JPS61287423A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPS61287423A
JPS61287423A JP60127494A JP12749485A JPS61287423A JP S61287423 A JPS61287423 A JP S61287423A JP 60127494 A JP60127494 A JP 60127494A JP 12749485 A JP12749485 A JP 12749485A JP S61287423 A JPS61287423 A JP S61287423A
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
gas
catalyst
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60127494A
Other languages
Japanese (ja)
Other versions
JPH0154089B2 (en
Inventor
Kazuyoshi Takahashi
和義 高橋
Shinichi Yamada
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP60127494A priority Critical patent/JPS61287423A/en
Priority to DE19863619496 priority patent/DE3619496C2/en
Priority to AT158086A priority patent/AT395382B/en
Publication of JPS61287423A publication Critical patent/JPS61287423A/en
Publication of JPH0154089B2 publication Critical patent/JPH0154089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides

Abstract

PURPOSE:To prevent a combustion accident by adding NH3 to an exhaust gas contg. NOx, SOx and thereafter dividing the exhaust gas, introducing one part thereof into the first transfer layer and the other part into the second transfer layer to desulfurize and denitrate the exhaust gas and circulating activated carbon to the first transfer layer, the second transfer layer and a regenerator in order. CONSTITUTION:After introducing NH3 through a line 1 into an exhaust gas contg. NOx and SOx at 100-180 deg.C, the exhaust gas is divided into two gas glows and one part thereof is introduced into the first transfer layer reactor 3 packed with a carbonaceous catalyst 4 and the other part is introduced into the second transfer layer reactor 10 and the exhaust gas is subjected to the desulfurization and denitration treatments and discharged through the lines 5, 6 and joined and thereafter dust-removed with a dust collector 7 and discharged to the atmosphere. The carbonaceous catalyst discharged from the first reactor 3 is fed to the upper part of the second reactor 10 and discharged from the lower part, heated and regenerated in a regenerator 14 and returned to the first reactor 3. In such a way, the retention time of the catalyst is decreased to prevent the generation of a hot spot and the combustion accident is prevented.

Description

【発明の詳細な説明】 本発明は硫黄酸化物(SOX )及び窒素酸化物(NO
X )を含有する排ガスの脱硫脱硝法に関し、さらに詳
しくは活性炭などで代表される炭素質触媒を使用して、
SOX濃度が比較的低い排ガスを約100〜180℃の
低温度域で処理して脱硫脱硝する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for treating sulfur oxides (SOX) and nitrogen oxides (NO
Regarding the desulfurization and denitrification method for exhaust gas containing
The present invention relates to a method for desulfurizing and denitrating exhaust gas having a relatively low SOX concentration at a low temperature range of approximately 100 to 180°C.

石炭焚き乃至重油焚きゼイラーの排ガスや製鉄所焼結炉
の排ガスの如く、SOXとNOXを含有する排ガスの処
理方法としては、これらの排ガスにアンモニアガスを注
入し、炭素質触媒の充填床にこのガスを通過させて処理
する方法が知られている(特開昭50−92858号)
。この方法は排ガス中のBOXとNOXを同時に除去で
きることに加えて、触媒の再生使用が可能な利点を備え
ている。しかし、この方法によってNOXを効率よく除
去するためには、反応温度を少なくとも200℃以上に
、好ましくは220〜250℃程度に保持する必要があ
り、これより低温度ではNOXを充分に除去することが
できない。ところが、反応温度が200”C以上になる
と、排ガス中に共存する酸素によって炭素質触媒の一部
が、C+02→CO1の如く消費されてしまう問題があ
る。さらに、ゼイ2−などからの排ガスの温度は、一般
にエアヒータの出口でほぼ150℃前後であるので、こ
の排ガスを処理する場合には200℃以上の温度に予熱
しなければならない不都合もある。
As a treatment method for exhaust gas containing SOX and NOX, such as exhaust gas from coal-fired or heavy oil-fired Zeilers or exhaust gas from sintering furnaces at steel plants, ammonia gas is injected into these exhaust gases, and this gas is injected into a packed bed of carbonaceous catalyst. A method of processing by passing gas is known (Japanese Patent Application Laid-Open No. 50-92858).
. This method has the advantage that in addition to being able to simultaneously remove BOX and NOX from exhaust gas, the catalyst can be reused. However, in order to efficiently remove NOX with this method, it is necessary to maintain the reaction temperature at least 200°C or higher, preferably around 220 to 250°C; at temperatures lower than this, NOX cannot be removed sufficiently. I can't. However, when the reaction temperature exceeds 200"C, there is a problem that a part of the carbonaceous catalyst is consumed by the oxygen coexisting in the exhaust gas, as in the case of C+02 → CO1. Furthermore, there is a problem that the exhaust gas from Zei 2- etc. Since the temperature at the outlet of the air heater is generally around 150°C, there is the disadvantage that when treating this exhaust gas, it must be preheated to a temperature of 200°C or higher.

