化
されたGaAs基板31Aを受容することが可能な程度
の大きさで、且つ、深さが例えば10〔μm〕程度の凹
所34Aを選択的に形成する。尚、凹所34Aには、次
の工程で形成するTi膜やPd膜も入り込むので、それ
等の厚さも考慮して寸法を定めなければならない。
FIG. 7 7- (1) By applying a resist process in lithography technology and a wet etching method in which an etchant is, for example, nitric acid + H 2 O 2 , the diameter is, for example, about 15 mm.
On the surface of the [cm] (6 [inch]) Si substrate 34, a recess having a size large enough to receive the GaAs substrate 31A and having a depth of, for example, about 10 [μm] is formed. The place 34A is selectively formed. Since the Ti film and the Pd film formed in the next step enter the recess 34A, the dimensions must be determined in consideration of the thickness thereof.

【0029】7−(2) 真空蒸着法を適用することに依り、Si基板34の表面
にTi膜35並びにPd膜36を順に形成する。尚、こ
の場合も、GaAs基板31側とSi基板34側の何れ
を先に加工するか、或いは、同時に加工するかなどは任
意である。
7- (2) A Ti film 35 and a Pd film 36 are sequentially formed on the surface of the Si substrate 34 by applying a vacuum evaporation method. In this case as well, it is optional whether to process the GaAs substrate 31 or the Si substrate 34 first or simultaneously.

【0030】図8参照 8−(1) Si基板34の凹所34A内にダイ化されたGaAs基
板31Aを載置し、真空中で温度400〔℃〕程度に昇
温し、Ti・Pd膜35を介してSi基板34に各Ga
As基板31Aを貼り合わせる。
8- (1) A GaAs substrate 31A, which has been die-formed, is placed in the recess 34A of the Si substrate 34, and the temperature is raised to about 400 ° C. in a vacuum to form a Ti.Pd film. 35 to the Si substrate 34 via
The As substrate 31A is bonded.

【0031】8−(2) この後、通常の技法にしたがって、各GaAs基板31
Aに化合物半導体装置を組み込んで完成させる。
8- (2) Thereafter, each GaAs substrate 31 is formed according to a usual technique.
A is completed by incorporating the compound semiconductor device into A.

【0032】前記第二実施例に依って作成した複合ウエ
ハは、第一実施例に依って作成した複合ウエハと同じ利
点が得られるばかりでなく、GaAs基板31よりも大
きい口径のSi基板34を用いることができ、ダイ化さ
れたGaAs基板31Aを貼り合わせる際の精度余裕が
必要であることを考慮しても、大口径化の効果は充分に
得られる。
The composite wafer fabricated according to the second embodiment not only has the same advantages as the composite wafer fabricated according to the first embodiment, but also uses a Si substrate 34 having a larger diameter than the GaAs substrate 31. The effect of increasing the diameter can be sufficiently obtained even when considering that it is possible to use the GaAs substrate 31 </ b> A which has been die-bonded and to have a margin of accuracy when bonding the GaAs substrate 31 </ b> A.

【0033】前記第一実施例並びに第二実施例の何れに
於いても、GaAs基板の厚さは約500〔μm〕程度
としたが、これは、Ti膜及びPd膜を形成した後、研
磨或いはエッチングなどに依って活性層として必要な厚
さ例えば約100〔μm〕程度に薄層化しても良い。
In each of the first embodiment and the second embodiment, the thickness of the GaAs substrate is about 500 μm. This is because the GaAs substrate is polished after forming the Ti film and the Pd film. Alternatively, the thickness of the active layer may be reduced to about 100 [μm] by etching or the like.

【0034】また、GaAs基板に、予め、例えばMO
CVD法やMBE法にて、厚さが例えば0.5〔μm〕
であるi−GaAs層、厚さが例えば400〔nm〕で
あるn−AlGaAs層、厚さが例えば100〔nm〕
であるn−GaAs層を形成してから、前記第一実施例
或いは第二実施例を実施すれば、AlGaAs/GaA
s系HEMTで構成された集積回路装置を容易に製造す
ることができる。
In addition, for example, an MO
The thickness is, for example, 0.5 [μm] by CVD or MBE.
I-GaAs layer having a thickness of, for example, 400 nm, and an n-AlGaAs layer having a thickness of, for example, 100 nm, and a thickness of, for example, 100 nm.
After the n-GaAs layer is formed, if the first embodiment or the second embodiment is performed, AlGaAs / GaAs
An integrated circuit device composed of an s-based HEMT can be easily manufactured.

【0035】図9乃至図11は本発明の第三実施例を解
説する為の工程要所に於けるウエハの要部切断側面図を
表し、以下、これ等の図を参照しつつ詳細に説明する。
FIGS. 9 to 11 show side views of essential parts of a wafer at important points in the process for explaining a third embodiment of the present invention, and will be described in detail with reference to these figures. I do.

