JPH06226103A - Recycling of exhaust gas treatment catalyst and treatment of exhaust gas - Google Patents

Recycling of exhaust gas treatment catalyst and treatment of exhaust gas

Info

Publication number
JPH06226103A
JPH06226103A JP5018719A JP1871993A JPH06226103A JP H06226103 A JPH06226103 A JP H06226103A JP 5018719 A JP5018719 A JP 5018719A JP 1871993 A JP1871993 A JP 1871993A JP H06226103 A JPH06226103 A JP H06226103A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
treatment
carbonaceous
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5018719A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takahashi
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP5018719A priority Critical patent/JPH06226103A/en
Publication of JPH06226103A publication Critical patent/JPH06226103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method of recycling an exhaust gas treatment catalyst by which to make it possible to recycle a catalyst with excellent desulfurization/ denitration activities by water-washing a carbonaceous catalyst used for exhaust gas desulfurization and denitration after thermal treatment. CONSTITUTION:In an exhaust gas treatment device, an exhaust gas is guided to a moving bed reactor 3 filled with a carbonaceous catalyst 4 with ammonia injected from a line 2, through a line 1. Further, the exhaust gas comes in contact with the descending carbonaceous catalyst 4 to be desulfurized/ denitrated. A clean gas after treatment is released into an atmosphere from a line 5. The carbonaceous catalyst 4 in the reactor 3 is extracted from below after exhaust gas treatment, then is heated to 300 to 600 deg.C by a heater 6 in an inert gas atmosphere, and sulfuric acid and its ammonium salt are desorbed as SO2, NH3 and N2. This catalyst 4 after heating is loaded in a separator 7 and the pulverized catalyst and dust are removed. After that, the catalyst 4 is sent to a waver washer 8 to have an alkali metal salt removed by water wash, and is returned to the top of the reactor 3 after drying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排ガス処理触媒の再生方
法および排ガスの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an exhaust gas treatment catalyst and an exhaust gas treatment method.

【0002】[0002]

【従来の技術】ボイラー排ガス、製鉄所焼結排ガス、ゴ
ミ焼却炉排ガス等の様にイオウ酸化物(SOx )、窒素
酸化物(NOx )を含有する排ガスの処理方法として、
排ガスにアンモニアを混合した後、活性炭、活性コーク
ス等の炭素質触媒を充填した単一の反応器に排ガスを通
過させて処理する方法が知られており、この方法は比較
的低温でSOx ,NOx を同時に除去できる上、触媒の
再生使用が可能である等の利点を有している。
As a method for treating exhaust gas containing sulfur oxides (SO x ) and nitrogen oxides (NO x ) such as boiler exhaust gas, iron plant sintering exhaust gas, waste incinerator exhaust gas, etc.,
After mixing ammonia with the exhaust gas, a method is known in which the exhaust gas is passed through a single reactor filled with a carbonaceous catalyst such as activated carbon or activated coke to treat SO x at a relatively low temperature, It has the advantages that NO x can be removed at the same time and that the catalyst can be reused.

【0003】この方法では、排ガス中のSOx 、例えば
SO2 は下式に示すように硫酸及びそのアンモニウム塩
(酸性硫安、硫安等)に転化して炭素質触媒に吸着され
る。 SO2 +1/2O2 +H2 O→H2 SO42 SO4 +NH3 →NH4 HSO4 NH4 HSO4 +NH3 →(NH4 2 SO4 また排ガス中のNOx 、例えばNOは下式に示すように
アンモニアによって窒素まで還元されて除去される。 NO+NH3 +1/4O2 →N2 +3/2H2
In this method, SO x in the exhaust gas, for example SO 2, is converted to sulfuric acid and its ammonium salt (acidic ammonium sulfate, ammonium sulfate, etc.) and adsorbed on the carbonaceous catalyst, as shown in the following formula. SO 2 + 1 / 2O 2 + H 2 O → H 2 SO 4 H 2 SO 4 + NH 3 → NH 4 HSO 4 NH 4 HSO 4 + NH 3 → (NH 4 ) 2 SO 4 Also, NO x in exhaust gas, for example NO As shown in the formula, ammonia is reduced to nitrogen and removed. NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O