これに対して、150℃程度の温度でもSOXは勿論、
NOXをも効率よく除去できる方法が特許第12418
99号で提案されている。この方法は直交式移動層反応
器を2基使用し、アンモニアガスを注入した排ガスをま
ず第1の移動層反応器に通過式せて大部分の5ox12
除去した後、得られた処理済みガスに改めてアンモニア
ガスを混合し、この混合ガスを第2の移動層反応器に導
入して再処理するものである。
On the other hand, even at a temperature of about 150℃, SOX, of course,
Patent No. 12418 describes a method that can efficiently remove NOX
It is proposed in No. 99. This method uses two orthogonal moving bed reactors, and the exhaust gas injected with ammonia gas is first passed through the first moving bed reactor to remove most of the 5ox12
After removal, ammonia gas is mixed with the obtained treated gas again, and this mixed gas is introduced into the second moving bed reactor for reprocessing.

この2段処理法は低温度で排ガスを脱硫脱硝できる点で
優れているが、SOX濃度が比較的低い(約3001)
I)m以下)排ガスを処理する場合には、大作にすぎる
嫌いがあり、必要以上に炭素質触媒を使用する点で必ず
しも賞月できない。
This two-stage treatment method is superior in that it can desulfurize and denitrate exhaust gas at low temperatures, but the SOX concentration is relatively low (approximately 3001).
When treating exhaust gas (below I) m), it tends to be too big a deal, and the use of more carbonaceous catalysts than necessary is not necessarily satisfactory.

なぜなら、排ガス中のSOX濃度が低い関係で、この排
ガスにアンモニアガスを混合して炭素質触媒の移動層反
応に導入すれば、上記特許の如く2段処理を行わなくて
も、一つの反応器で理論的には充分排ガスを脱硫脱硝で
きるからである。尤も、SOX6度の低い排ガスを単段
で処理する場合には、2段処理の場合に比較して反応器
内に於ける炭素質触媒の滞留時間を多少大きくとる必要
があるので、この場合にはたとえ反応温度が150℃前
後の低温度でも、炭素質触媒の酸化反応熱の蓄熱によっ
て、触媒層内にホットスポットが発生し、触媒の燃焼事
故を招く虞れがある。
Because the SOX concentration in the exhaust gas is low, if ammonia gas is mixed with the exhaust gas and introduced into the moving bed reaction of the carbonaceous catalyst, one reactor can be used instead of the two-stage treatment as in the above patent. This is because the exhaust gas can theoretically be sufficiently desulfurized and denitrated. However, when treating exhaust gas with a low SOX level of 6 degrees in a single stage, it is necessary to allow the residence time of the carbonaceous catalyst in the reactor to be somewhat longer than in the case of two-stage treatment. Even if the reaction temperature is as low as around 150° C., hot spots may occur in the catalyst layer due to the accumulation of heat of oxidation reaction in the carbonaceous catalyst, which may lead to catalyst combustion accidents.

而して本発明はSOX濃度が比較的低い排ガスでも、単
段処理で脱硫脱硝することができ、しかも上記のような
燃焼事故の発生を必配する必要のない排ガス処理を提案
する。
Therefore, the present invention proposes an exhaust gas treatment that can desulfurize and denitrate even exhaust gas with a relatively low SOX concentration in a single stage process, and does not necessarily involve the occurrence of combustion accidents as described above.