【0036】図9参照 9−(1) 熱酸化法を適用することに依って、Si基板41の表面
に厚さ例えば200〔nm〕程度のSiO2 膜42を形
成する。
9- (1) A SiO 2 film 42 having a thickness of, for example, about 200 [nm] is formed on the surface of the Si substrate 41 by applying the thermal oxidation method.

【0037】図10参照 10−(1) リソグラフィ技術に於けるレジスト・プロセス及びエッ
チング・ガスをCHF3 とする反応性イオン・エッチン
グ(reactive ion etching:RI
E)法を適用することに依り、SiO2 膜42の選択的
エッチングを行なって、集積回路装置の1チップ分より
も若干大きい半導体装置形成領域に相当する開口42A
を形成する。
10- (1) Resist process in lithography technology and reactive ion etching (RI) using CHF 3 as an etching gas
By applying the method E), the SiO 2 film 42 is selectively etched to form an opening 42A corresponding to a semiconductor device formation region slightly larger than one chip of an integrated circuit device.
To form

【0038】図11参照 11−(1) MOCVD法を適用することに依って、SiO2 膜42
と略同じ厚さのGaAs基板43Aを形成する。この場
合、SiO2 膜42に形成された開口42A内に表出さ
れたSi基板41上にはGaAsの単結晶が成長される
のであるが、SiO2 膜42上には成長せず、所謂、選
択成長が行なわれる。
11- (1) The SiO 2 film 42 is formed by applying the MOCVD method.
A GaAs substrate 43A having substantially the same thickness as that described above is formed. In this case, a GaAs single crystal is grown on the Si substrate 41 exposed in the opening 42A formed in the SiO 2 film 42. However, the GaAs single crystal does not grow on the SiO 2 film 42. Selective growth is performed.

【0039】11−(2) この後、通常の技法にしたがって、各GaAs基板43
Aに化合物半導体装置を組み込んで完成させる。
11- (2) Thereafter, each GaAs substrate 43 is formed according to a usual technique.
A is completed by incorporating the compound semiconductor device into A.

【0040】前記第三実施例に依って作成した複合ウエ
ハは、第一実施例や第二実施例で作成した複合ウエハと
異なり、Si基板41とGaAs基板43Aとが格子整
合していないことに起因する転位欠陥を低減することは
できない。然しながら、第一実施例及び第二実施例と同
様、全面に亙る湾曲や歪みは殆ど発生しないから、それ
に起因する転位欠陥は従来の技術に依った場合と比較す
ると遙に少ない。
The composite wafer prepared according to the third embodiment differs from the composite wafer prepared according to the first or second embodiment in that the Si substrate 41 and the GaAs substrate 43A are not lattice-matched. The resulting dislocation defects cannot be reduced. However, as in the first embodiment and the second embodiment, since the entire surface is hardly bent or distorted, the number of dislocation defects caused by it is far less than that in the case of the prior art.

【0041】また、この場合、GaAs基板は、その成
長時に、容易に活性層程度の厚さとすることができるか
ら、第一実施例及び第二実施例と同様、例えばMOCV
D法やMBE法にて、GaAs基板上にi−GaAs
層、n−AlGaAs層、n−GaAs層を形成し、そ
の後、素子間分離や電極・配線を形成すれば、AlGa
As/GaAs系HEMTで構成された集積回路装置を
容易に製造することができる。
In this case, the GaAs substrate can be easily made to have a thickness of the active layer at the time of its growth. For example, like the first and second embodiments, for example, the MOCV
I-GaAs on a GaAs substrate by D method or MBE method
Layer, an n-AlGaAs layer, and an n-GaAs layer, and then forming an element isolation or electrode / wiring, the AlGa
An integrated circuit device composed of an As / GaAs HEMT can be easily manufactured.

【0042】前記何れの実施例に於いても、Si基板と
GaAs基板との組み合わせについて説明したが、Ga
As基板に代えて、InP基板、InSb基板、AlA
s基板、InAs基板、GaSb基板など、他の化合物
半導体基板を組み合わせることもでき、また、得られる
複合ウエハに組み込む半導体装置としては、MESFE
TやHEMT以外のものであっても良い。
In each of the above embodiments, the combination of the Si substrate and the GaAs substrate has been described.
InP substrate, InSb substrate, AlA instead of As substrate
Other compound semiconductor substrates, such as an s substrate, an InAs substrate, and a GaSb substrate, can be combined. Further, as a semiconductor device to be incorporated in the obtained composite wafer, MESF
Other than T and HEMT may be used.