【0004】また、上記の単一の反応器を用いる方法以
外に、SOx 濃度の高い排ガスでは排ガスをそのまま、
あるいはアンモニアと混合後、炭素質触媒を充填した第
1の反応器を通過させて大部分のSOx を予め除去した
後、第1の反応器を出た処理ガスにアンモニアを混合
し、得られた混合ガスを炭素質触媒を充填した第2の反
応器に導いてさらに処理して高い脱硫率とともに高い脱
硝率を得る方法が提案されている(特公昭63−500
52号公報)。
In addition to the method using a single reactor as described above, exhaust gas with a high SO x concentration can be used as it is.
Alternatively, after mixing with ammonia and passing through a first reactor filled with a carbonaceous catalyst to remove most of SO x in advance, ammonia is mixed with the treated gas leaving the first reactor to obtain A method has been proposed in which the mixed gas is introduced into a second reactor filled with a carbonaceous catalyst and further processed to obtain a high desulfurization rate and a high denitration rate (Japanese Patent Publication No. 63-500).
No. 52).

【0005】上記のいずれの排ガス処理方法において
も、排ガス処理に供した後、不活性化(失活)した炭素
質触媒は再生して再利用する必要があり、この炭素質触
媒の再生方法として水洗処理法と加熱処理法が提案され
ている。
In any of the above exhaust gas treatment methods, it is necessary to regenerate and recycle the inactivated (deactivated) carbonaceous catalyst after being subjected to exhaust gas treatment. A washing method and a heat treatment method have been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら水洗処理
法では、希硫酸として副製品回収を行なうため装置の腐
食が著しいこと、また吸着した油分の脱着ができず炭素
質触媒の性能が低下するなどの問題があり、実用化に至
っていない。
However, in the water treatment method, since the by-product is recovered as dilute sulfuric acid, the equipment is significantly corroded, and the adsorbed oil cannot be desorbed and the performance of the carbonaceous catalyst is deteriorated. There is a problem and it has not been put to practical use.

【0007】また加熱処理法は、硫酸及びそのアンモニ
ウム塩(酸性硫安、硫安等)を吸着して不活性化した触
媒を300〜600℃に加熱して、下式のように硫酸及
びそのアンモニウム塩をSO2 、NH3 、N2 等に分解
して触媒から脱離させるものであり、脱離したSO2
更に反応させて硫酸、硫黄、石膏等に再利用できる利点
を有している。
The heat treatment is carried out by heating the catalyst inactivated by adsorption of sulfuric acid and its ammonium salt (ammonium acid sulfate, ammonium sulfate, etc.) to 300 to 600 ° C., and the sulfuric acid and its ammonium salt are expressed by the following formula. Is decomposed into SO 2 , NH 3 , N 2 and the like to be eliminated from the catalyst, and the eliminated SO 2 has the advantage that it can be further reacted and reused as sulfuric acid, sulfur, gypsum and the like.

【0008】H2 SO4 +1/2C→SO2 +1/2C
2 +H2 O (NH4 2 SO4 →4/3NH3 +SO2 +1/3N
2 +2H2 O NH4 HSO4 →1/3NH3 +SO2 +1/3N2
2H2
H 2 SO 4 + 1 / 2C → SO 2 + 1 / 2C
O 2 + H 2 O (NH 4 ) 2 SO 4 → 4/3 NH 3 + SO 2 + 1 / 3N
2 + 2H 2 O NH 4 HSO 4 → 1/3 NH 3 + SO 2 + 1 / 3N 2 +
2H 2 O

【0009】しかしながら、排ガス中には、K、Na等
のアルカリ金属塩等のダストが含まれており、これが炭
素質触媒に付着されているが、加熱処理法では、このア
ルカリ金属塩を除去することができない。そしてこのア
ルカリ金属塩は、アンモニアによるNOx の接触還元を
行なうための炭素質触媒の活性低下を引き起すことが知
られており、加熱処理法により再生した炭素質触媒では
脱硝活性を十分に回復させることができないという欠点
があった。
However, the exhaust gas contains dust such as an alkali metal salt of K, Na or the like, which is attached to the carbonaceous catalyst. The heat treatment method removes the alkali metal salt. I can't. It is known that this alkali metal salt causes a decrease in the activity of the carbonaceous catalyst for catalytic reduction of NO x with ammonia, and the carbonaceous catalyst regenerated by the heat treatment method sufficiently recovers the denitration activity. There was a drawback that it could not be done.