すなわち、本発明はSOXとNOXを含有する約100
〜180″Cの排ガスをアンモニアガスの共存下に、炭
素質触媒と接触させて排ガスに脱硫脱硝処理を施す方法
に於て、排ガスにアンモニアガスを注入後、その排ガス
をガス流に分割し、第1の排ガス流を炭素質触媒が充填
された第1の移動層反応器に導入して脱硫脱硝し、第2
の排ガス流を炭素質触媒が充填された第2の移動層反応
器に導入して脱硫脱硝し、第1の移動層反応器出口から
排出される炭素質触媒を第2の移動層反応器入口に供給
し、第2の移動層反応器出口から排出される炭素質触媒
を加熱再生後、第1の移動層反応器入口に供給すること
を特徴とする。
That is, the present invention uses about 100
In the method of desulfurizing and denitrating the exhaust gas by bringing it into contact with a carbonaceous catalyst in the coexistence of ammonia gas at ~180″C, after injecting ammonia gas into the exhaust gas, the exhaust gas is divided into gas streams, A first exhaust gas stream is introduced into a first moving bed reactor packed with a carbonaceous catalyst for desulfurization and denitrification;
The exhaust gas stream is introduced into a second moving bed reactor filled with a carbonaceous catalyst for desulfurization and denitrification, and the carbonaceous catalyst discharged from the first moving bed reactor outlet is transferred to the second moving bed reactor inlet. The carbonaceous catalyst discharged from the outlet of the second moving bed reactor is heated and regenerated and then supplied to the inlet of the first moving bed reactor.

以下、添付図面にそって本発明をさらに具体的に説明す
ると、まず第1図に示す態様では、約100〜180℃
の排ガスは、ライン1から注入されるアンモニアと混合
された後、二つのガス流に分割され、一方の排ガス流は
ライン2を介して炭素質触媒が充填された第1の直交流
移動層反応器3に導入される。排ガスは反応器3内を下
降する炭素質触媒層4と接触して脱硫脱硝処理を受けた
後、反応器3からライン5に排出される。二つに分割さ
れた他方の排ガス流はライン9を介して第2の直交流移
動層反応器10に導入され、器内を下降する炭素質触媒
層11と接触して脱硫脱硝処理を受け、ライン6に排出
される。各反応器からそれぞれライン5及び6に排出さ
れたガスは、合流されて集塵器7に送られ、ここで除塵
された後ライン8から大気中に放出される。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. First, in the embodiment shown in FIG.
The exhaust gas is mixed with ammonia injected from line 1 and then split into two gas streams, one exhaust gas stream is sent through line 2 to the first cross-flow moving bed reaction packed with carbonaceous catalyst. It is introduced into vessel 3. The exhaust gas is discharged from the reactor 3 into a line 5 after coming into contact with the carbonaceous catalyst layer 4 descending in the reactor 3 and undergoing desulfurization and denitration treatment. The other exhaust gas stream divided into two is introduced into the second cross-flow moving bed reactor 10 via line 9, contacts the carbonaceous catalyst layer 11 descending in the reactor, and undergoes desulfurization and denitrification treatment, It is discharged to line 6. The gases discharged from each reactor into lines 5 and 6 are combined and sent to a dust collector 7, where they are removed from dust and then discharged into the atmosphere from a line 8.

また、炭素質触媒について言えば、第1の反応器3の下
方出口から排出される触媒は、ライン12を経て第2の
反応器10の上方入口に供給され、反応器10の下方出
口から排出される触媒は、ライン13を経て再生器14
に導かれる。この再生器内では触媒が約300〜600
″Cの高温不活性ガス雰囲気で再生され、再生触媒はラ
イン15から第1の反応器3の上方入口に戻されて再使
用される。そして再生器14内で発生した高濃度SO,
ガスはライン16に取出され、直接又は水洗等の手段で
精製した後、硫酸、硫安、硫黄などを得る副生品回収工
程に供給される。
Regarding the carbonaceous catalyst, the catalyst discharged from the lower outlet of the first reactor 3 is supplied to the upper inlet of the second reactor 10 via line 12, and is discharged from the lower outlet of the reactor 10. The catalyst is passed through line 13 to regenerator 14.
guided by. In this regenerator, the catalyst is about 300 to 600
The regenerated catalyst is returned to the upper inlet of the first reactor 3 from the line 15 and reused.The high-concentration SO generated in the regenerator 14,
The gas is taken out to the line 16, purified directly or by means such as washing with water, and then supplied to a by-product recovery process to obtain sulfuric acid, ammonium sulfate, sulfur, and the like.

尚、第1図の態様ではアンモニアを注入してから排ガス
を二つのガス流に分割しているが、排ガスを分割後、そ
れぞれのガス流にアンモニアを注入しI差支えない。t
た、ライン12゜13.15には必要に応じてダスト、
触媒粉などを分離するだめの手段、例えば振動スクリー
ンなどを設置することができる。
In the embodiment of FIG. 1, ammonia is injected and then the exhaust gas is divided into two gas streams, but after the exhaust gas is divided, ammonia may be injected into each gas stream. t
In addition, line 12゜13.15 should be filled with dust,
Additional means for separating catalyst powder etc., such as a vibrating screen, may be provided.

第2図に示す態様は、排ガスを二つのガス流に分割した
後、第1の反応器3に供給される排ガスだけにアンモニ
アを注入し、第2の反応器10に供給される排ガスには
アンモニアが注入されていない点を除くと、第1図の態
様と異なるところがないが、第2図の態様では触媒の加
熱再生時に回収される高濃度S02ガス中のアンモニア
量を低減させることができる。
In the embodiment shown in FIG. 2, after dividing the exhaust gas into two gas streams, ammonia is injected only into the exhaust gas supplied to the first reactor 3, and into the exhaust gas supplied to the second reactor 10. There is no difference from the embodiment in Fig. 1 except that ammonia is not injected, but in the embodiment in Fig. 2, the amount of ammonia in the high concentration S02 gas recovered during heating regeneration of the catalyst can be reduced. .

本発明の炭素質触媒としては、石炭々どを熱処理あるい
は水蒸気などで賦活して得た活性コークスや活性炭など
が一般に使用されるが、これらにノ々ナジウム、鉄、銅
などの金属酸化物を担持させたものも、勿論使用可能で
ある。
As the carbonaceous catalyst of the present invention, activated coke and activated carbon obtained by heat treating coal or activating it with steam are generally used. Of course, those supported can also be used.

ところで、排ガス中のSOXは炭素質触媒との接触によ
って、次の通り硫酸として吸着除去される。
By the way, SOX in exhaust gas is adsorbed and removed as sulfuric acid through contact with a carbonaceous catalyst as follows.

so、+hへ+I(,0→H,80,(1)80、−4
− H,O−+ )(,80,(2)この場合、予め排
ガスにアンモニアを共存させると、吸着された硫酸はア
ンモニウム塩に変換される。
so, +h to +I(,0 → H, 80, (1) 80, -4
- H, O-+ ) (, 80, (2) In this case, if ammonia is made to coexist in the exhaust gas in advance, the adsorbed sulfuric acid is converted to ammonium salt.

H,80,+ NHs→NH,H8O,+31NH,[
804−4−NH,→(NI(4)tSO,(4)つま
り、炭素質触媒は排ガスとの接触によって、硫酸及びそ
のアンモニウム塩の吸着量が増加するので次第に不活化
するが、その速度は排ガス中のSOx濃度が高い程早い
。従って、SOX濃度が高い場合には、所望の脱硫率が
維持できるよう、移動層反応器内での触媒の滞留時間を
短かくする必要がある。これに対して排ガス中のSOX
濃度が低い場合には、触媒の滞留時間を成る程度長くす
ることができるが、滞留時間を長くすると、150℃程
度の温度でも触媒の酸化反応熱の蓄積によって触媒層内
にホットスポットが発生し、触媒の燃焼事故が起る危険
がある。
H,80,+NHs→NH,H8O,+31NH,[
804-4-NH, → (NI(4)tSO, (4) In other words, when the carbonaceous catalyst comes into contact with the exhaust gas, the adsorption amount of sulfuric acid and its ammonium salt increases, so it is gradually inactivated, but the speed is The higher the SOx concentration in the exhaust gas, the faster the rate of de-sulfurization. Therefore, when the SOx concentration is high, it is necessary to shorten the residence time of the catalyst in the moving bed reactor so that the desired desulfurization rate can be maintained. On the other hand, SOX in exhaust gas
When the concentration is low, the residence time of the catalyst can be increased to a certain extent; however, if the residence time is increased, hot spots will occur in the catalyst layer due to the accumulation of heat from the oxidation reaction of the catalyst even at temperatures of about 150°C. , there is a risk of catalyst combustion accident.

然るに本発明では排ガスを二つに分割し、それぞれを個
別の反応器に導入しているので、各反応器での触媒滞留
時間を短縮することができ、従ってホットスポットの問
題を回避することができる。これに加えて、本発明では
第1の反応器で使用した触媒を再生することなく第2の
反応器で使用できるので、触媒の有効利用が図れる利点
もある。
However, in the present invention, the exhaust gas is divided into two parts and each is introduced into a separate reactor, so the residence time of the catalyst in each reactor can be shortened, and the problem of hot spots can therefore be avoided. can. In addition, in the present invention, the catalyst used in the first reactor can be used in the second reactor without being regenerated, so there is an advantage that the catalyst can be used effectively.

