JPS59209630A - Desulfurization and denitration of exhaust gas - Google Patents

Desulfurization and denitration of exhaust gas

Info

Publication number
JPS59209630A
JPS59209630A JP58083782A JP8378283A JPS59209630A JP S59209630 A JPS59209630 A JP S59209630A JP 58083782 A JP58083782 A JP 58083782A JP 8378283 A JP8378283 A JP 8378283A JP S59209630 A JPS59209630 A JP S59209630A
Authority
JP
Japan
Prior art keywords
reactor
exhaust gas
gas
moving bed
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58083782A
Other languages
Japanese (ja)
Inventor
Bunichi Suehiro
文一 末広
Shinichi Yamada
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58083782A priority Critical patent/JPS59209630A/en
Publication of JPS59209630A publication Critical patent/JPS59209630A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To solve an NH3-leak problem, in a method for treating exhaust gas containing NOx and SOx in a first and a second direct and counter stream type moving bed reactors while mixing NH3 in said gas, by dividing gas in the latter reactor while mixing NH3 into both gas streams. CONSTITUTION:Exhaust gas conditioned in a temp. is introduced in a first direct and counter stream type moving bed reactor through a line 1 while adding NH3 into said gas from a line 2 and contacted with the carbonaceous catalyst bed 4 falling in the reactor 3 to be subjected to desulfurization and denitration treatment prior to exhausion. This exhaust gas is introduced into a second orthogonal stream type moving bed reactor 7 through a line 5. In this case, the exhaust gas introducing parts of the reactor 7 are provided in two upper and lowr directions and the exhaust gas is divided into two parts while NH3 is respectively injected into gases introduced to the upper and the lower parts of the reactor high and low in a NH3 leak amount in a slightly small amount or a slightly large amount. The exhaust gas treated in the reactor 7 similarily as mentioned above is discharged into the air through a dust collector 10.

Description

【発明の詳細な説明】 本発明はイオウ酸化物及び窒素酸化物を含有する排ガス
の脱硫・脱硝方法に関し、詳しくは排ガス処理の際に混
入されるアンモニアのリークの問題を解決する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desulfurizing and denitrating exhaust gas containing sulfur oxides and nitrogen oxides, and more particularly to a method for solving the problem of leakage of ammonia mixed in during exhaust gas treatment.

石炭、重油だきIイラ排ガスや製鉄所焼結炉排ガス等の
様にイオウ酸化物(SOx)  及び窒素酸化物(NO
x )を高濃度に含有する排ガスの処理方法として、排
ガス中にアンモニアを混入した後、炭素質触媒の充填床
に排ガスを通過させて処理する方法が知られている。こ
の方法では、SOxとNOx  ’!r同時に除去でき
る上、触媒の再生便用が可能である等の利点を備えてい
る。
Sulfur oxides (SOx) and nitrogen oxides (NO
As a method for treating exhaust gas containing a high concentration of x), a method is known in which ammonia is mixed into the exhaust gas and then the exhaust gas is passed through a packed bed of carbonaceous catalyst. In this method, SOx and NOx'! It has the advantage that it can be removed at the same time and that the catalyst can be easily regenerated.

しかしながら、この方法でNOxを効率よく除去するK
は、少なくとも200℃以上の好ましくは220〜25
0℃程度の反応温度が必要であって、これより低温度で
はNOxを充分に除去することはできない。ところが、
200℃の反応温度では排ガス中の酸素によって炭素質
触媒の一部が、C+O,→CO1の如く消費さルてしま
う問題がある。また、ゼイン等からの排ガスはエアヒー
メ等の出口でほぼ15’O℃前後であるので、排ガスを
200℃以上の温度に予熱しなければならない点でも不
利である。
However, with this method, K
is at least 200°C or higher, preferably 220-25
A reaction temperature of about 0° C. is required, and NOx cannot be removed sufficiently at temperatures lower than this. However,
At a reaction temperature of 200° C., there is a problem that a part of the carbonaceous catalyst is consumed by oxygen in the exhaust gas as C+O, →CO1. Further, since the exhaust gas from Zein etc. is approximately 15'O<0>C at the outlet of the air heater, etc., it is disadvantageous in that the exhaust gas must be preheated to a temperature of 200[deg.]C or higher.