【0010】従って本発明の第1の目的は、排ガス処理
に供した触媒から硫酸及びそのアンモニウム塩だけでな
くアルカリ金属塩も除去することにより、脱硫活性だで
けなく脱硝活性にも優れた触媒を再生することができる
排ガス処理触媒の再生方法を提供することにある。
Therefore, the first object of the present invention is to remove not only sulfuric acid and its ammonium salt but also alkali metal salt from the catalyst used for exhaust gas treatment, so that the catalyst is excellent not only in desulfurization activity but also in denitration activity. An object of the present invention is to provide a method for regenerating an exhaust gas treatment catalyst that can regenerate the exhaust gas.

【0011】また本発明の第2の目的は、上記第1の目
的を達成する排ガス処理触媒の再生方法を組み込んだ排
ガスの処理方法を提供することにある。
A second object of the present invention is to provide an exhaust gas treatment method incorporating a method for regenerating an exhaust gas treatment catalyst that achieves the first object.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の排ガス処理触媒の再生方法は、排ガスの脱硫・脱硝
処理に供した炭素質触媒を加熱処理した後、水洗処理す
ることを特徴とする。また上記目的を達成する本発明の
排ガスの処理方法(以下、本発明の排ガス処理方法
(I)という)は、イオウ酸化物及び窒素酸化物を含有
する約60〜180℃の排ガスをアンモニアとともに炭
素質触媒を充填した移動床反応器に供給し、脱硫・脱硝
処理するとともに、排ガスの脱硫・脱硝処理に供した炭
素質触媒を加熱処理した後、水洗処理して再生すること
を特徴とする。
A method for regenerating an exhaust gas treatment catalyst according to the present invention that achieves the above object is characterized in that a carbonaceous catalyst used for desulfurization / denitration treatment of exhaust gas is heat-treated and then washed with water. To do. In addition, the exhaust gas treatment method of the present invention (hereinafter referred to as the exhaust gas treatment method (I) of the present invention) that achieves the above-mentioned object is an exhaust gas containing sulfur oxides and nitrogen oxides at about 60 to 180 ° C. together with ammonia and carbon. It is characterized in that it is supplied to a moving bed reactor filled with a high quality catalyst for desulfurization / denitration treatment, and the carbonaceous catalyst used for desulfurization / denitration treatment of exhaust gas is heat-treated and then washed with water for regeneration.

【0013】さらに上記目的を達成する本発明のもう1
つの排ガス処理方法(以下、本発明の排ガス処理方法
(II)という)は、イオウ酸化物及び窒素酸化物を含有
する約60〜180℃の排ガスを単独でまたはアンモニ
アとともに、炭素質触媒を充填した第1の移動床反応器
に供給し、脱硫・脱硝処理した後、第1の移動床反応器
を出た処理ガスにアンモニアを混合し、炭素質触媒を充
填した第2の移動床反応器に供給し、脱硫・脱硝処理す
るとともに、排ガスの脱硫・脱硝処理に供した炭素質触
媒を加熱処理した後、水洗処理して再生することを特徴
とする。
Another object of the present invention to achieve the above object
One of the exhaust gas treatment methods (hereinafter referred to as the exhaust gas treatment method (II) of the present invention) is a carbonaceous catalyst filled with an exhaust gas containing sulfur oxides and nitrogen oxides at about 60 to 180 ° C. alone or together with ammonia. After being supplied to the first moving bed reactor and subjected to desulfurization / denitration treatment, ammonia is mixed with the processing gas discharged from the first moving bed reactor, and then the second moving bed reactor filled with a carbonaceous catalyst is mixed. It is characterized in that the carbonaceous catalyst which is supplied and desulfurized / denitrified and the exhaust gas desulfurized / denitrified is heat-treated and then washed with water to be regenerated.

【0014】以下本発明を詳説する。本発明の排ガス処
理触媒の再生方法において、再生に供せられる触媒は、
排ガスの脱硫・脱硝処理に供した炭素質触媒である。炭
素質触媒としては、活性炭、活性コークス、あるいはそ
れらに五酸化バナジウム、鉄等の酸化物を担持したもの
などが挙げられる。
The present invention will be described in detail below. In the method for regenerating the exhaust gas treatment catalyst of the present invention, the catalyst provided for regeneration is
It is a carbonaceous catalyst used for desulfurization and denitration of exhaust gas. Examples of the carbonaceous catalyst include activated carbon, activated coke, and those in which oxides such as vanadium pentoxide and iron are supported.