また、SOX及びNOXを含有する排ガスにNH3を注
入して脱硝する場合、脱硝反応は NI(、−1−No十イ02→N2+騒H20(51で
示されるが、150”C前後の反応温度では注入された
NH,の大部分が炭素質触媒に吸着されたSO,(実際
は硫酸として吸着している)との中和反応〔上記(31
(4)式〕によって消費される。特に反応(3)が速い
ので脱硝反応(5)に必要なN11.注入量は、反応(
3)によって消費されるt’に加味して添加しなければ
ならない。すなわち、脱硝率とN)(、注入量の間には
概路次のような関係がある。
In addition, when denitrating by injecting NH3 into the exhaust gas containing SOX and NOX, the denitrification reaction occurs at a reaction temperature of around 150"C (denoted by 51). In this case, most of the injected NH undergoes a neutralization reaction with SO adsorbed on the carbonaceous catalyst (actually, it is adsorbed as sulfuric acid) [above (31)].
(4)]. In particular, since reaction (3) is fast, N11 is required for denitrification reaction (5). The injection volume is determined by the reaction (
It must be added in addition to the t' consumed by 3). That is, there is a relationship between the denitrification rate and the injection amount as shown below.

(NH,注入量、ppm)#(SOX濃度、ppmx脱
硫率)−l−(NOX濃度、ppmx脱硝率)+(NH
3,ppm) つまり、脱硫脱硝に使用されて反応器より排出された炭
素質触媒に吸着されているNH,と802の比(NH4
+/5O4t′″)は、約1に近く、この様な状態の触
媒の加熱再生では、アンモニウム塩の窒素への分解率が
低く、回収SO1に多量のNH8が混入して、H!80
4.S、その他の副生品回収では閉塞、製品純度低下と
いった問題が起り、−1合一 又、水洗等による精製を行なうと、排水中へNH,H8
03等として大量に溶解するため損失が生ずる。
(NH, injection amount, ppm) # (SOX concentration, ppmx desulfurization rate) - l - (NOX concentration, ppmx removal rate) + (NH
3, ppm) In other words, the ratio of NH adsorbed on the carbonaceous catalyst used for desulfurization and denitrification and discharged from the reactor to 802 (NH4
+/5O4t''') is close to about 1, and when the catalyst is heated and regenerated in such a state, the rate of decomposition of ammonium salt to nitrogen is low, and a large amount of NH8 is mixed into the recovered SO1, resulting in H!80
4. When recovering S and other by-products, problems such as blockage and reduction in product purity occur, and when purification is performed by combining or washing with water, NH and H8 are released into the wastewater.
Since a large amount of 03 etc. is dissolved, a loss occurs.

ちなみに第3図はSO1含有ガスに種々のNH。By the way, Figure 3 shows various types of NH in SO1-containing gas.

量を注入したガスを活性炭層に通過させた後、400℃
で加熱再生した場合の吸着NH,のN2への分解率を測
定したものであるが、これからも理解できる通り、NH
,注入量が多く活性炭上の吸着NH,量が多くなると、
N2への分解率が低下する。そしてN4吸着量が多く、
NH3分解率が低下するということは、回収SO,ガス
中のNH3濃度が著しく高く力ることを意味する。
After passing the injected gas through the activated carbon layer, it is heated to 400℃.
This is a measurement of the decomposition rate of adsorbed NH, to N2 when heated and regenerated.As can be understood from this, NH
, When the injection amount is large and the amount of adsorbed NH on activated carbon increases,
The decomposition rate to N2 decreases. And the amount of N4 adsorption is large,
A decrease in the NH3 decomposition rate means that the NH3 concentration in the recovered SO and gas becomes significantly higher.

第2図に示した本発明の方法によれば、第1の反応器内
の触媒上のNH8/So2の吸着比(モル比)は約1で
あり、この触媒が第2の反応器で再びほぼ同量のSO,
(実際はH280,)を吸着するので、 NH,/80
.は約O15となる。このため脱離ガス中のNH3濃度
は著しく低減するということが理解できよう。
According to the method of the present invention shown in FIG. Almost the same amount of SO,
(actually H280,), so NH,/80
.. is approximately O15. It can be understood that the NH3 concentration in the desorbed gas is therefore significantly reduced.