これに対し、SOxは勿論、150℃程度の温度におい
てもNOxを高い除去率でもって除去可能な方法が提案
されている。この方法は、排ガス中にアンモニアを混入
し、この混合ガスを第1の直交流式移動床反応器に導い
て大部分のSOxを除去した後、処理済ガスに改めてア
ンモニアを混入し、この混合ガスを第2の直交流式移動
床反応器に導いて再処理するものである。
In contrast, a method has been proposed that can remove not only SOx but also NOx at a high removal rate even at a temperature of about 150°C. In this method, ammonia is mixed into the exhaust gas, this mixed gas is introduced into the first cross-flow moving bed reactor to remove most of the SOx, and then ammonia is mixed into the treated gas again, and this mixed gas is introduced into the flue gas. The gas is guided to a second cross-flow moving bed reactor for reprocessing.

しかしながら、この方法では、第2の反応器で高い脱硝
率が得られるものの、処理ガス中に多量のアンモニアが
リークして2次公害の恐れが生ずる。第1の反応器の出
口ガスへのアンモニアの混入量を少なくするとNH,I
J−り量は少なくなるが、脱硝率の低下を招く結果にな
る。
However, in this method, although a high denitrification rate can be obtained in the second reactor, a large amount of ammonia leaks into the treated gas, resulting in the risk of secondary pollution. If the amount of ammonia mixed into the outlet gas of the first reactor is reduced, NH, I
Although the amount of J-reduction is reduced, this results in a decrease in the denitrification rate.

こうしたNH,+1−りの問題が未解決であったのは、
直交流式反応器における炭素質触媒とアンモニアを含む
排ガスとの接触による反応特性が十分に解明さルていな
かったためと考えられる。
The reason why this problem of NH,+1- was unresolved was because
This is thought to be because the reaction characteristics of the contact between the carbonaceous catalyst and the exhaust gas containing ammonia in the cross-flow reactor have not been fully elucidated.

本発明者等は、NHs !J−りの問題を解決するため
に検討した結果、反応器の上部と下部とではN15リー
ク量が著しく異なることを見い出した。第1図は、So
!  50 ppm、 NOx 170ppm、 I(
,07,8チ、0,3.8%を含む排ガスに150 p
pm  のアンモニアを注入し、この混合ガスを、15
0℃の条件で炭素質触媒を充填した第2の直交流式移動
床反応器に空間速度800hr”の速度で通過させた場
合の反応器出口各部のNOx 、 SOx除去率及びN
H,IJ−り量を示すグラフである。なお、この場合の
反応器内の触媒の滞留時間は25時間である。第1図に
示す様に反応器の上部において著しくアンモニアがリー
クすることが理解される。
The inventors of the present invention, NHs! As a result of studies to solve the problem of J-reduction, it was found that the amount of N15 leaked was significantly different between the upper and lower parts of the reactor. Figure 1 shows So
! 50 ppm, NOx 170 ppm, I(
,07,8ch, 150p for exhaust gas containing 0,3.8%
pm of ammonia was injected, and the mixed gas was heated to 15 pm.
NOx, SOx removal rate and N at each part of the reactor outlet when passing through a second cross-flow type moving bed reactor packed with a carbonaceous catalyst at a space velocity of 800 hr at 0 ° C.
It is a graph showing the amount of H and IJ. Note that the residence time of the catalyst in the reactor in this case is 25 hours. As shown in FIG. 1, it is understood that ammonia leaks significantly in the upper part of the reactor.

(この現象については後に詳述する。)本発明は、この
現象に着目して完成されたものである。即ち、前記の2
基の直交流式移動床反応器により排ガスの脱硫・脱硝を
行う方法において、第1の直交流式反応器出口ガスを反
応器上下に2つ以上に分割して第2の直交流式反応器に
導入し、かつアンモニアを各々分割された導入ガスに注
入することを特徴とするものである。
(This phenomenon will be explained in detail later.) The present invention was completed by paying attention to this phenomenon. That is, the above 2
In the method of desulfurizing and denitrating exhaust gas using a cross-flow moving bed reactor, the outlet gas of the first cross-flow reactor is divided into two or more parts above and below the reactor, and the gas is then added to the second cross-flow reactor. The system is characterized by introducing ammonia into each divided introduced gas.

