JPS59211258A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59211258A
JPS59211258A JP58086131A JP8613183A JPS59211258A JP S59211258 A JPS59211258 A JP S59211258A JP 58086131 A JP58086131 A JP 58086131A JP 8613183 A JP8613183 A JP 8613183A JP S59211258 A JPS59211258 A JP S59211258A
Authority
JP
Japan
Prior art keywords
film
thin film
channel
implanted
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086131A
Other languages
Japanese (ja)
Inventor
Juro Yasui
安井 十郎
Masanori Fukumoto
正紀 福本
Shozo Okada
岡田 昭三
Shohei Shinohara
篠原 昭平
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58086131A priority Critical patent/JPS59211258A/en
Publication of JPS59211258A publication Critical patent/JPS59211258A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the characteristic of a semiconductor device from decreasing due to the lateral diffusion of a impurity by using a thin film having an anisotropy for reducing the mask effect in a vertical direction to the surface of a film when forming source and drain by implanting impurity ions having large diffusion coefficient, thereby reducing the reduction in the effective channel length. CONSTITUTION:An N type well 2, a field oxidized film 3, a gate oxidized film 4 and N-channel, P-channel polycrystalline Si gate electrodes 5, 6 are formed on a P type Si substrate 1, and As ions are implanted to a P-channel region. A thin Mo film 13 is formed, and B ions are implanted to an N-channel region. B ions are implanted only to the position isolated at a distance equal to the thickness of a thin Mo film 13 from the end of a gate electrode 6 in the substrate 1. The size of the part, to which no impurity ions are implanted can be controlled by the thickness of the film 13. The film 13 is removed, an interlayer insulating film 12 is formed, heat treated to form N type and P type source and drains 8, 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置特にMO8LSIの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing semiconductor devices, particularly MO8LSI.

従来例の構成とその問題点 半導体装置、特にMO8LSI i高機能化、高密度化
するためには消費電流を小さくする必要がありそのため
に0MO5化が強く進められている。
Conventional configurations and their problems In order to improve the functionality and density of semiconductor devices, especially MO8LSIs, it is necessary to reduce current consumption, and for this reason, 0MO5 is being strongly promoted.

0MO8LSI i高密度化するにはnチャネルMOS
トランジスタの寸法とpチャネルMO3)ランジスタの
寸法と全ともに微細化するのが望ましいが、従来の製造
方法においてはpチャネルMO3)ランジスタinチャ
ネルMO8)ランジスタと同等に微細化するのは困難で
あった。
0MO8LSI i n-channel MOS for high density
It is desirable to miniaturize both the dimensions of transistors and p-channel MO3) transistors, but using conventional manufacturing methods, it was difficult to miniaturize transistors to the same level as p-channel MO3) transistors and in-channel MO8) transistors. .

以下従来の製造方法の問題全説明する。第1図は81ゲ
ー)CMO3LSIi製造する従来工程の一部の工程断
面図であり、6,6は各々nチャネル。
All the problems of the conventional manufacturing method will be explained below. FIG. 1 is a cross-sectional view of a part of the conventional process for manufacturing an 81-game) CMO3LSIi, and 6 and 6 are each n-channel.

nチャネルの多結晶S1 ゲート電極であり、8゜11
は各々nチャネル、nチャネルのソース、ドレインであ
る。
N-channel polycrystalline S1 gate electrode, 8°11
are an n-channel, an n-channel source, and a drain, respectively.

1 スル形Si基板1にn形のウェル2を形成したのち
、フィールド酸化膜3.ゲート酸化膜4を形成し、しき
い値電圧(VT)k制(財)する為のイオン注入を行な
った後、n形の不純物を添加して低抵抗化した多結晶S
i膜を蝕刻してnチャネル。
1 After forming an n-type well 2 on a solid-type Si substrate 1, a field oxide film 3. After forming the gate oxide film 4 and performing ion implantation to control the threshold voltage (VT), polycrystalline S with n-type impurities added to lower resistance.
N channel by etching the i film.

nチャネルのゲート電極5.θ全形成する(第1図a)
。次にnチャネル領域をホトレジスト7で覆い、nチャ
ネルのソース、ドレインを形成するためにAsイオンを
注入する(第1図b)。ホトレジスト7を除去した後、
nチャネル領域金ホトレジスト1oで覆ってからnチャ
ネルのソース。
n-channel gate electrode5. θ is fully formed (Fig. 1a)
. Next, the n-channel region is covered with a photoresist 7, and As ions are implanted to form an n-channel source and drain (FIG. 1b). After removing the photoresist 7,
Cover the n-channel region with gold photoresist 1o and then the n-channel source.