本発明において排ガスを2つに分割する際の割合は、同
一反応器を製作することが実際上都合がよいので約1/
2ずつに分割することが適しているが、第2図に示す態
様では一般的にNH。
In the present invention, the ratio when dividing the exhaust gas into two is approximately 1/2 because it is actually convenient to manufacture the same reactor.
Although it is suitable to divide it into two parts, in the embodiment shown in FIG. 2, it is generally NH.

注入が行なわれる第1の反応器に供給される量を全排ガ
ス量の約1/4〜2/3程度とすることを可とする。
The amount supplied to the first reactor where injection is performed can be about 1/4 to 2/3 of the total amount of exhaust gas.

実施例 150 m)11mのイオウ酸化物、25011)l)
mの窒素酸化物、10%の水分、10%の酸素を含有す
る120″Cの排ガス1000 ONm3/hを500
0 Nm”/hずつに分割し、一方の排ガスにNH,i
 350ppm注入した後、8.3m”の粒状活性炭を
充填した第1の直交流移動層反応器に通過させた。この
場合反応器内の活性炭の滞留時間は40時間に設定され
ている。この反応器の脱硫率は99.9チ、脱硝率は8
0チ、リークNU、は16ppmであった。
Example 150 m) 11m sulfur oxide, 25011) l)
Exhaust gas at 120"C containing 1000 ONm3/h of nitrogen oxides, 10% moisture and 10% oxygen
0 Nm”/h, and one exhaust gas has NH,i
After injecting 350 ppm, it was passed through a first cross-flow moving bed reactor packed with 8.3 m" of granular activated carbon. In this case, the residence time of activated carbon in the reactor was set to 40 hours. This reaction The desulfurization rate of the vessel is 99.9cm, and the denitrification rate is 8.
0chi and leakage NU were 16 ppm.

他方、残シの500ONm′/hの排ガスは直接6.3
 m3の活性炭を充填した第2の直交流移動層反応器に
通過させた。この場合の反応器内の活性炭の滞留時間は
、40時間に設定されている。
On the other hand, the remaining exhaust gas of 500ONm'/h is directly 6.3
Passed through a second cross-flow moving bed reactor packed with m3 of activated carbon. The residence time of activated carbon in the reactor in this case is set to 40 hours.

この反応器の脱硫率は95チ、脱硝率は6%であった。The desulfurization rate of this reactor was 95%, and the denitrification rate was 6%.

上記の第1及び第2の反応器から排出嘔れたガスを合流
させたところ、原排ガスに対する脱硝率43チ、脱硫率
97.5%が得られた。又り−りNH,は8 ppmで
あった。
When the gas discharged from the first and second reactors was combined, a denitrification rate of 43% and a desulfurization rate of 97.5% were obtained with respect to the original exhaust gas. Also, NH was 8 ppm.

一方、第1の反応器を経て第2の反応器より排出された
使用済み活性炭は、再生器に供給され、400’C,不
活性キャリアーガス雰囲気で加熱再生された。再生器へ
のキャリアーガス量を調整することにより15%の高濃
度SO□ガスを回収した。このSO,ガス中のNH,濃
度を測定した結果、NH,濃度は0.95%であった。
On the other hand, the used activated carbon discharged from the second reactor via the first reactor was supplied to a regenerator and regenerated by heating at 400'C in an inert carrier gas atmosphere. By adjusting the amount of carrier gas to the regenerator, 15% high concentration SO□ gas was recovered. As a result of measuring the NH concentration in this SO gas, the NH concentration was 0.95%.

比較例 比較例として排ガスを分割することなく10000 N
m”/hの排ガスに175 PpmのNH,を注入後、
粒状活性炭16.6m5f:充填した直交流移動層反応
器に導入した。この場合活性炭の滞留時間は80時間に
設定されている。前記反応器1q− より排出された排ガスの脱硫率は97%、脱硝率は20
%であった。又リークNH8はs ppmであった。
Comparative Example As a comparative example, 10000 N without dividing the exhaust gas
After injecting 175 Ppm of NH into the exhaust gas at m”/h,
16.6 m5f of granular activated carbon: introduced into a packed cross-flow moving bed reactor. In this case, the residence time of activated carbon is set at 80 hours. The desulfurization rate of the exhaust gas discharged from the reactor 1q- is 97%, and the denitrification rate is 20%.
%Met. Also, the leakage NH8 was sp ppm.

この場合の再生器で回収される高濃度SO,ガス(15
%)中のNH,濃度は4.5チであった。
In this case, the high concentration SO and gas (15
%), the concentration of NH was 4.5%.