本発明を第2図にそって説明する。100〜170℃程
度に温調された排ガスはライン1を介して第1の直交流
式移動床反応器3に導入さ扛る。この際ライン2を介し
てアンモニアが排ガスに添加される。排ガスは、反応器
3内を下降する炭素質触媒床4と接触して脱硫・脱硝処
理された後、反応器3から排出される。この排出された
排ガスは、ライン5を介して第2の直交流式移動床反応
器7へ導入さnる。この際、反応器7の排ガス導入部を
上下方向に少なくとも2つ以上設け、排ガスは分割後、
各々ライン6より適量のアンモニアが注入される。アン
モニア注入量は、第1図に示した現象を鑑みて決定され
る。即ち、NH,IJ−り量の多い反応器上部への導入
ガスにはアンモニアを少なめに注入し、NH,IJ−り
量の少ない反応器下部への導入ガスにはアンモニアを多
めに注入する。
The present invention will be explained with reference to FIG. The exhaust gas whose temperature is controlled to about 100 to 170°C is introduced into the first cross-flow type moving bed reactor 3 via line 1. In this case, ammonia is added to the exhaust gas via line 2. The exhaust gas is discharged from the reactor 3 after being desulfurized and denitrated by contacting the carbonaceous catalyst bed 4 descending within the reactor 3 . This discharged exhaust gas is introduced into the second cross-flow moving bed reactor 7 via line 5. At this time, at least two or more exhaust gas introduction parts of the reactor 7 are provided in the vertical direction, and after the exhaust gas is divided,
An appropriate amount of ammonia is injected from each line 6. The amount of ammonia to be injected is determined in consideration of the phenomenon shown in FIG. That is, a small amount of ammonia is injected into the gas introduced into the upper part of the reactor where the amount of NH, IJ- is large, and a larger amount of ammonia is injected into the gas introduced into the bottom part of the reactor where the amount of NH, IJ- is small.

反応器7内を下降する炭素質触媒床8と接触して脱硝・
脱硫処理された排ガスは、ライン9を介して集じん器1
0へ導入され集じん処理された後、ライン11を介して
大気へ放出される。
Denitrification and
The desulfurized exhaust gas is passed through line 9 to dust collector 1.
After being introduced into the air tank 0 and subjected to dust collection processing, it is discharged to the atmosphere through a line 11.

一方、反応器3及び7より排出される触媒は再生器12
に導かれ、ここで畠温不活性ガス雰囲気下300〜60
0℃に加熱・杓生された後、反応器3及び7の各々の頂
部に戻されて再使用される。あるいは触媒の流れとして
、第2の反応器7より排出される触媒を第1の反応器3
に供給し、ここで排出される触媒を再生器12へ供給し
再生後、第2の反応器7へ供給して循環1吏用しても良
い。
On the other hand, the catalyst discharged from the reactors 3 and 7 is transferred to the regenerator 12.
300-600 m under an inert gas atmosphere.
After being heated and ladled to 0° C., it is returned to the top of each of reactors 3 and 7 to be reused. Alternatively, the catalyst discharged from the second reactor 7 is transferred to the first reactor 3 as a catalyst stream.
The catalyst discharged there may be supplied to the regenerator 12 for regeneration, and then supplied to the second reactor 7 for circulation.

本発明における第1及び第2の反応器には、活性炭や石
炭を熱処理あるいは水蒸気等で賦活して得られる活性コ
ークス粒等の炭素質触媒が一般に使用されるが、この触
媒にバナジウム、鉄、銅等の金団酸化物を担持させるこ
ともできろ。
In the first and second reactors of the present invention, a carbonaceous catalyst such as activated carbon or activated coke grains obtained by heat treating coal or activating it with steam is generally used. It is also possible to support metal oxides such as copper.

第1図を示してNH,IJ−りの現象を説明した。The phenomenon of NH, IJ-reduction was explained with reference to FIG.

この現象は非常に複雑で現在のところ、明確ではないが
、以下のごとく推論することができる。
Although this phenomenon is very complex and is not clear at present, it can be inferred as follows.