【0043】[0043]

【発明の効果】本発明に依る化合物半導体装置用ウエハ
及びその製造方法に於いては、シリコン半導体基板上に
複数個に分割された化合物半導体基板が相互に間隔をお
いて取り付けられる。
In the compound semiconductor device wafer and the method of manufacturing the same according to the present invention, a plurality of divided compound semiconductor substrates are mounted on a silicon semiconductor substrate at intervals.

【0044】本発明に依れば、Si基板上の化合物半導
体層は分割されていることから、化合物半導体層の成長
時、或いは、その後の熱処理工程で生ずる反りや歪みを
小さくすることができ、従って、転位欠陥の発生を抑制
することができる。しかも、化合物半導体層の分割領域
をウエハに形成する化合物半導体装置の分割領域と同一
にすることで、その後の化合物半導体装置の形成工程を
化合物半導体基板を用いた場合と全く同様に進行させる
ことができる。
According to the present invention, since the compound semiconductor layer on the Si substrate is divided, it is possible to reduce the warpage and distortion generated during the growth of the compound semiconductor layer or in the subsequent heat treatment step. Therefore, generation of dislocation defects can be suppressed. Moreover, by making the divided region of the compound semiconductor layer the same as the divided region of the compound semiconductor device to be formed on the wafer, the subsequent formation process of the compound semiconductor device can proceed in exactly the same manner as when a compound semiconductor substrate is used. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 1 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a first embodiment of the present invention.

【図2】本発明の第一実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 2 is a cutaway side view of a main part of a wafer at a key point in the process for explaining the first embodiment of the present invention.

【図3】本発明の第一実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 3 is a cutaway side view of a main portion of a wafer at a key point in a process for explaining the first embodiment of the present invention.

【図4】本発明の第一実施例を解説する為の工程要所に
於けるウエハの要部平面説明図である。
FIG. 4 is an explanatory plan view of a main part of a wafer at a key point in the process for explaining the first embodiment of the present invention;

【図5】本発明の第二実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 5 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a second embodiment of the present invention.

【図6】本発明の第二実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 6 is a sectional side view of a main part of a wafer at an important part of a process for explaining a second embodiment of the present invention.

【図7】本発明の第二実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 7 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a second embodiment of the present invention.

【図8】本発明の第二実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 8 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a second embodiment of the present invention.

【図9】本発明の第三実施例を解説する為の工程要所に
於けるウエハの要部切断側面図である。
FIG. 9 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a third embodiment of the present invention.

【図10】本発明の第三実施例を解説する為の工程要所
に於けるウエハの要部切断側面図である。
FIG. 10 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a third embodiment of the present invention.

【図11】本発明の第三実施例を解説する為の工程要所
に於けるウエハの要部切断側面図である。
FIG. 11 is a cutaway side view of a main part of a wafer at a key point in a process for explaining a third embodiment of the present invention.

【図12】Si基板上にGaAs層を成長させてなるウ
エハの従来例を表す要部切断側面図である。
FIG. 12 is a cutaway side view of a main part of a conventional example of a wafer formed by growing a GaAs layer on a Si substrate.

【符号の説明】[Explanation of symbols]

21 Si基板 22 Ti膜 23 Pd膜 24 GaAs基板 24A 分割されたGaAs基板 25 Ti膜 26 Pd膜 27 Ti・Pd膜 Reference Signs List 21 Si substrate 22 Ti film 23 Pd film 24 GaAs substrate 24 A Divided GaAs substrate 25 Ti film 26 Pd film 27 Ti · Pd film