更に別の比較例として実施例と同じ脱硝率を得るために
、NH,注入量を250pIl1mに変更した結果、脱
硫率98.15%、脱硝率43%が得られた。
As another comparative example, in order to obtain the same denitration rate as in the example, the NH injection amount was changed to 250 pIl1m, and as a result, a desulfurization rate of 98.15% and a denitration rate of 43% were obtained.

又リークNH,は8 ppmであった。この場合再生器
で得られる高濃度SO,ガス(15%)中のNH3濃度
は5.2%と著しく高くなった。
Also, the leakage NH was 8 ppm. In this case, the NH3 concentration in the high-concentration SO gas (15%) obtained in the regenerator was extremely high at 5.2%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の一実施態様を示す
フロー図であり、第3図は活1生炭に吸着されたNH,
/80.モル比と、吸着NH3の分解率との関係を示す
グラフである。
FIGS. 1 and 2 are flow diagrams showing one embodiment of the present invention, and FIG. 3 shows NH adsorbed on activated raw carbon,
/80. It is a graph showing the relationship between the molar ratio and the decomposition rate of adsorbed NH3.

Claims (1)

【特許請求の範囲】 1、硫黄酸化物と窒素酸化物を含有する約100〜18
0℃の排ガスをアンモニアガスの共存下に、炭素質触媒
と接触させて排ガスに脱硫脱硝処理を施す方法に於て、
排ガスにアンモニアガスを注入後、その排ガスをガス流
に分割し、第1の排ガス流を炭素質触媒が充填された第
1の移動層反応器に導入して脱硫脱硝し、第2の排ガス
流を炭素質触媒が充填された第2の移動層反応器に導入
して脱硫脱硝し、第1の移動層反応器出口から排出され
る炭素質触媒を第2の移動層反応器入口に供給し、第2
の移動層反応器出口から排出される炭素質触媒を加熱再
生後、第1の移動層反応器入口に供給することを特徴と
する排ガスの処理方法。 2、特許請求の範囲第1項記載の方法に於て、アンモニ
アガスの注入前に排ガスをふたつのガス流に分割し、そ
の一方又は両方にアンモニアガスを注入してそれぞれ第
1及び第2移動層反応器に導入することを特徴とする排
ガスの処理方法。
[Claims] 1. About 100-18 containing sulfur oxides and nitrogen oxides
In the method of desulfurizing and denitrating the exhaust gas by bringing it into contact with a carbonaceous catalyst in the presence of ammonia gas,
After injecting ammonia gas into the exhaust gas, the exhaust gas is divided into gas streams, the first exhaust gas stream is introduced into a first moving bed reactor filled with a carbonaceous catalyst for desulfurization and denitrification, and the second exhaust gas stream is is introduced into a second moving bed reactor filled with a carbonaceous catalyst for desulfurization and denitrification, and the carbonaceous catalyst discharged from the outlet of the first moving bed reactor is supplied to the inlet of the second moving bed reactor. , second
A method for treating exhaust gas, comprising heating and regenerating a carbonaceous catalyst discharged from an outlet of a first moving bed reactor, and then supplying the carbonaceous catalyst to an inlet of a first moving bed reactor. 2. In the method described in claim 1, before the injection of ammonia gas, the exhaust gas is divided into two gas streams, and the ammonia gas is injected into one or both of the gas streams, and the ammonia gas is transferred to the first and second gas streams, respectively. A method for treating exhaust gas, characterized by introducing the exhaust gas into a bed reactor.
JP60127494A 1985-06-12 1985-06-12 Treatment of exhaust gas Granted JPS61287423A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60127494A JPS61287423A (en) 1985-06-12 1985-06-12 Treatment of exhaust gas
DE19863619496 DE3619496C2 (en) 1985-06-12 1986-06-10 Exhaust gas treatment processes
AT158086A AT395382B (en) 1985-06-12 1986-06-11 METHOD FOR TREATING EXHAUST GASES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127494A JPS61287423A (en) 1985-06-12 1985-06-12 Treatment of exhaust gas

Publications (2)

Publication Number Publication Date
JPS61287423A true JPS61287423A (en) 1986-12-17
JPH0154089B2 JPH0154089B2 (en) 1989-11-16

Family

ID=14961351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127494A Granted JPS61287423A (en) 1985-06-12 1985-06-12 Treatment of exhaust gas

Country Status (3)