注入したNH8のうち、一部は触媒上のH!S O4と
反応して より炭素質触媒上に硫酸塩として捕捉され、残りのNH
,が排ガス中に存在するNoと反応してNo + NH
s 十”/40! →Nl +3/2 Hto  (2
)より消費されて脱硝に寄与する。一方、再生器から循
環してくる炭素質触媒上には還元性物質が存在し、この
物質も Ar ・” N + No →1% + Ac ”・0
   (3)(ここでAe・・・Nは触媒上の還元性物
質を意味し、(3)式は仮の反応式を示す。) より脱硝に寄与している。
Some of the injected NH8 becomes H! on the catalyst. SO reacts with O4 and is captured as sulfate on the carbonaceous catalyst, and the remaining NH
, reacts with No present in the exhaust gas to form No + NH
s 10”/40! →Nl +3/2 Hto (2
) is consumed more and contributes to denitrification. On the other hand, there is a reducing substance on the carbonaceous catalyst circulating from the regenerator, and this substance also becomes Ar ・”N + No →1% + Ac ”・0
(3) (Here, Ae...N means a reducing substance on the catalyst, and formula (3) shows a tentative reaction formula.) It contributes to denitrification.

反応器内の主反応は上記の通りであって、これらとNH
,リークとの関係を反応器の上下方向において第3図に
示した。処理条件は第1図の場合と同じである。
The main reactions in the reactor are as described above, and these and NH
, and the relationship with leakage is shown in Figure 3 in the vertical direction of the reactor. The processing conditions are the same as in FIG.

第3図から明らかなように、反応器の上部では還元性物
質が多量に存在し、この還元性物質がNOと反応するた
め、(2)式よりも(3)式が優先してN H5の消費
が少ない。従って反応器上部ではNH,IJ−り量は多
い。一方、N H3は第3図の曲線は)に示すように炭
素質触媒に若干吸着されるため、通ガス開始当初(反応
器の頂部付近に相当)はほとんどリークしない。
As is clear from Figure 3, there is a large amount of reducing substances in the upper part of the reactor, and this reducing substance reacts with NO, so equation (3) takes precedence over equation (2), resulting in NH5 consumption is low. Therefore, the amount of NH and IJ is large in the upper part of the reactor. On the other hand, since NH3 is slightly adsorbed by the carbonaceous catalyst as shown in the curve in FIG. 3, almost no leakage occurs at the beginning of gas flow (corresponding to the vicinity of the top of the reactor).

その後、炭素質触媒が下降して還元性物質が消費され減
少するにつれ、(3)式よりも(2)式が優先してNH
,消費量が増加する。従って反応器下部ではNH,U−
り量は少ない。
After that, as the carbonaceous catalyst descends and reducing substances are consumed and reduced, the formula (2) takes precedence over the formula (3) and the NH
, consumption increases. Therefore, at the bottom of the reactor, NH, U-
The amount is small.

即ち、I’tlH,リークは、NH3の破過曲線(A)
と還元性・物質の減少に共う注入NH3の消費増加量(
B)との差によって説明することができる。また、反応
器内の触媒の滞留時間を大きくするほど還元性物質の消
費度合が大きくなるため、反応器の上部と下部とのNH
sリーク量の差が著しくなる。逆に触媒のI庸留時間を
小さくするほど還元性物質の消費度合が小さくなるため
、反応器の上部と下部とのNH31J−り量の差は小さ
くなる。
That is, I'tlH, leakage is NH3 breakthrough curve (A)
and the increase in consumption of injected NH3 due to the reduction of reducing properties and substances (
This can be explained by the difference between B). In addition, as the residence time of the catalyst in the reactor increases, the degree of consumption of reducing substances increases.
s The difference in leakage amount becomes significant. On the other hand, as the I-spooling time of the catalyst is decreased, the degree of consumption of the reducing substance is decreased, and therefore the difference in the amount of NH31J between the upper and lower portions of the reactor is decreased.

もつとも、通常、触媒の滞留時間は15〜50時間程度
に設定され、少なくともこの範囲内においては第1図も
しくは第3図と同様の傾向を示す。
However, the residence time of the catalyst is usually set to about 15 to 50 hours, and at least within this range, the same tendency as in FIG. 1 or FIG. 3 is shown.

本発明は、分割された第2の反応器導入ガスに、上記の
NH3リークの現象を考慮して各々の導入ガスに適量の
アンモニアを注入することができるため、NH,リーク
の問題を解決できる。
The present invention can solve the problem of NH leakage because it is possible to inject an appropriate amount of ammonia into each of the divided second reactor introduced gases in consideration of the above-mentioned NH3 leak phenomenon. .

また、アンモニアを脱硝に十分に寄与させることができ
るため、高い脱硝率が維持できる。
Furthermore, since ammonia can be made to sufficiently contribute to denitrification, a high denitrification rate can be maintained.

以下、実施例により本発明の効果を明らかにする。Hereinafter, the effects of the present invention will be clarified through Examples.

実施例 1050 ppm ノSOxと200 ppmのNOx
を含有する排ガスに500 ppm  のアンモニアガ
スを混合後、この混合ガスを、145℃の温度で第2の
直交流式移動床反応器より排出された粒状の炭素質触媒
が充填された第1の直交流式移動床反応器に空間速度6
00 hr””の速度で通過させた。この場合、反応器
内の触媒の滞留時間は33時間に設定されている。この
反応器での脱硫率は95%、脱硝率は15チであった。
Example 1050 ppm SOx and 200 ppm NOx
After mixing 500 ppm of ammonia gas with the exhaust gas containing Space velocity 6 in cross-flow moving bed reactor
It passed at a speed of 00 hr"". In this case, the residence time of the catalyst in the reactor was set to 33 hours. The desulfurization rate in this reactor was 95%, and the denitrification rate was 15%.

また、Nl(、リーク量は2ppmであった。In addition, the amount of Nl leaked was 2 ppm.

前記第1の反応器出口ガスを分割し、反応器上部1/3
の部分に導入するガスに対してはNH8を70 ppm
、下部に導入するガスに対してはNH,を160 pp
m注入して第2の直交流式移動床反応器に空間速度80
0 hr−の速度で通過した。この場合の反応器内の触
媒の滞留時間は25時間に設定されている。
The first reactor outlet gas is divided into the upper 1/3 of the reactor.
For the gas introduced into the section, 70 ppm of NH8 is added.
, for the gas introduced at the bottom, 160 ppp of NH.
m injected into the second cross-flow moving bed reactor at a space velocity of 80 m.
It passed at a speed of 0 hr-. The residence time of the catalyst in the reactor in this case is set to 25 hours.

第2の反応器での脱硫率、脱硝率は、第2の反応器の導
入ガスに対して各々100%、85チであった。即ち、
総合の脱硫率、脱硝率は各々100%、87チであった
。また、NH4リーク量は6pPmであった。
The desulfurization rate and the denitrification rate in the second reactor were 100% and 85%, respectively, relative to the gas introduced into the second reactor. That is,
The overall desulfurization rate and denitrification rate were 100% and 87%, respectively. Further, the amount of NH4 leakage was 6 pPm.

比較例として、第1の反応器出口ガスを分割することな
(Nu、を150 ppm  注入して第2の反応器へ
導入した所、第2の反応器での脱硫率、脱硝率は各々1
00チ、83%であった。
As a comparative example, when 150 ppm of Nu was injected into the second reactor without dividing the gas at the outlet of the first reactor, the desulfurization rate and the denitration rate in the second reactor were each 1.
00chi, 83%.