ドレイン全形成するためにBイオンを注入する(第1図
C)。ホトレジスト10を除去し層間絶縁膜であるCV
D5i02膜12を形成した後熱処理fK:施して注入
したイオンを十分活性化することによりnチャネル、n
チャネルのソース、ドレイン8.11を形成する(第1
図d)。
B ions are implanted to completely form the drain (FIG. 1C). After removing the photoresist 10, the CV, which is an interlayer insulating film, is removed.
After forming the D5i02 film 12, heat treatment fK: is performed to sufficiently activate the implanted ions, resulting in n-channel, n-channel
Form the channel source and drain 8.11 (first
Figure d).

上述のようにツース、ドレインを形成するためにnチャ
ネル領域にFiBイオンを、nチャネル領域にはAs 
イオンを注入するが、熱処理ヲ椎すとSi 基板中では
Bの方がAs  よジも拡散係数が太さいためにnチャ
ネルのソース、ドレイン11の方がnチャネルのソース
、ドレイン8よりも縦方向(深さ方向)、横方向ともに
深く形成される。
As mentioned above, FiB ions are applied to the n-channel region to form teeth and drains, and As is applied to the n-channel region.
Ions are implanted, but after heat treatment, B has a much larger diffusion coefficient than As in the Si substrate, so the n-channel source and drain 11 are vertically larger than the n-channel source and drain 8. It is formed deeply both in the direction (depth direction) and in the lateral direction.

ソース、ドレインの横方向拡散(拡がり)が太さいと、
すなわち実効的なチャネル長が短かいとソース、ドレイ
ン間の耐圧が低下し、vTが低下するなどの特性低下金
すたす。このような特性低下はソース、ドレインの横方
内拡がりが大きいnチャネルの方が著るしい。
If the lateral diffusion (spreading) of the source and drain is large,
That is, if the effective channel length is short, the withstand voltage between the source and drain decreases, leading to a decrease in characteristics such as a decrease in vT. Such a characteristic deterioration is more remarkable in an n-channel whose source and drain have larger lateral inward extensions.

LSIの製造工程においてSi 基板に導入される欠陥
や絶縁物中に侵入したアルカリイオンの捕獲、絶縁膜の
ちゅう密化など特性の向上、安定化。
It improves and stabilizes properties such as capturing defects introduced into Si substrates and alkali ions that penetrate into insulators during the LSI manufacturing process, and making insulating films denser.

また高信頼化のために高温の熱処理は避は難い。Furthermore, high-temperature heat treatment is unavoidable in order to achieve high reliability.

したがって微細寸法のLSIの製造においてはSi基板
中にノース、ドレイン全形成するために導入された不純
物がこの高温の熱処理によって横方向に拡散されること
による特性低下金防ぐ対策が必要である。
Therefore, in the production of LSIs with fine dimensions, it is necessary to take measures to prevent the impurities introduced into the Si substrate to completely form the north and drain from being diffused in the lateral direction by this high-temperature heat treatment, thereby preventing the deterioration of the characteristics.

従来はこの対策としてnチャネルのゲート電極寸法全n
チャネルのそれよりも太きくして、例えばnチャネルの
ゲート電極寸法全2μ772としたとさnチャネルは2
5μノ12にすることによって両チャネルの特性を同等
にしたり、あるいはnチャネルのソース、ドレイン形成
のためのBイオン全注入する際に、ゲート電極側面のみ
にマスク材たとえば5102膜を形成し、ゲート電極端
より所定の距離だけ離れた領域にBイオン金注入したり
する方法が採られている。
Conventionally, as a countermeasure for this, the total size of the n-channel gate electrode was
For example, if the total gate electrode size of an n-channel is 2μ772, the n-channel will be 2μ thicker than that of the channel.
To make the characteristics of both channels the same by setting the thickness to 5 μm or 12 μm, or to completely implant B ions to form the source and drain of an n-channel, a mask material such as 5102 film is formed only on the side surface of the gate electrode. A method is adopted in which B ions are implanted into a region a predetermined distance away from the electrode end.

しかるに前者はnチャネルの微細化の妨げになるだけで
なく、微細化が進んでn、p両チャネルともに特性が低
下した場合の対策にはなり得す、寸だ後者はゲート電極
側面のみにマスク材全所定の厚さに均一性よく形成する
のは困難である。
However, the former not only hinders the miniaturization of the n-channel, but also serves as a countermeasure when the characteristics of both the n-channel and the p-channel deteriorate as the miniaturization progresses. It is difficult to form the entire material to a predetermined thickness with good uniformity.

発明の目的 本発明は、Si基板中の拡散係数が大きい不純物イオン
を注入してソース、ドレイン全形成する際に高温の熱処
理’を施して不純物が横方向に拡散しても実効的なチャ
ネル長の減少が少ない製造方法でソース、ドレイン全形
成することである。
Purpose of the Invention The present invention provides a method for implanting impurity ions with a large diffusion coefficient into a Si substrate and performing high-temperature heat treatment when forming the entire source and drain, so that even if the impurities diffuse laterally, the effective channel length can be maintained. The goal is to completely form the source and drain using a manufacturing method that reduces the amount of loss.

発明の構成 本発明の製造方法はゲート電極が形成された半導体基板
表面に、膜面に垂直な方向に注入された高エネルギーの
不純物イオンは容易に通すすなわち膜面に垂直な方向の
マスク効果が膜面に平行な方向のマスク効果に比べて小
さいという異方性マスク効果全盲する薄膜全形成し、半
導体基板と反対導電形の不純物イオンを半導体基板表面
にほぼ垂直な方向に注入して半導体基板内に導入し、熱
処理金箔すことによってソース、ドレイン全形成するこ
と全特徴とする。
Structure of the Invention The manufacturing method of the present invention is such that high-energy impurity ions implanted in a direction perpendicular to the film surface on the surface of a semiconductor substrate on which a gate electrode is formed can easily pass through, that is, a masking effect in the direction perpendicular to the film surface can be produced. The anisotropic mask effect, which is smaller than the mask effect in the direction parallel to the film surface, is entirely formed by completely forming a thin film and implanting impurity ions of the opposite conductivity type to the semiconductor substrate in a direction almost perpendicular to the semiconductor substrate surface. All features of the source and drain can be formed by introducing and heat-treating the gold foil inside.

実施例 以下本発明にかかる方法を詳細に説明する。横方向拡散
が問題になる不純物イオンを注入する前に上記異方性マ
スク効果を有する所定の厚さの薄膜を形成して不純物イ
オン全注入すると、膜面に垂直に注入された不純物イオ
ンは薄膜を通過し、Si 基板内のソース、ドレイン領
域の主たる部分に注入されろ。一方ゲート電極側面に形
成された前記薄膜に注入された不純物イオンは、膜面に
平行な方向に注入されたことになりこの薄膜のマスク効
果が犬さく、さらに注入方向のマスクとなる実効的な厚
さが太さいためにもこの薄膜を通過することができない
。したがってSi 基板中のゲー・ト電極端からゲート
電極側面の薄膜の厚さにほぼ等しい距離までは不純物イ
オンが注入されない。
EXAMPLES The method according to the present invention will be explained in detail below. Before implanting impurity ions for which lateral diffusion is a problem, if a thin film of a predetermined thickness with the above-mentioned anisotropic mask effect is formed and all impurity ions are implanted, the impurity ions implanted perpendicularly to the film surface will be removed from the thin film. , and is implanted into the main portions of the source and drain regions within the Si substrate. On the other hand, the impurity ions implanted into the thin film formed on the side surface of the gate electrode are implanted in a direction parallel to the film surface, so the masking effect of this thin film is strong, and the effective masking effect of this thin film is further increased. Because it is too thick, it cannot pass through this thin film. Therefore, impurity ions are not implanted from the end of the gate electrode in the Si 2 substrate to a distance approximately equal to the thickness of the thin film on the side surface of the gate electrode.

その後、必要に応じて前記薄膜を除去した後絶縁膜全形
成してから半導体基板に熱処理を施すとSi基板内に注
入された不純物イオンは活性化されると同時に深く拡散
されてソース、ドレインが形成される。このとき不純物
イオンは横方向にも拡散されてソース、ドレインは横方
向に拡がるが、Si基板中での不純物イオンが注入され
た領域はゲート電極端から薄膜の厚さに等しい距離だけ
離れて位置していたため、熱処理によってソース。
After that, if necessary, the thin film is removed, the entire insulating film is formed, and the semiconductor substrate is subjected to heat treatment. The impurity ions implanted into the Si substrate are activated and at the same time are deeply diffused, forming the source and drain. It is formed. At this time, the impurity ions are also diffused laterally, and the source and drain expand laterally, but the region where the impurity ions are implanted in the Si substrate is located a distance equal to the thickness of the thin film from the end of the gate electrode. The sauce was then heat treated.

ドレインがゲート電極の下まで犬さく入り込むことはな
く、実効チャネル長がゲート電極に比べて著るしく小さ
くなることがない。
The drain does not go all the way under the gate electrode, and the effective channel length does not become significantly smaller than that of the gate electrode.

一般に、絶縁膜をゲート電極上に形成するとゲート電極
側面の絶縁膜は半導体基板に対してほぼ垂直な方向から
飛来する不純物イオンに対して実効的な膜厚が太さいた
めにこれを阻止することができる。しかしながら不純物
イオンを阻止できる領域はゲート電極側面上絶縁膜の厚
さに等しく、この阻止でさる領域を大きくするには絶縁
膜の厚さを大さくする必要がある。ところが絶縁膜の厚
さ全人さくすると、ソース、ドレインを形成すべきイオ
ンも阻止されるので絶縁膜の厚さを大とすることができ
ない。
Generally, when an insulating film is formed on the gate electrode, the effective film thickness of the insulating film on the side surface of the gate electrode is large enough to prevent impurity ions from flying in from a direction almost perpendicular to the semiconductor substrate. I can do it. However, the area where impurity ions can be blocked is equal to the thickness of the insulating film on the side surface of the gate electrode, and in order to enlarge the area that can be blocked, it is necessary to increase the thickness of the insulating film. However, if the total thickness of the insulating film is reduced, ions that should form the source and drain will also be blocked, making it impossible to increase the thickness of the insulating film.

しかるに、本発明の製造方法によれば、ゲート電極上の
異方性マスク効果を有する薄膜の叩さを大すくシてもソ
ース、ドレインを形成する不純物イオンはこの薄膜を通
過してSi 基板に導入される。したがってゲート電極
端に接して不純物イオンが注入されない領域も薄膜の厚
さと同時に大きくすることができる。
However, according to the manufacturing method of the present invention, even if the thin film having an anisotropic mask effect on the gate electrode is not exposed much, the impurity ions forming the source and drain pass through this thin film and reach the Si substrate. be introduced. Therefore, the region in contact with the end of the gate electrode into which impurity ions are not implanted can also be increased at the same time as the thickness of the thin film.

本発明の製造方法において半導体基板表面に形成する膜
面に垂直な方向のマスク効果の小さい薄膜としては′、
たとえば膜厚方向に長く成長した柱状結晶よりなる半導
体または金属の薄、嘆がある。
In the manufacturing method of the present invention, the thin film with a small masking effect in the direction perpendicular to the film surface formed on the surface of the semiconductor substrate is '
For example, there are semiconductor or metal thin films made of columnar crystals that grow long in the film thickness direction.

以下に上記の柱状結晶よりなる薄膜(以下柱状結晶薄膜
と呼ぶ)音用いる場合金弟2図とともに説明する。6は
多結晶Si ゲート電極、13は柱状結晶薄膜、11f
ip形のソース、ドレインであ゛る。
The case where a thin film made of the above-mentioned columnar crystals (hereinafter referred to as a columnar crystal thin film) is used will be explained below with reference to Fig. 2. 6 is a polycrystalline Si gate electrode, 13 is a columnar crystal thin film, 11f
It is an IP type source and drain.

柱状結晶薄膜13を半導体基板表面に形成すると薄膜の
成長方向に長い結晶が成長する。したがってソース、ド
レイン領域や多結晶Si  ゲート電極6の上面には垂
直に立った結晶が成長し、一方多結晶Si ゲート電極
6の側面には側面に垂直な結晶が成長する。柱状結晶薄
膜13は結晶の長径方向すなわち膜面と垂直な方向に注
入された高エネルギーの不純物イオンは粒界にそって容
易に通過するが、結晶の長径方向に注入された不純物イ
オンは結晶に衝突しながらエネルギー金欠ない長い距離
を通過することができない。そのために例えば加速され
た高エネルギーのBイオンはソース。
When the columnar crystal thin film 13 is formed on the surface of a semiconductor substrate, long crystals grow in the growth direction of the thin film. Therefore, vertical crystals grow on the upper surface of the source and drain regions and the polycrystalline Si gate electrode 6, while crystals perpendicular to the side surfaces grow on the side surfaces of the polycrystalline Si gate electrode 6. In the columnar crystal thin film 13, high-energy impurity ions implanted in the long axis direction of the crystal, that is, in a direction perpendicular to the film surface, easily pass along the grain boundaries, but impurity ions implanted in the long axis direction of the crystal do not penetrate into the crystal. It is not possible to traverse long distances without running out of energy while colliding. For this purpose, for example, accelerated high-energy B ions are used as a source.

ドレイン領域や=’siゲート電極6上面に形成された
柱状結晶薄膜全容易に通過し、ソース、ドレイン11が
形成されるが、多結晶Si ゲート電極6側面に形成さ
れた柱状結晶薄膜に注入されたBイオンは前述の理由に
加え、注入方向の実効的な膜厚が太さいこともあって薄
膜中で阻止される。
Although the drain region and the columnar crystal thin film formed on the upper surface of the Si gate electrode 6 easily pass through to form the source and drain 11, the polycrystalline Si is implanted into the columnar crystal thin film formed on the side surface of the gate electrode 6. In addition to the above-mentioned reasons, the B ions are blocked in the thin film due to the fact that the effective film thickness in the injection direction is large.

したがって多結晶Si ゲート電極端からほぼこの薄膜
の厚さに等しい距離内(第2図の14の領域)KはBイ
オンが注入さnない。なお柱状結晶薄膜は金属や半導体
金膜形成条件とともに選ぶことによって得られ、たとえ
ばスパッタ蒸着法で形成したMO薄膜は柱状結晶薄膜で
ある。
Therefore, B ions are not implanted in K within a distance approximately equal to the thickness of this thin film from the end of the polycrystalline Si gate electrode (region 14 in FIG. 2). Note that the columnar crystal thin film can be obtained by selecting the conditions for forming the metal or semiconductor gold film. For example, an MO thin film formed by sputter deposition is a columnar crystal thin film.

次にSiゲート0MO8LSIの製造において本発明を
用いる置体的な実施−例を工程断面図である第3図とと
もに説明する。
Next, a practical example of using the present invention in manufacturing a Si gate 0MO8LSI will be described with reference to FIG. 3, which is a cross-sectional view of the process.

第3図において5,6は各々nチャネル、pチャネルの
多結晶Siゲート電極、8,11は各々nチャネル、p
チャネルのソース、ドレイン、12は絶縁膜、13ばN
o 薄膜である。
In FIG. 3, 5 and 6 are n-channel and p-channel polycrystalline Si gate electrodes, respectively, and 8 and 11 are n-channel and p-channel polycrystalline silicon gate electrodes, respectively.
Source and drain of the channel, 12 is an insulating film, 13 is N
o It is a thin film.

p形Si基板1のpチャネル領域KPイオン全注入し熱
処理′fニアfiLで深さ5μノア1のn形つェル2を
形成し、フィールド酸化膜3.厚さ4Qnmのゲート酸
化膜4定形成した後、チャネル領域にvT制(財)のた
めのBイオン全注入してから高濃度のP全添加してシー
ト抵抗f:40Ωとした多結晶Si膜を形成し、幅が等
しく2μ272のnチャネル、pチャネル多結晶Si 
 ゲート電極5,6ヲ形成する(第3図a)。
All ions in the p channel region KP of the p-type Si substrate 1 are implanted, and an n-type well 2 with a depth of 5 μm is formed by heat treatment 'f near fiL, and a field oxide film 3. After forming a gate oxide film with a thickness of 4Q nm, all B ions were implanted into the channel region for vT control, and then a high concentration of P was added to make a polycrystalline Si film with a sheet resistance f of 40Ω. N-channel, p-channel polycrystalline Si with equal width of 2μ272
Gate electrodes 5 and 6 are formed (FIG. 3a).

次にpチャネル領域金ホトレジスト7で覆いnチャネル
のソース、ドレイン全形成するために4×1015/c
?lのAs  イオン全注入する(第3図b)。
Next, cover the p-channel region with a gold photoresist 7 of 4×1015/c to completely form the n-channel source and drain.
? 1 of As ions are fully implanted (Fig. 3b).

ホトレジスト了を除去した後厚さ0.3 ItmのMo
薄膜13をスパッタリング法等で形成する(第3図C)
After removing the photoresist layer, the thickness of Mo was 0.3 Itm.
A thin film 13 is formed by sputtering method etc. (FIG. 3C)
.

続いてnチャネル領域をホトレジスト10で覆ってから
pチャネルのソース、ドレインを形成するために60K
Vの電圧で加速した2X10 /clのBイオン全注入
する(第3図d)。この時pチャネルのSi 基板には
、多結晶Si ゲート電極6端からMo薄膜13の厚さ
に等しい距離0.37tnlだけ離れた位置1でしかB
イオンが注入されていない。
Next, the n-channel region was covered with photoresist 10, and then heated at 60K to form the p-channel source and drain.
B ions of 2×10 /cl accelerated at a voltage of V are fully implanted (FIG. 3d). At this time, the p-channel Si substrate has only B at position 1, which is a distance of 0.37 tnl from the end of the polycrystalline Si gate electrode 6, which is equal to the thickness of the Mo thin film 13.
No ions are implanted.

ホトレジスト10を除去し、半導体基板全H2O2液に
浸漬することによりMo薄膜13を除去した後、層間絶
縁膜としてCVD5i02膜12牙形成し1000℃で
10分間熱処理ヲ施こす(第3図e)。
After removing the photoresist 10 and removing the Mo thin film 13 by immersing the semiconductor substrate in an H2O2 solution, a CVD5i02 film 12 was formed as an interlayer insulating film and heat treated at 1000° C. for 10 minutes (FIG. 3e).

この熱処理によって、nチャネルは注入されたAsイオ
ンが活性化、拡散されて深さ0・267℃mのn形ソー
ス、ドレイン8が形Fiy、され、一方pチャネルには
注入されたBイオンが活性化、拡散されて深さ0.6μ
mのp形ソース、ドレイン11が形Fy、される。
Through this heat treatment, the implanted As ions are activated and diffused into the n-channel to form an n-type source and drain 8 with a depth of 0.267°C, while the implanted B ions are activated and diffused into the p-channel. Activated and diffused to a depth of 0.6μ
The p-type source and drain 11 of m are of type Fy.

nチャネルのソース゛、ドレインハAs が横方向にへ
拡散されるため、その先端はゲート電極の端、1: Q
 0.2μm入り込む。一方pチャネルのソース。
Since the n-channel source and drain As are diffused laterally, their tips are at the edge of the gate electrode, 1: Q
It penetrates 0.2 μm. On the other hand, the p-channel source.

ドレインもBが横方向に0.5μη2拡散されるが。B is also diffused in the drain by 0.5μη2 in the lateral direction.

Bイオンが注入された領域は多結晶Siゲート電極6の
端から0.3μ〃zだけへだたっているので。
The region into which B ions are implanted extends only 0.3 μz from the edge of the polycrystalline Si gate electrode 6.

ソース、ドレイン11の多結晶Si ゲート電極e下へ
の入り込みは0.2/1mに抑えられる。
The penetration of the source and drain 11 under the polycrystalline Si gate electrode e is suppressed to 0.2/1 m.

、その後は所定の位置にコンタクト窓全開口し、A1 
配線全形成することによりLSIが製造される。
, after that, the contact window is fully opened at the predetermined position, and A1
An LSI is manufactured by completely forming the wiring.

次にMO8LSIのnチャネルソース、ドレイン全形成
する第2の実施例を工程断面図である第4図とともに説
明する。81ijPイオンが注入されり領域、13はM
O薄膜であジ82はAs イオンが注入された領域、8
はnチャネルのソース、ドレインである。
Next, a second embodiment in which all n-channel sources and drains of MO8LSI are formed will be described with reference to FIG. 4, which is a cross-sectional view of the process. 81 is the region where ijP ions are implanted, 13 is the region where M
In the O thin film, 82 is a region where As ions are implanted.
are the source and drain of an n-channel.

多結晶S1  ゲート電極5が形成された半導体基板の
nチャネル領域にドーズ量2X10/cJのPイオン全
注入して、多結晶Si ゲート電極5端に達するPイオ
ンが注入された領域81を形成する。
All P ions are implanted at a dose of 2×10/cJ into the n-channel region of the semiconductor substrate on which the polycrystalline Si gate electrode 5 is formed to form a region 81 in which P ions reach the end of the polycrystalline Si gate electrode 5. .

次に厚さ0.3μ〃zの柱状結晶薄膜であるMo薄膜1
3を形成し、ドーズ量4×1oのAsイオン全注入する
。多結晶Si  ゲート電極6側面に形成されたMo薄
膜13は注入されたAs イオンの通可を十分阻止する
ために、Si基板には、多結晶Si ゲート電極5端か
らほぼMo薄膜13の厚さに等しい距離だけ離れた領域
82贅でしか高濃度のAsイオンは注入されない(第4
図b)。
Next, Mo thin film 1, which is a columnar crystal thin film with a thickness of 0.3 μz
3 is formed, and As ions are fully implanted at a dose of 4×10. The Mo thin film 13 formed on the side surface of the polycrystalline Si gate electrode 6 has a thickness approximately equal to that of the Mo thin film 13 from the end of the polycrystalline Si gate electrode 5 to the Si substrate in order to sufficiently block the passage of implanted As ions. High-concentration As ions are implanted only in region 82, which is separated by a distance equal to
Figure b).