フロントページの続き (56)参考文献 特開 平2−237021(JP,A) 特開 平2−150020(JP,A) 特開 昭63−300511(JP,A) 特開 昭62−213117(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/02 H01L 27/12 Continuation of front page (56) References JP-A-2-237021 (JP, A) JP-A-2-150020 (JP, A) JP-A-63-300511 (JP, A) JP-A-62-213117 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/02 H01L 27/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコン半導体基板上に複数個に分割され
た化合物半導体基板が相互に間隔をおき且つシリコン半
導体基板と各化合物半導体基板との間に両者を接着する
金属膜を介在して取り付けられてなることを特徴とする
化合物半導体装置用ウエハ。
A compound semiconductor substrate divided into a plurality of parts is mounted on a silicon semiconductor substrate at intervals from each other and between a silicon semiconductor substrate and each compound semiconductor substrate with a metal film interposed therebetween bonding therebetween. A wafer for a compound semiconductor device, comprising:
【請求項2】シリコン半導体基板の表面に形成された複
数個の凹所内に複数個に分割された化合物半導体基板が
それぞれ別個に嵌入されて取り付けられてなることを特
徴とする化合物半導体装置用ウエハ。
2. A compound semiconductor device wafer wherein a plurality of divided compound semiconductor substrates are separately fitted and mounted in a plurality of recesses formed on a surface of a silicon semiconductor substrate. .
【請求項3】シリコン半導体基板の凹所内と化合物半導
体基板との間に両者を接着する金属膜を介在して取り付
けられてなることを特徴とする請求項2記載の化合物半
導体装置用ウエハ。
3. The compound semiconductor device wafer according to claim 2, wherein a metal film for bonding the both is interposed between the inside of the recess of the silicon semiconductor substrate and the compound semiconductor substrate.
【請求項4】シリコン半導体基板の表面に化合物半導体
基板の裏面を接着して張り合わせる工程と、 次いで、該シリコン半導体基板上の該化合物半導体基板
を複数個に分割し相互に間隔をもって独立したものとす
る工程とが含まれてなることを特徴とする化合物半導体
装置用ウエハの製造方法。
4. A compound semiconductor on a surface of a silicon semiconductor substrate.
A step of bonding and bonding the back surface of the substrate, and then the compound semiconductor substrate on the silicon semiconductor substrate
Is divided into a plurality of
Compound semiconductor characterized by comprising the steps of:
Manufacturing method of device wafer.
【請求項5】シリコン半導体基板の表面に形成された複
数の凹所内に複数個に分割された化合物半導体基板をそ
れぞれ別個に対応させ金属膜を挟んで嵌入する工程と、 次いで、熱処理を行なってシリコン半導体基板と各化合
物半導体基板とを貼り合わせる工程と が含まれてなるこ
とを特徴とする化合物半導体装置用ウエハの製造方法。
5. A composite formed on a surface of a silicon semiconductor substrate.
The compound semiconductor substrate divided into a plurality of
A step of fitting each of them separately with a metal film interposed therebetween, and then performing a heat treatment to each compound with the silicon semiconductor substrate.
Bonding a compound semiconductor substrate and a compound semiconductor substrate .
JP14870791A 1991-06-20 1991-06-20 Compound semiconductor device wafer and method of manufacturing the same Expired - Fee Related JP3189055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14870791A JP3189055B2 (en) 1991-06-20 1991-06-20 Compound semiconductor device wafer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14870791A JP3189055B2 (en) 1991-06-20 1991-06-20 Compound semiconductor device wafer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05109592A JPH05109592A (en) 1993-04-30
JP3189055B2 true JP3189055B2 (en) 2001-07-16

Family

ID=15458802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14870791A Expired - Fee Related JP3189055B2 (en) 1991-06-20 1991-06-20 Compound semiconductor device wafer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3189055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180273A (en) * 2005-12-28 2007-07-12 Toyota Central Res & Dev Lab Inc Method of manufacturing semiconductor device
CN113013064A (en) * 2021-02-23 2021-06-22 绍兴同芯成集成电路有限公司 Compound semiconductor wafer manufacturing process based on silicon-based carrier plate

Also Published As

Publication number Publication date
JPH05109592A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US5466631A (en) Method for producing semiconductor articles
US6864534B2 (en) Semiconductor wafer
US7615468B2 (en) Methods for making substrates and substrates formed therefrom
US4891329A (en) Method of forming a nonsilicon semiconductor on insulator structure
US7399686B2 (en) Method and apparatus for making coplanar dielectrically-isolated regions of different semiconductor materials on a substrate
JPH05235312A (en) Semiconductor substrate and its manufacture
JP2013542599A (en) Method for processing a semiconductor wafer, semiconductor wafer and semiconductor device
EP0692821B1 (en) Method of manufacturing semiconductor layer
JP2001102668A (en) Manufacturing method of semiconductor substrate
JP3189055B2 (en) Compound semiconductor device wafer and method of manufacturing the same
JP3078420B2 (en) Semiconductor device
JP2003068593A (en) Semiconductor multilayer substrate and its producing method
US9761445B2 (en) Methods and structures for forming microstrip transmission lines on thin silicon carbide on insulator (SICOI) wafers
JP3293767B2 (en) Semiconductor member manufacturing method
JP3172958B2 (en) Method for manufacturing compound semiconductor thin film
JP2857456B2 (en) Method for manufacturing semiconductor film
TWI755746B (en) Semiconductor substrate and method of forming the same
JP2779954B2 (en) Semiconductor substrate manufacturing method
JPH0555454A (en) Semiconductor device and its manufacture
JP3055264B2 (en) Method for manufacturing semiconductor device
JP2813978B2 (en) Semiconductor substrate
JP2791900B2 (en) Semiconductor substrate and method of manufacturing the same
JP2816107B2 (en) Manufacturing method of bipolar transistor
JPH0546706B2 (en)
JPH05166724A (en) Silicon substrate compound semiconductor device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees