JPH06268178A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06268178A
JPH06268178A JP5048498A JP4849893A JPH06268178A JP H06268178 A JPH06268178 A JP H06268178A JP 5048498 A JP5048498 A JP 5048498A JP 4849893 A JP4849893 A JP 4849893A JP H06268178 A JPH06268178 A JP H06268178A
Authority
JP
Japan
Prior art keywords
impurities
ion implantation
film
region
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5048498A
Other languages
Japanese (ja)
Inventor
Ichiro Moriyama
一郎 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5048498A priority Critical patent/JPH06268178A/en
Publication of JPH06268178A publication Critical patent/JPH06268178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable sure impurity implantation and control of threshold value even if a depth from a surface of an upper layer film to a set region varies by setting ion implantation energy to position a concentration peak of impurities below a set region of a semiconductor substrate whereto impurities of a semiconductor substrate is to be introduced. CONSTITUTION:A gate oxide film 12 and a field oxide film 13 are formed in a p-type silicon substrate 11. After polysilicon is deposited, gate electrodes 14a to 14c, etc., are formed by patterning. Then, arsenic As of n-type impurities is implanted to form an impurity diffusion region 15 by using the gate electrode, etc., as a mask. A first layer insulation film 16 and a second layer insulation film 18 are formed as an upper layer film. Boron B of p-type impurities is implanted using resist 19 applied to the second layer insulation film 18 as a mask. This ion implantation is performed under the conditions that a concentration peak of impurities is located below a region of the silicon substrate 11 whereto impurities are introduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の製造方
法に関し、例えばマスクROMなどの半導体メモリのメ
モリセル用トランジスタのしきい値制御の改善に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to improving threshold control of a memory cell transistor of a semiconductor memory such as a mask ROM.

【0002】[0002]

【従来の技術】従来、この種の半導体装置としては、情
報データの記憶をLSIのチップ製造工程で用いるマス
クによってプログラムすることのできるマスクROMを
あげることができる。図4は、マスクROMの要部断面
図であり、特にメモリセル用トランジスタのチャネル領
域にしきい値制御用のイオン注入を行なっている状態を
示している。図4に示すマスクROMの製造方法は、先
ず、p型のシリコン基板1上にゲート酸化膜2及びフィ
ールド酸化膜3を形成する。その後、ポリシリコンで成
るゲート電極4a,4b,4cなどを形成し、第1層間
絶縁膜6,Al配線7,第2層間絶縁膜8を順次形成す
る。次に、レジスト9をプログラムに従ってパターニン
グし、レジスト9に形成した開口部が所定のトランジス
タのチャネルを形成する活性領域の上方に位置するよう
にする。次いで、p型不純物、例えばホウ素(B)をシ
リコン基面表面に濃度ピークがくるような注入エネルギ
ーでイオン注入し、トランジスタのしきい値電圧を変え
ることにより、データを書き込む。即ち、このような方
法により、メモリセル用トランジスタは、エンハンスメ
ント型とデプレッション型ものとなり、情報の“0”や
“1”となる。このようなマスクROMの書き込み方法
に関しては、例えば「月刊日経マイクロデバイス、19
91年12月号第104〜109頁に掲載されている。
その内容は、第1層配線を形成した後、メモリセル用ト
ランジスタのゲート直下の活性層領域に選択的にイオン
注入を行ない、そのトランジスタのしきい値電圧を変え
ることによりデータを書き込むという方法である。この
ように、イオン注入工程を、チップ製造プロセスの中間
工程に位置させるため、TAT(半導体生産者からユー
ザーに製品が供給されるまでの時間:Turn Aro
und Time)は長くならない利点がある。
2. Description of the Related Art Conventionally, as a semiconductor device of this type, a mask ROM capable of programming information data storage by a mask used in an LSI chip manufacturing process can be mentioned. FIG. 4 is a cross-sectional view of a main part of the mask ROM, and particularly shows a state in which ion implantation for threshold control is performed in the channel region of the memory cell transistor. In the method of manufacturing the mask ROM shown in FIG. 4, first, the gate oxide film 2 and the field oxide film 3 are formed on the p-type silicon substrate 1. Then, gate electrodes 4a, 4b, 4c made of polysilicon are formed, and a first interlayer insulating film 6, an Al wiring 7, and a second interlayer insulating film 8 are sequentially formed. Next, the resist 9 is patterned according to a program so that the opening formed in the resist 9 is located above an active region forming a channel of a predetermined transistor. Then, p-type impurities such as boron (B) are ion-implanted with an implantation energy such that a concentration peak is on the surface of the silicon base surface, and the threshold voltage of the transistor is changed to write data. That is, with such a method, the memory cell transistor becomes an enhancement type or a depletion type, and becomes "0" or "1" of information. As for the writing method of such a mask ROM, for example, “Monthly Nikkei Micro Device, 19
It is published in the December 91 issue, pp. 104-109.
The content of the method is that after forming the first layer wiring, data is written by selectively performing ion implantation in the active layer region immediately below the gate of the memory cell transistor and changing the threshold voltage of the transistor. is there. In this way, in order to position the ion implantation step at an intermediate step of the chip manufacturing process, it is necessary to provide a TAT (time until a product is supplied from a semiconductor producer to a user: Turn Aro).
und Time) has the advantage that it does not become long.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の方法
は、TATを短縮する点において優れているが、トラン
ジスタのゲート電極や層間絶縁層の膜厚のバラツキによ
り、トランジスタのしきい値の制御性が悪くなるという
問題がある。即ち、図4に示すように、例えばゲート電
極4a直下のシリコン基板1表面近くの活性領域には、
不純物領域aが適正な位置に形成されるが、層間絶縁膜
の膜厚が厚いゲート電極4cの部分では、打ち込まれる
不純物の濃度はゲート電極4c内の不純物領域bでピー
クとなり、下方のシリコン基板1には不純物が到達しな
い場合がある。このため、しきい値が制御されないトラ
ンジスタが生じ、プログラム情報を誤まる問題があっ
た。図2に示すグラフは、イオン注入した際の基板深さ
に対する不純物濃度のプロファイルを示すものである。
上記した従来方法においては、ゲート電極直下のシリコ
ン基板表面付近が不純物濃度のピーク(図2ではAで示
す範囲)となるように狙ってイオン注入を行なってい
る。このため、層間絶縁膜や、ゲート電極の膜厚のバラ
ツキによって、層間絶縁膜表面からシリコン基板表面付
近までの深さが長くなると、図2に示すような不純物濃
度の分布から判るように、不純物がシリコン基板に到達
できなり、上記した問題が発生する。
The above-mentioned conventional method is excellent in that the TAT is shortened, but the controllability of the threshold value of the transistor is affected by the variation in the film thickness of the gate electrode of the transistor and the interlayer insulating layer. There is a problem that becomes worse. That is, as shown in FIG. 4, for example, in the active region near the surface of the silicon substrate 1 immediately below the gate electrode 4a,
The impurity region a is formed at an appropriate position, but at the portion of the gate electrode 4c where the film thickness of the interlayer insulating film is large, the concentration of the implanted impurities has a peak in the impurity region b in the gate electrode 4c, and the silicon substrate below the impurity region a. Impurities may not reach 1. Therefore, there is a problem that some transistors have an uncontrolled threshold value and program information is erroneous. The graph shown in FIG. 2 shows a profile of the impurity concentration with respect to the substrate depth when ions are implanted.
In the above-mentioned conventional method, the ion implantation is performed so that the vicinity of the surface of the silicon substrate immediately below the gate electrode has the peak of the impurity concentration (the range indicated by A in FIG. 2). Therefore, if the depth from the surface of the interlayer insulating film to the vicinity of the surface of the silicon substrate becomes long due to the variation in the film thickness of the interlayer insulating film or the gate electrode, the impurity concentration as shown in FIG. Cannot reach the silicon substrate, and the above-mentioned problems occur.

【0004】この発明が解決しようとする課題は、TA
Tが短く、且つトランジスタのしきい値電圧の制御性の
高い、半導体装置の製造方法を実現するには、どのよう
な手段を講じればよいかという点にある。
The problem to be solved by the present invention is TA
The point is what kind of means should be taken to realize a method for manufacturing a semiconductor device in which T is short and the controllability of the threshold voltage of the transistor is high.