またNH,IJ−り量は15 ppmであった。Further, the amount of NH and IJ was 15 ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応器出口各部のNOX、 SOX 除去率及
びNH,!J−り量の一例を示すグラフである0第2図
は本発明の説明図である。第3図はNH。 リークの現象の説明図である。 3・・・第1の直交流式移動床反応器 7・・・第2の直交流式移動床反応器 12・・・再生器 特許出願人 住友重機械工業株式会社
Figure 1 shows the NOX, SOX removal rate and NH,! at each part of the reactor outlet. FIG. 2, which is a graph showing an example of the J-reduction amount, is an explanatory diagram of the present invention. Figure 3 shows NH. FIG. 3 is an explanatory diagram of a leak phenomenon. 3...First cross-flow moving bed reactor 7...Second cross-flow moving bed reactor 12...Regenerator patent applicant Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、窒素酸化物とイオウ酸化物を含有する排ガスにアン
モニアを混入し、この混合ガスを炭素質触媒を充填した
第1の直交流式移動床反応器に導入して脱硫−脱硝処理
を行い、この処理ガスに改めてアンモニアを混入し、こ
の混合ガスを炭素質触媒を充填した第2の直交流式移動
床反応器に導入して脱硝会脱硫処理する方法において、
第1の直交流式移動床反応器出口ガスを反応器上下に2
つ以上に分割して第2の直交流式移動床反応器に導入し
、かつアンモニアを各々分割さ才した導入ガスに注入す
ることを特徴とする排ガスの脱硫・脱硝方法。
1. Ammonia is mixed into exhaust gas containing nitrogen oxides and sulfur oxides, and this mixed gas is introduced into a first cross-flow moving bed reactor filled with a carbonaceous catalyst to perform desulfurization and denitrification treatment, In a method for denitrification and desulfurization treatment by mixing ammonia into this treated gas again and introducing this mixed gas into a second cross-flow type moving bed reactor filled with a carbonaceous catalyst,
The first cross-flow moving bed reactor outlet gas is sent to the top and bottom of the reactor.
A method for desulfurization and denitration of exhaust gas, characterized in that the gas is divided into two or more parts and introduced into a second cross-flow moving bed reactor, and ammonia is injected into each divided part of the introduced gas.
JP58083782A 1983-05-13 1983-05-13 Desulfurization and denitration of exhaust gas Pending JPS59209630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083782A JPS59209630A (en) 1983-05-13 1983-05-13 Desulfurization and denitration of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083782A JPS59209630A (en) 1983-05-13 1983-05-13 Desulfurization and denitration of exhaust gas

Publications (1)

Publication Number Publication Date
JPS59209630A true JPS59209630A (en) 1984-11-28

Family

ID=13812194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083782A Pending JPS59209630A (en) 1983-05-13 1983-05-13 Desulfurization and denitration of exhaust gas

Country Status (1)

Country Link
JP (1) JPS59209630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT395382B (en) * 1985-06-12 1992-12-10 Sumitomo Heavy Industries METHOD FOR TREATING EXHAUST GASES

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581731A (en) * 1978-12-18 1980-06-20 Sumitomo Heavy Ind Ltd Gas treating method
JPS5817821A (en) * 1982-06-04 1983-02-02 Sumitomo Heavy Ind Ltd Method for removing nox and sox from waste gas
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581731A (en) * 1978-12-18 1980-06-20 Sumitomo Heavy Ind Ltd Gas treating method
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas
JPS5817821A (en) * 1982-06-04 1983-02-02 Sumitomo Heavy Ind Ltd Method for removing nox and sox from waste gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT395382B (en) * 1985-06-12 1992-12-10 Sumitomo Heavy Industries METHOD FOR TREATING EXHAUST GASES

Similar Documents

Publication Publication Date Title
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
US3959440A (en) Method for removing SO2 and NOx simultaneously from the exhaust of a combustion furnace
JPS61287423A (en) Treatment of exhaust gas
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
JPS59209630A (en) Desulfurization and denitration of exhaust gas
JP2000254453A (en) Process and equipment for waste gas treatment
JPS5817821A (en) Method for removing nox and sox from waste gas
JPH06210139A (en) Waste gas treatment
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JP3704159B2 (en) Exhaust gas treatment method
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JP2000262861A (en) Exhaust gas treatment method and apparatus
JPS60220129A (en) Treatment of exhaust gas
JPH07265667A (en) Treatment of exhaust gas
JP3360854B2 (en) Exhaust gas treatment method using carbon material
JPH0966222A (en) Treatment of exhaust gas
KR830002365B1 (en) Treatment method of exhaust gas containing nitrogen oxide and sulfur oxide
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS6113060Y2 (en)
JPH06262038A (en) Method for treatment of exhaust gas
JPS59196719A (en) Treatment of exhaust gas
JPS6061024A (en) Process for removing sox and nox simultaneously
JP2002370011A (en) Exhaust gas treatment method
JP2001187321A (en) Method and device for treating waste gas
JPS58174224A (en) Treatment of waste combustion gas