Country Link
JP (1) JPS61287423A (en)
AT (1) AT395382B (en)
DE (1) DE3619496C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072401A1 (en) * 2000-03-29 2001-10-04 Ebara Corporation Method for exhaust gas treatment by injection of ammonia
JP2002284510A (en) * 2001-03-27 2002-10-03 Sumitomo Heavy Ind Ltd Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
WO2003011756A1 (en) * 2001-07-27 2003-02-13 Nippon Steel Corporation Method for producing activated carbon having high strength and high capability for denitration, and activated carbon produced by the method
CN113083008A (en) * 2021-04-08 2021-07-09 豆玉良 Corrosion-resistant high-efficient SOx/NOx control equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3844422A1 (en) * 1988-12-30 1990-07-05 Steag Ag METHOD AND DEVICE FOR SEPARATING UNWANTED COMPONENTS FROM AN EXHAUST GAS
JPH07763A (en) * 1992-06-15 1995-01-06 Sumitomo Heavy Ind Ltd Method for removing dioxin
AT399829B (en) * 1994-03-11 1995-07-25 Austrian Energy & Environment METHOD FOR THE SEPARATION OF SULFUR TRIOXIDE AND FOR OPERATING A CATALYTIC DENICKING PLANT
JP5143983B2 (en) * 2001-06-13 2013-02-13 電源開発株式会社 Exhaust gas treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911329B2 (en) * 1979-02-08 1984-03-14 住友重機械工業株式会社 How to remove nitrogen oxides and sulfur oxides from exhaust gas
DE2911712C2 (en) * 1979-03-24 1991-10-31 Bergwerksverband Gmbh, 4300 Essen Process for removing sulfur oxides and nitrogen oxides from exhaust gases
DE3101053C2 (en) * 1979-03-24 1984-11-29 Bergwerksverband Gmbh, 4300 Essen Process for removing sulfur oxides and nitrogen oxides from exhaust gases and apparatus for carrying out this process
DE3014934A1 (en) * 1980-04-18 1981-10-22 Bergwerksverband Gmbh, 4300 Essen METHOD FOR REMOVING SULFUR OXIDS AND NITROGEN OXIDS FROM EXHAUST GASES
JPS59209630A (en) * 1983-05-13 1984-11-28 Sumitomo Heavy Ind Ltd Desulfurization and denitration of exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072401A1 (en) * 2000-03-29 2001-10-04 Ebara Corporation Method for exhaust gas treatment by injection of ammonia
JP2002284510A (en) * 2001-03-27 2002-10-03 Sumitomo Heavy Ind Ltd Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
JP4574884B2 (en) * 2001-03-27 2010-11-04 住友重機械工業株式会社 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
WO2003011756A1 (en) * 2001-07-27 2003-02-13 Nippon Steel Corporation Method for producing activated carbon having high strength and high capability for denitration, and activated carbon produced by the method
CN113083008A (en) * 2021-04-08 2021-07-09 豆玉良 Corrosion-resistant high-efficient SOx/NOx control equipment

Also Published As

Publication number Publication date
JPH0154089B2 (en) 1989-11-16
DE3619496A1 (en) 1986-12-18
ATA158086A (en) 1992-05-15
DE3619496C2 (en) 1996-11-07
AT395382B (en) 1992-12-10

Similar Documents

Publication Publication Date Title
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
CA2193638C (en) Exhaust gas treating systems
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
US3959440A (en) Method for removing SO2 and NOx simultaneously from the exhaust of a combustion furnace
JPS61287423A (en) Treatment of exhaust gas
JPH06210139A (en) Waste gas treatment
JPH1147536A (en) Method for treating exhaust gas
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
JP3381973B2 (en) Exhaust gas treatment method
JP4266267B2 (en) Exhaust gas treatment method and apparatus
EP1116511A1 (en) Method for removing sulfur compounds from gas mixtures
JP3704159B2 (en) Exhaust gas treatment method
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JPS60220129A (en) Treatment of exhaust gas
JPH06246134A (en) Treatment of waste gas
JPH0747228A (en) Treatment of exhaust gas
JPS5817821A (en) Method for removing nox and sox from waste gas
JP2000254453A (en) Process and equipment for waste gas treatment
JPH06262038A (en) Method for treatment of exhaust gas
JPH07265667A (en) Treatment of exhaust gas
JPS59209630A (en) Desulfurization and denitration of exhaust gas
JP3360854B2 (en) Exhaust gas treatment method using carbon material
JP2002370011A (en) Exhaust gas treatment method
JPH06226103A (en) Recycling of exhaust gas treatment catalyst and treatment of exhaust gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term