【0015】本発明の排ガス処理触媒の再生方法は、排
ガスの脱硫・脱硝処理時に反応器から連続的にまたは間
欠的に排出される炭素質触媒について実施しても良く、
また排ガスの脱硫・脱硝処理後に反応器から排出される
炭素質触媒について実施しても良い。
The method for regenerating an exhaust gas treatment catalyst of the present invention may be carried out on a carbonaceous catalyst which is continuously or intermittently discharged from a reactor during desulfurization / denitration treatment of exhaust gas,
Further, the carbonaceous catalyst discharged from the reactor after the desulfurization / denitration treatment of the exhaust gas may be carried out.

【0016】本発明の排ガス処理触媒の再生方法におい
ては、排ガスの脱硫・脱硝処理に供した炭素質触媒を先
ず加熱処理して、炭素質触媒に吸着された硫酸及びその
アンモニウム塩を除去する。この加熱処理は、炭素質触
媒を加熱器に導き、炭素質触媒の酸化消耗を防ぐため
に、N2 、CO2 あるいは酸素含有量の低い燃焼排ガス
等の不活性キャリアガス雰囲気下に300〜600℃の
温度で行なうのが好ましい。あるいは不活性キャリアガ
スを何ら使用せずに実施てもよい。300〜600℃の
温度が好ましい理由は以下のとおりである。すなわち、
300℃未満であると、触媒に吸着された硫酸及びその
アンモニウム塩の触媒からの脱着が十分に行なわれず、
また、600℃を超えると、硫酸及びそのアンモニウム
塩の触媒からの脱着は十分に行なわれるが、高温にする
ために多量のエネルギーを必要とする。これに対し、3
00〜600℃であると、上記の問題がなく、比較的低
コストで硫酸及びそのアンモニウム塩を触媒から脱着さ
せることが可能であるからである。
In the method for regenerating an exhaust gas treating catalyst of the present invention, the carbonaceous catalyst used for desulfurizing and denitrifying the exhaust gas is first heat-treated to remove sulfuric acid and its ammonium salt adsorbed on the carbonaceous catalyst. This heat treatment introduces the carbonaceous catalyst into a heater, and in order to prevent the oxidative consumption of the carbonaceous catalyst, in an inert carrier gas atmosphere such as N 2 , CO 2 or combustion exhaust gas having a low oxygen content, the temperature is 300 to 600 ° C. It is preferable to carry out at the temperature of. Alternatively, it may be carried out without using any inert carrier gas. The reason why the temperature of 300 to 600 ° C. is preferable is as follows. That is,
When the temperature is lower than 300 ° C, the desorption of sulfuric acid and its ammonium salt adsorbed on the catalyst from the catalyst is not sufficiently performed,
When the temperature exceeds 600 ° C., desorption of sulfuric acid and its ammonium salt from the catalyst is sufficiently carried out, but a large amount of energy is required to raise the temperature. On the other hand, 3
This is because when the temperature is from 00 to 600 ° C., the above problem does not occur, and sulfuric acid and its ammonium salt can be desorbed from the catalyst at a relatively low cost.

【0017】本発明の排ガス処理触媒の再生方法によれ
ば、この加熱処理後、粉化した触媒およびダストを振動
スクリーン等の分離器で除去するのが好ましい。
According to the method for regenerating an exhaust gas treating catalyst of the present invention, it is preferable to remove the pulverized catalyst and dust by a separator such as a vibrating screen after the heat treatment.

【0018】本発明の排ガス処理触媒の再生方法は、上
記加熱処理後、水洗処理を行なうことを必須の要件とす
る。この水洗処理は、加熱処理後の触媒を水洗用の容器
に導き、水中に浸漬するか、あるいは水をスプレー(散
布)することにより行われるが、この場合一段で実施し
てもよく、あるいは数回(段)に分けて行なってもよ
い。
In the method for regenerating the exhaust gas treating catalyst of the present invention, it is an essential requirement to carry out a water washing treatment after the above heat treatment. This water washing treatment is carried out by introducing the catalyst after heat treatment into a vessel for water washing and immersing it in water or spraying (spraying) water. In this case, it may be carried out in a single step, or in several steps. It may be divided into two steps.