Mo薄膜13を除去した後層間絶縁膜であるC1VDS
i02膜10金形成した後、900’Cで60分間熱処
理ヲ施こすと81基板中に注入されたPイオン、 As
イオンは活性化されてソース、ドレイン8が形成される
。このソース、ドレイン8の多結晶Si ゲート電極5
下のチャネル領域に接する部分81ばP不純物が比較的
低濃度であるためソースとドレイン間に電圧が印加され
てもドレイン近傍の電界強度が大きくならずホットエレ
クトロンの発生が少ない。一方ソース、ドレインの多結
晶Si ゲート電極5端より離れた部分は高濃度のAs
不純物が添加されており、ソース、ドレインの電気抵抗
金低くしている。
After removing the Mo thin film 13, the interlayer insulating film C1VDS is removed.
After forming the i02 film 10 gold, heat treatment at 900'C for 60 minutes resulted in P ions and As implanted into the 81 substrate.
The ions are activated to form sources and drains 8. This polycrystalline Si gate electrode 5 of the source and drain 8
Since the P impurity concentration in the portion 81 in contact with the lower channel region is relatively low, even if a voltage is applied between the source and the drain, the electric field strength near the drain does not increase, and few hot electrons are generated. On the other hand, the polycrystalline Si of the source and drain, and the portions away from the 5th edge of the gate electrode are highly concentrated with As.
Impurities are added to lower the electrical resistance of the source and drain.

本実施例のように低濃度の部分81と高濃度の部分より
なるソース、ドレイン8の形成はチャネル長の短かい微
細MO8Trの耐圧を向上させポットエレクトロンによ
る信頼性低下を防止する有力々手段と考えられているか
、本発明はこのようなソース、ドレイン全容易に再現性
良く形成することかでさる。
Forming the source and drain 8 consisting of a low concentration portion 81 and a high concentration portion as in this embodiment is an effective means for improving the withstand voltage of a fine MO8Tr with a short channel length and preventing reliability deterioration due to pot electrons. However, the present invention is advantageous in that such sources and drains can be easily formed with good reproducibility.

なお上記第2の実殉例においてMo薄膜13全形成し高
濃度のAsイオンを注入後Mo薄膜13を除去しないで
高温で熱処理を施し、熱処理後にMo薄膜13を除去し
てもよい。この場合には多結晶Siゲート電極5の少な
くとも表面がMo薄膜13と反応して珪化モリブデンが
形成され抵抗を低下させることができる。
In the second practical example, after the entire Mo thin film 13 is formed and high-concentration As ions are implanted, heat treatment may be performed at high temperature without removing the Mo thin film 13, and the Mo thin film 13 may be removed after the heat treatment. In this case, at least the surface of the polycrystalline Si gate electrode 5 reacts with the Mo thin film 13 to form molybdenum silicide, thereby reducing the resistance.

発明の効果 本発明は写真蝕刻法全用いることなく、自己整合でゲー
ト電極側面に不純物イオン注入に対するマスク金形成す
ることかでさる。しかもゲート電極端に接して不純物イ
オンが注入されない部分の太ささば前記薄膜の厚さによ
り精度良く側倒することがでさ、かつ薄膜の厚さの均一
性と同等の均一性である。したがって本発明は微細寸法
のLSIを前述の特性低下を防止しながら直留歩留りで
製造するのに大さく寄与できる。なお、前記薄膜とし′
CはMo薄膜に限らず他の金属又は半導体の柱状結晶薄
膜でも同等の効果金得ることができる。
Effects of the Invention The present invention is achieved by forming a mask gold for impurity ion implantation on the side surface of the gate electrode in a self-aligned manner without using any photolithography method. Furthermore, the thickness of the portion in contact with the end of the gate electrode into which impurity ions are not implanted can be tilted to the side with high accuracy depending on the thickness of the thin film, and the uniformity is equivalent to the uniformity of the thickness of the thin film. Therefore, the present invention can greatly contribute to manufacturing fine-sized LSIs with a straight yield while preventing the aforementioned deterioration of characteristics. Note that the thin film
C is not limited to Mo thin films, but the same effect can be obtained with columnar crystal thin films of other metals or semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは従来の0MO8LSIの製造方法の工程
断面図、第2図は本発明の工程途中におけるLSIの部
分断面図、第3図a −e 、第4図a〜Ouそれぞれ
本発明の実施例のMO3LSIの製造工程断面図である
。 6.6・・・・・・n、pチャネルのソース、゛ドレイ
ン、8.11・・・・・・n、pチャネルのソース、ド
レイン。 12・・・・・・CVD 5i02膜、13・・・・・
・イオン注入に対して膜面に垂直な方向のマスク効果が
小なる薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第3図
Figures 1 a to d are process cross-sectional views of the conventional 0MO8LSI manufacturing method, Figure 2 is a partial cross-sectional view of the LSI in the middle of the process of the present invention, Figures 3 a - e and Figures 4 a to Ou are respectively in accordance with the present invention. FIG. 3 is a cross-sectional view of the manufacturing process of the MO3LSI of the example. 6.6...n, p-channel source, drain; 8.11...n, p-channel source, drain. 12...CVD 5i02 film, 13...
・A thin film that has a small masking effect in the direction perpendicular to the film surface for ion implantation. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)ゲート電極が形成された半導体基板の主面に、加
速された不純物イオンに対して膜面に垂直な方向のマス
ク効果が小なる異方性を有する薄膜を形成する工程と、
前記薄膜を通して加速された不純物イオンを前記半導体
基板内に注入する工程と、熱処理金施して前記半導体基
板内に注入された不純物イオンを活性化させることによ
ジンース、ドレイン全形成する工程とを有することを特
徴とする半導体装置の製造方法。
(1) forming a thin film on the main surface of the semiconductor substrate on which the gate electrode is formed, having anisotropy that has a small masking effect in the direction perpendicular to the film surface against accelerated impurity ions;
The method includes a step of implanting impurity ions accelerated through the thin film into the semiconductor substrate, and a step of performing heat treatment to activate the impurity ions implanted into the semiconductor substrate to completely form a drain and a drain. A method for manufacturing a semiconductor device, characterized in that:
(2)薄膜が柱状結晶よりなる薄膜であることを特徴と
する特許請求の範囲第1項に記載の半導体装置の製造方
法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the thin film is a thin film made of columnar crystals.
(3)ゲート電極が形成された半導体基板の主面に、加
速された不純物イオンに対して膜面に垂直な方向のマス
ク効果が小なる異方性全盲する薄膜全形成する工程と、
前記薄膜を通して加速された不純物イオンを前記半導体
基板内に注入する工程と、前記薄膜を除去する工程と、
絶縁膜を形成する工程と、熱処理f:施して半導体基板
内に注入された不純物イオンを活性化させることにより
ソース、ドレイン?形成する工程とを有すること全特徴
とする半導体装置の製造方法。
(3) forming an anisotropic completely blind thin film that has a small masking effect in the direction perpendicular to the film surface against accelerated impurity ions on the main surface of the semiconductor substrate on which the gate electrode is formed;
a step of implanting impurity ions accelerated through the thin film into the semiconductor substrate; and a step of removing the thin film;
The step of forming an insulating film and heat treatment are performed to activate impurity ions implanted into the semiconductor substrate, thereby forming sources and drains. 1. A method of manufacturing a semiconductor device, comprising the step of forming a semiconductor device.
JP58086131A 1983-05-16 1983-05-16 Manufacture of semiconductor device Pending JPS59211258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086131A JPS59211258A (en) 1983-05-16 1983-05-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086131A JPS59211258A (en) 1983-05-16 1983-05-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59211258A true JPS59211258A (en) 1984-11-30

Family

ID=13878148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086131A Pending JPS59211258A (en) 1983-05-16 1983-05-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59211258A (en)

Similar Documents

Publication Publication Date Title
US4597824A (en) Method of producing semiconductor device
JP2509518B2 (en) Titanium silicide contact manufacturing method
JP3181695B2 (en) Method for manufacturing semiconductor device using SOI substrate
US4514893A (en) Fabrication of FETs
JPH06342914A (en) Manufacture of semiconductor device
JPH04218925A (en) Semiconductor device and manufacture thereof
JPH0595115A (en) Manufacture of mos transistor
JPS59211258A (en) Manufacture of semiconductor device
JP3257317B2 (en) Method for manufacturing semiconductor device
JPS6258544B2 (en)
JPS6043865A (en) Manufacture of semiconductor device
JP2569809B2 (en) Method for manufacturing semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPS6057676A (en) Manufacture of schottky barrier type field-effect transistor
JPH04158529A (en) Fabrication of semiconductor element
JPS6347982A (en) Semiconductor device
JPH0140507B2 (en)
JPS5955070A (en) Manufacture of semiconductor device
JPS628567A (en) Manufacture of longitudinal type semiconductor device
JPH0644604B2 (en) Manufacturing method of complementary semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPH06268178A (en) Manufacture of semiconductor device
JPH10270678A (en) Manufacture of semiconductor device
JPH07202191A (en) Vertical power mos semiconductor and manufacture thereof
JPS60134469A (en) Manufacture of semiconductor device