【0005】[0005]

【課題を解決するための手段】この出願の請求項1記載
に係る発明は、半導体基板上に上層膜を形成した後、マ
スクパターンを形成して該半導体基板中の不純物を導入
すべき設定領域へイオン注入する工程を備えた半導体装
置の製造方法において、上記イオン注入の注入エネルギ
ーを、上記半導体基板中に注入される不純物の濃度ピー
クが上記設定領域より下側に位置するように設定するこ
と、その解決手段としている。
The invention according to claim 1 of the present application is a set region in which an impurity is to be introduced into a semiconductor substrate by forming an upper layer film and then forming a mask pattern. In a method of manufacturing a semiconductor device including a step of implanting ions into a semiconductor device, the implantation energy of the ion implantation is set so that a concentration peak of an impurity implanted in the semiconductor substrate is located below the set region. , As a solution.

【0006】また、この出願の請求項1記載に係る発明
は、半導体基板上に上層膜を形成した後、マスクパター
ンを形成して該半導体基板中の不純物を導入すべき設定
領域へイオン注入する工程を備えた半導体装置の製造方
法において、上記イオン注入工程は、不純物の濃度ピー
クが上記形成領域より下側に位置するような注入エネル
ギーで行なうイオン注入と、該設定領域の中間部に不純
物の濃度ピークが位置するような注入エネルギーで行な
うイオン注入と、を含む複数のイオン注入を行なうこと
を、その解決手段としている。
In the invention according to claim 1 of this application, after forming an upper layer film on a semiconductor substrate, a mask pattern is formed and ions are implanted into a set region in the semiconductor substrate to which impurities are to be introduced. In the method for manufacturing a semiconductor device including a step, the ion implantation step is performed with an implantation energy such that an impurity concentration peak is located below the formation region, and an impurity is implanted in an intermediate portion of the set region. The solution is to carry out a plurality of ion implantations, including an ion implantation performed with an implantation energy such that the concentration peak is located.

【0007】[0007]

【作用】この出願の請求項1記載に係る発明において
は、不純物の濃度ピークが、半導体基板の不純物を導入
すべき設定領域の下側に位置するように、イオン注入の
注入エネルギーを設定する。このため、上層膜の表面か
ら半導体基板の不純物を導入すべき設定領域までの深さ
が、上層膜のバラツキにより浅くても、確実に不純物が
打ち込まれて例えばしきい値制御が可能となる。即ち、
図2のグラフにおけるピーク部の左側(浅い方向)で
は、濃度の傾斜が、ピーク部の右側(深い方向)より緩
いため、例えば同図中Bに示す範囲の濃度となり、問題
の生じない濃度とすることができる。一方、上層膜のバ
ラツキにより、シリコン基板の設定領域までの深さが深
くなった場合(上層膜が厚い場合)、不純物の濃度ピー
クまでの深さを深めに設定してあるため、例えば図2
中、Aに示す範囲の濃度の設定領域にすることができ
る。この場合も、充分な濃度のイオン注入が行なわれ
る。
In the invention according to claim 1 of this application, the implantation energy of the ion implantation is set such that the impurity concentration peak is located below the set region of the semiconductor substrate into which the impurities are to be introduced. For this reason, even if the depth from the surface of the upper layer film to the set region of the semiconductor substrate where the impurities are to be introduced is shallow due to variations in the upper layer film, the impurities are surely implanted and the threshold value control can be performed. That is,
On the left side (shallow direction) of the peak portion in the graph of FIG. 2, the gradient of the concentration is gentler than on the right side (deep direction) of the peak portion, and therefore, for example, the concentration is in the range shown by B in FIG. can do. On the other hand, when the depth to the set region of the silicon substrate becomes deep due to the variation of the upper layer film (when the upper layer film is thick), the depth to the impurity concentration peak is set to be deep, and therefore, for example, as shown in FIG.
The density can be set within the range indicated by A in the middle. In this case also, ion implantation with a sufficient concentration is performed.

【0008】このように、図2を用いて説明するなら
ば、濃度ピーク部の範囲Aが設定領域に来るように狙ら
うと、上層膜が設定より厚い場合は、ピークに対して急
激に濃度が変化(ΔNA分)するが、設定領域より下側
に濃度ピークがくるように設定しておけば、図中ピーク
より左側(浅い方向)の濃度変化(ΔNB)の緩やかな
範囲Bであるため、上層膜が厚くても適当なイオン注入
が可能となる。このためこの発明をマスクROMに適用
すると、上層膜を形成した後に、トランジスタの確実な
しきい値制御が可能となり、TATも短くできる。
As described above with reference to FIG. 2, when the range A of the concentration peak portion is aimed at the set region, when the upper layer film is thicker than the set concentration, the concentration is sharply increased with respect to the peak. Change (ΔN A ), but if the concentration peak is set to be below the setting area, the concentration change (ΔN B ) on the left side (shallow direction) of the peak in the figure will be in the gentle range B. Therefore, appropriate ion implantation can be performed even if the upper layer film is thick. Therefore, when the present invention is applied to the mask ROM, the threshold voltage of the transistor can be surely controlled after the upper layer film is formed, and the TAT can be shortened.

【0009】また、この出願の請求項2記載に係る発明
においては、不純物の濃ピークの深さが異なるように注
入エネルギーの異なる複数のイオン注入を行なう。濃度
ピークの深さは、基板の設定領域の下側と中間部でピー
クとなる2つのイオン注入を少なくとも含む。このた
め、図3に示すように、各イオン注入の濃度ピークを結
ぶ部分が傾きの緩やかな濃度変化(ΔNc)となり、深
さ変動に対するマージンが増える。このため、上層膜の
膜厚にバラツキがあった場合でも、設定領域に不純物を
確実且つ適切に導入することが可能となる。
Further, in the invention according to claim 2 of this application, a plurality of ion implantations having different implantation energies are performed so that the depths of the impurity rich peaks are different. The depth of the concentration peak includes at least two ion implantations having peaks below and in the middle of the set region of the substrate. For this reason, as shown in FIG. 3, the portion connecting the concentration peaks of the respective ion implantations has a gentle gradient concentration change (ΔN c ), and the margin for the depth variation increases. Therefore, even if the thickness of the upper layer film varies, the impurities can be surely and appropriately introduced into the set region.

【0010】[0010]

【実施例】以下、本発明に係る半導体装置の製造方法の
詳細を図面に示す実施例に基づいて説明する。この実施
例は、本発明をマスクROMの製造方法に適用した例で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the method for manufacturing a semiconductor device according to the present invention will be described below with reference to the embodiments shown in the drawings. This embodiment is an example in which the present invention is applied to a method for manufacturing a mask ROM.

【0011】先ず、本実施例は、図1(A)に示すよう
に、p型のシリコン基板11に、ゲート酸化膜12及び
フィールド酸化膜13を周知の方法で形成する。なお、
このゲート酸化膜12の厚さは、10nmとした。次い
で、ポリシリコンを堆積させた後、パターニングを行な
ってゲート電極14a,14b,14c等をメモリセル
の設計に従って形成する。なお、このゲート電極の膜厚
は、200nmになるように設定した。その後、ゲート
電極等をマスクにして、n型不純物として例えばヒ素
(As)を用いてイオン注入を行なってn型の不純物拡
散領域15〜15を形成する。本実施例では、トランジ
スタを直列に接続した構造である。
First, in this embodiment, as shown in FIG. 1A, a gate oxide film 12 and a field oxide film 13 are formed on a p-type silicon substrate 11 by a known method. In addition,
The thickness of the gate oxide film 12 was 10 nm. Then, after depositing polysilicon, patterning is performed to form gate electrodes 14a, 14b, 14c and the like according to the design of the memory cell. The thickness of this gate electrode was set to 200 nm. Then, using the gate electrode or the like as a mask, ion implantation is performed using, for example, arsenic (As) as an n-type impurity to form n-type impurity diffusion regions 15 to 15. This embodiment has a structure in which transistors are connected in series.

【0012】次に、図1(B)に示すように、例えばB
PSGでなる第1層間絶縁膜16をCVD法により40
0nmの膜厚設定に堆積させる。その後、第1層間絶縁
膜16上に、Alでなる膜を例えばスパッタ法にて形成
した後、フォトリソグラフィー技術及びエッチング技術
を用いて図1(C)に示すようなAl配線17をパター
ニングする。なお、Al配線17の膜厚は、500nm
に設定した。
Next, as shown in FIG. 1B, for example, B
The first interlayer insulating film 16 made of PSG is formed by the CVD method at 40
Deposit to a film thickness setting of 0 nm. After that, a film made of Al is formed on the first interlayer insulating film 16 by, for example, a sputtering method, and then an Al wiring 17 as shown in FIG. 1C is patterned by using a photolithography technique and an etching technique. The thickness of the Al wiring 17 is 500 nm.
Set to.

【0013】その次に、図1(D)に示すように、全面
に第2層間絶縁膜18をテトラエトキシシラン(TEO
S)を用いるCVD法にて、膜厚400nmの厚さに形
成する。このようにして、上層膜として、第1層間絶縁
膜16及び第2層間絶縁膜18などを形成すると、Al
配線の段差や各種の条件などの影響により、これらの膜
厚は場所によってバラツキが生じる。また、ゲート電極
の膜厚もバラツキを有する。
Then, as shown in FIG. 1D, a second interlayer insulating film 18 is formed on the entire surface with tetraethoxysilane (TEO).
It is formed to a thickness of 400 nm by the CVD method using S). Thus, when the first interlayer insulating film 16 and the second interlayer insulating film 18 are formed as the upper layer film, Al
These film thicknesses vary depending on the location due to the influence of wiring steps and various conditions. Further, the film thickness of the gate electrode also varies.

【0014】そこで、以下に説明する方法でしきい値制
御工程を行なう。
Therefore, the threshold control step is performed by the method described below.

【0015】即ち、第2層間絶縁膜18上にレジスト1
9をコーティングした後、プログラムに従って、しきい
値制御すべきトランジスタのチャネル領域上方のレジス
ト19を開口するためのフォトリソグラフィー工程を行
なう。このようにしてパターニングされたレジスト19
は、図1(D)に示す構造に加工され、イオン注入用マ
スクとなる。
That is, the resist 1 is formed on the second interlayer insulating film 18.
After coating 9, the photolithography process for opening the resist 19 above the channel region of the transistor whose threshold is to be controlled is performed according to the program. Resist 19 patterned in this way
Is processed into the structure shown in FIG. 1D to serve as an ion implantation mask.

【0016】そして、このレジスト19をマスクとし
て、p型不純物であるホウ素(B)をイオン注入する。
このイオン注入は、シリコン基板11の不純物を導入す
べき形成領域(しきい値を制御するために不純物導入が
必要となる領域)の下側に不純物濃度のピークが位置す
る条件で行なう。具体的には、上層膜としての第1,2
層間絶縁膜16,18の2層の厚さ寸法が800nmに
シリコン基板11表面から10nm程度の深さ寸法を加
えた深さより数nm〜数十nm深い位置に濃度ピークが
くるような330KeVの注入エネルギーとした。この
ような条件でイオン注入を行なうと、濃度は約3XE1
4になった。
Then, using the resist 19 as a mask, boron (B) which is a p-type impurity is ion-implanted.
This ion implantation is performed under the condition that the peak of the impurity concentration is located below the formation region of the silicon substrate 11 into which the impurities are to be introduced (the region in which the impurities must be introduced to control the threshold value). Specifically, the first and second layers as the upper layer film
Implantation of 330 KeV such that the concentration peak is at a position several nm to several tens nm deeper than the depth obtained by adding a depth dimension of about 10 nm from the surface of the silicon substrate 11 to the thickness dimension of the two layers of the interlayer insulating films 16 and 18. Energy was used. When the ion implantation is performed under such conditions, the concentration is about 3XE1.
Became 4.

【0017】このような条件でイオン注入を行なうこと
により、図1(D)に示すように、上層膜の厚いゲート
電極14cを有するトランジスタのチャネル領域も適当
な不純物濃度にすることができる。図1(D)中、a,
bは不純物が導入された領域を示している。このように
して、上層膜の膜厚にバラツキがあっても、トランジス
タのしきい値制御を確実に行なうことができた。
By performing ion implantation under such conditions, as shown in FIG. 1D, the channel region of the transistor having the gate electrode 14c with a thick upper layer film can also have an appropriate impurity concentration. In FIG. 1D, a,
b indicates a region into which impurities are introduced. In this way, even if the film thickness of the upper layer film varied, the threshold control of the transistor could be reliably performed.

【0018】また、本実施例においては、しきい値制御
のイオン注入が1種類であるが、同じ導電型の不純物を
注入エネルギーを変えた2種類以上のイオン注入を行な
えば、より不純物濃度を均一にすることができる。この
方法は、1つのイオン注入で不純物を導入すべき形成領
域の下側に濃度ピークがくるように注入エネルギーを設
定し、もう1つのイオン注入で形成領域内に濃度ピーク
がくるように注入エネルギーを設定すればよい。このた
め、図3に示すように、範囲Cが略均一な濃度となり、
多少の深さのバラツキがあっても、適切な不純物濃度が
得られる。上記実施例に示す構造では、330KeVの
イオン注入と280KeVのイオン注入を少なくとも行
なえばよい。
Further, in this embodiment, there is one type of ion implantation for threshold control, but if two or more types of ion implantations with different implantation energies of impurities of the same conductivity type are carried out, a higher impurity concentration can be obtained. Can be uniform. In this method, the implantation energy is set so that the concentration peak is located below the formation region where impurities should be introduced by one ion implantation, and the implantation energy is set so that the concentration peak is located inside the formation region by another ion implantation. Should be set. Therefore, as shown in FIG. 3, the range C has a substantially uniform density,
Even if there is some variation in depth, an appropriate impurity concentration can be obtained. In the structure shown in the above embodiment, at least ion implantation of 330 KeV and ion implantation of 280 KeV may be performed.

【0019】以上、実施例について説明したが、本発明
はこれに限定されるものではなく、各種の設計変更が可
能である。また、上記実施例は、本発明をマスクROM
の製造方法に適用して説明したが、他の半導体装置の製
造に適用することも可能である。
Although the embodiment has been described above, the present invention is not limited to this, and various design changes can be made. Further, the above-described embodiment is a mask ROM according to the present invention.
However, the present invention can be applied to the manufacturing of other semiconductor devices.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、この出
願の請求項1及2記載の発明によれば、半導体基板上の
上層膜の膜厚にバラツキがあっても、基板中に適切なイ
オン注入が行なえる効果がある。
As is apparent from the above description, according to the inventions described in claims 1 and 2 of the present application, even if the film thickness of the upper layer film on the semiconductor substrate varies, it is appropriate in the substrate. There is an effect that ion implantation can be performed.

【0021】特に、本発明をマスクROMの製造に適用
すれば、トランジスタのゲート電極や層間絶縁膜の膜厚
のバラツキがあっても、プログラムしたトランジスタの
特性(しきい値電圧)の変動を最少限に抑え、しかもT
ATを短くできる効果を奏する。
In particular, if the present invention is applied to the manufacture of a mask ROM, even if there is a variation in the film thickness of the gate electrode of the transistor or the interlayer insulating film, the variation in the characteristics (threshold voltage) of the programmed transistor is minimized. To the limit, and T
This has the effect of shortening the AT.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(D)は本発明の実施例を示す工程断
面図。
1A to 1D are process sectional views showing an embodiment of the present invention.

【図2】基板へのイオン注入における深さと不純物濃度
の関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a depth and an impurity concentration in ion implantation into a substrate.

【図3】注入エネルギーを異にするイオン注入を行った
場合の注入深さと不純物濃度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the implantation depth and the impurity concentration when ion implantation with different implantation energies is performed.

【図4】従来例の断面図。FIG. 4 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

11…シリコン基板 14a,14b,14c…ゲート電極 16…第1層間絶縁膜 18…第2層間絶縁膜 19…レジスト 11 ... Silicon substrate 14a, 14b, 14c ... Gate electrode 16 ... First interlayer insulating film 18 ... Second interlayer insulating film 19 ... Resist

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に上層膜を形成した後、マ
スクパターンを形成して該半導体基板中の不純物を導入
すべき設定領域へイオン注入する工程を備えた半導体装
置の製造方法において、 上記イオン注入の注入エネルギーを、上記半導体基板中
に注入される不純物の濃度ピークが上記設定領域より下
側に位置するように設定することを特徴とする半導体装
置の製造方法。
1. A method of manufacturing a semiconductor device, comprising the steps of forming an upper layer film on a semiconductor substrate, forming a mask pattern, and implanting ions into a set region in the semiconductor substrate where impurities should be introduced. A method for manufacturing a semiconductor device, characterized in that the implantation energy of ion implantation is set so that a concentration peak of an impurity implanted in the semiconductor substrate is located below the set region.
【請求項2】 半導体基板上に上層膜を形成した後、マ
スクパターンを形成して該半導体基板中の不純物を導入
すべき設定領域へイオン注入する工程を備えた半導体装
置の製造方法において、 上記イオン注入工程は、不純物の濃度ピークが上記形成
領域より下側に位置するような注入エネルギーで行なう
イオン注入と、該設定領域の中間部に不純物の濃度ピー
クが位置するような注入エネルギーで行なうイオン注入
と、を含む複数のイオン注入を行なうことを特徴とする
半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, comprising the steps of forming an upper layer film on a semiconductor substrate, forming a mask pattern, and ion-implanting into a set region in the semiconductor substrate where impurities should be introduced. In the ion implantation step, ion implantation is performed with an implantation energy such that an impurity concentration peak is located below the formation region, and ion implantation is performed with an implantation energy such that an impurity concentration peak is located in an intermediate portion of the set region. A method for manufacturing a semiconductor device, which comprises performing a plurality of ion implantations including implantation.
JP5048498A 1993-03-10 1993-03-10 Manufacture of semiconductor device Pending JPH06268178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5048498A JPH06268178A (en) 1993-03-10 1993-03-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5048498A JPH06268178A (en) 1993-03-10 1993-03-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06268178A true JPH06268178A (en) 1994-09-22

Family

ID=12805052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5048498A Pending JPH06268178A (en) 1993-03-10 1993-03-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06268178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049238A (en) * 1998-07-29 2000-02-18 Oki Electric Ind Co Ltd Manufacture of non-volatile semiconductor storage device
US6656800B2 (en) * 2000-06-26 2003-12-02 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device including process for implanting impurities into substrate via MOS transistor gate electrode and gate insulation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049238A (en) * 1998-07-29 2000-02-18 Oki Electric Ind Co Ltd Manufacture of non-volatile semiconductor storage device
US6656800B2 (en) * 2000-06-26 2003-12-02 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device including process for implanting impurities into substrate via MOS transistor gate electrode and gate insulation film
US7087960B2 (en) 2000-06-26 2006-08-08 Kabushiki Kaisha Toshiba Semiconductor device including impurities in substrate via MOS transistor gate electrode and gate insulation film

Similar Documents

Publication Publication Date Title
US5672521A (en) Method of forming multiple gate oxide thicknesses on a wafer substrate
US6365472B1 (en) Semiconductor device and method of manufacturing the same
JPH0434819B2 (en)
US20030127681A1 (en) Nonvolatile semiconductor memory device
JPS61133669A (en) Manufacture of high density ic mos transistor circuit
US5153146A (en) Maufacturing method of semiconductor devices
JP2617477B2 (en) Floating gate memory device and method of manufacturing nonvolatile memory cell
US6096600A (en) Method of forming a capacitative section of a semiconductor device and method of forming a capacitative section and gate section of a semiconductor device
JPH061786B2 (en) Method of manufacturing thin film transistor
JPH06268178A (en) Manufacture of semiconductor device
JPH0194667A (en) Manufacture of semiconductor device
US6080625A (en) Method for making dual-polysilicon structures in integrated circuits
JP2635831B2 (en) Semiconductor device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS6165470A (en) Semiconductor ic device
JP2604863B2 (en) Method for manufacturing semiconductor nonvolatile memory device
JPS63271972A (en) Manufacture of thin film transistor
US6365469B2 (en) Method for forming dual-polysilicon structures using a built-in stop layer
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JP2672124B2 (en) Method of making MOS transistor
JPS63302562A (en) Manufacture of mos type semiconductor device
JP3257940B2 (en) Method for manufacturing semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
JPH08321593A (en) Read only memory and fabrication thereof
JPH042163A (en) Manufacture of mask rom

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050310