【0019】上述のように加熱処理後の触媒は、脱硝に
悪影響を与えるNa、K等のアルカリ金属塩が脱着され
ずに残存しているが、本発明によれば、上記水洗処理に
より、これらアルカリ金属塩が除去されるので、脱硫性
能だけでなく脱硝性能も回復した触媒を再生することが
できる。またこの水洗処理は、従来の水洗法と異なり、
硫酸及びそのアンモニウム塩の脱着後に行なうため、希
硫酸による装置の腐食の問題やアンモニア含有排水の発
生の問題も生じない。発生する排水は若干の触媒粉、ダ
ストが含まれる程度であり、それらを沈降分離した後、
あるいは直接反応器前に設置される集塵装置の入口ある
いは反応器入口の排ガスラインに噴霧して処理すること
が可能である。
As described above, in the catalyst after the heat treatment, alkali metal salts such as Na and K, which have an adverse effect on denitration, remain without being desorbed. Since the alkali metal salt is removed, it is possible to regenerate the catalyst that has recovered not only desulfurization performance but also denitration performance. Also, this washing process differs from the conventional washing method.
Since it is carried out after desorption of sulfuric acid and its ammonium salt, there is no problem of equipment corrosion due to dilute sulfuric acid or generation of ammonia-containing wastewater. The generated wastewater contains a small amount of catalyst powder and dust.
Alternatively, it is possible to directly treat the particles by spraying them into the inlet of a dust collector installed in front of the reactor or the exhaust gas line at the inlet of the reactor.

【0020】また、従来法により300〜600℃で加
熱再生された触媒は通常、加熱再生器下部で空気又は水
によって間接冷却された後、加熱再生器より排出される
が、この加熱再生された炭素質触媒の吸着水分は著しく
少なく(1%以下)、この触媒が反応器上部へ循環供給
された時に排ガス中の水分を急激に吸着して触媒床の温
度が上昇し、過熱事故につながる恐れがある。これに対
して、本発明では水洗処理した後、乾燥を行なって、吸
着水分を数%〜数十%に調整した触媒を反応器に循環で
きるので、急激な温度上昇が避けられるという効果も有
している。
The catalyst which has been heated and regenerated at 300 to 600 ° C. by the conventional method is usually indirectly cooled by air or water in the lower part of the heating regenerator and then discharged from the heating regenerator. The amount of water adsorbed by the carbonaceous catalyst is extremely low (1% or less), and when this catalyst is circulated and supplied to the upper part of the reactor, the water in the exhaust gas is rapidly adsorbed and the temperature of the catalyst bed rises, which may lead to overheating accident There is. On the other hand, in the present invention, it is possible to circulate the catalyst having the adsorbed water content adjusted to several% to several tens% by performing drying after washing with water in the reactor, so that it is possible to avoid an abrupt temperature rise. is doing.

【0021】次に上記排ガス処理触媒の再生方法を組み
込んだ本発明の排ガス処理方法(I)について図1に基
づいて説明する。図1に示す排ガス処理装置において、
排ガスはライン1を介して、炭素質触媒4を充填した移
動床反応器3へ導入される。後述の実施例からも明らか
なように、排ガスは反応器3において60〜180℃、
特に100〜150℃の温度で処理されるのが脱硝率を
上昇させる点で好ましいので、反応器3に導入される排
ガスは上記温度範囲に温調するのが好ましい。また移動
床反応器3は直交流式のものが好ましい。
Next, an exhaust gas treating method (I) of the present invention incorporating the above method for regenerating the exhaust gas treating catalyst will be described with reference to FIG. In the exhaust gas treatment device shown in FIG.
The exhaust gas is introduced into the moving bed reactor 3 filled with the carbonaceous catalyst 4 via the line 1. As is clear from the examples described below, the exhaust gas is 60 to 180 ° C. in the reactor 3.
In particular, it is preferable that the treatment is carried out at a temperature of 100 to 150 ° C. from the viewpoint of increasing the denitration rate, so that it is preferable to control the temperature of the exhaust gas introduced into the reactor 3. The moving bed reactor 3 is preferably a cross flow type.

【0022】ライン1には、ライン2を介してアンモニ
アが注入される。アンモニアと混合された排ガスは、移
動床反応器3内を下降する炭素質触媒4と接触して脱硫
・脱硝される。処理後の清浄ガスは直接又は集塵器を経
てライン5より大気中へ放出される。移動床反応器3中
の炭素質触媒4は排ガスの処理に供した後、反応器3下
部より引き抜かれ、加熱器6で不活性ガス雰囲気下で3
00〜600℃に加熱され、硫酸及びそのアンモニウム
塩がSO2 、NH3 、N2 となって脱着される。加熱後
の触媒は振動スクリーン等の分離器7にかけられ粉化し
た触媒およびダストが除かれる。その後、触媒は水洗器
8に送られ、水洗されてアルカリ金属塩が除去される。
水洗後の触媒は、所定の水分含量まで乾燥後、コンベア
により移動床反応器3の上部に戻される。加熱器6で回
収される高温度のSO2 ガスはライン9を経て副製品
(硫酸、硫黄、石膏等)の製造工程へ供給される。
Ammonia is injected into line 1 through line 2. The exhaust gas mixed with ammonia comes into contact with the carbonaceous catalyst 4 descending in the moving bed reactor 3 to be desulfurized and denitrated. The treated clean gas is discharged to the atmosphere through line 5 directly or through a dust collector. The carbonaceous catalyst 4 in the moving bed reactor 3 is subjected to treatment of exhaust gas, then withdrawn from the lower part of the reactor 3, and heated by a heater 6 under an inert gas atmosphere.
When heated to 00 to 600 ° C., sulfuric acid and its ammonium salt are desorbed as SO 2 , NH 3 and N 2 . The heated catalyst is passed through a separator 7 such as a vibrating screen to remove powdered catalyst and dust. Then, the catalyst is sent to the water washing device 8 and washed with water to remove the alkali metal salt.
The catalyst after washing with water is returned to the upper part of the moving bed reactor 3 by a conveyor after being dried to a predetermined water content. The high temperature SO 2 gas recovered by the heater 6 is supplied to a manufacturing process of a by-product (sulfuric acid, sulfur, gypsum, etc.) via a line 9.

【0023】次に上記排ガス処理触媒の再生方法を組み
込んだ本発明の排ガス処理方法(II)について図2に基
づいて説明する。図2に示す排ガス処理装置において、
上記排ガス処理方法(I)と同様に60〜180℃、特
に100〜150℃に温調された排ガスは単独又はアン
モニアとともに、ライン1を介して炭素質触媒4を充填
した第1の移動床反応器3に導入される。排ガスは第1
の移動床反応器3内を下降する炭素質触媒4と接触して
脱硫・脱硝(主に脱硫)処理された後、第1の移動床反
応器3から排出される。排出されたガスはライン5を介
して第2の移動床式反応器10へ導入される。この際ラ
イン2を介してアンモニアが注入される。排ガスは第2
の移動床反応器10内を下降する炭素質触媒11と接触
して脱硫・脱硝(主に脱硝)処理された後、ライン12
を介して直接または集塵処理された後、大気中へ放出さ
れる。一方、炭素質触媒は第2の反応器10より排出さ
れたものがライン13を介して第1の反応器3の上部に
供給され、第1の反応器3の下部より排出された触媒は
加熱器6内で高温不活性ガス雰囲気のもとに300〜6
00℃に加熱処理され、硫酸及びそのアンモニウム塩が
SO2 、NH3 、N2 となって脱着される。加熱処理後
の触媒は振動スクリーン等の分離器7を経て更に水洗器
8で水洗処理された後、所定の水分含量まで乾燥され、
ライン14を介して第2の反応器10の上部へ戻されて
循環使用される。加熱及び水洗は反応器3より排出され
る触媒について連続的に行なってもよいが、一部のみ、
あるいは触媒の活性低下が著しくなった時点で間欠的に
行なってもよい。また排ガス処理が終了した後に行なっ
てもよい。加熱器6で回収される高温度のSO2 ガスは
ライン9を経て副製品(硫酸、硫黄、石膏等)の製造工
程に供給される。
Next, an exhaust gas treating method (II) of the present invention incorporating the above method for regenerating the exhaust gas treating catalyst will be described with reference to FIG. In the exhaust gas treatment device shown in FIG.
Similar to the exhaust gas treatment method (I), the exhaust gas whose temperature is controlled to 60 to 180 ° C., particularly 100 to 150 ° C. is the first moving bed reaction in which the carbonaceous catalyst 4 is filled through the line 1 alone or together with ammonia. It is introduced into the vessel 3. Exhaust gas is first
After being subjected to desulfurization / denitration (mainly desulfurization) by contacting with the carbonaceous catalyst 4 descending in the moving bed reactor 3 of No. 1, it is discharged from the first moving bed reactor 3. The discharged gas is introduced into the second moving bed reactor 10 via the line 5. At this time, ammonia is injected through the line 2. Exhaust gas is second
Line 12 after desulfurization / denitration (mainly denitration) treatment by contacting with the carbonaceous catalyst 11 descending in the moving bed reactor 10 of
Directly or through dust collection process, and then released into the atmosphere. On the other hand, the carbonaceous catalyst discharged from the second reactor 10 is supplied to the upper portion of the first reactor 3 through the line 13, and the catalyst discharged from the lower portion of the first reactor 3 is heated. 300 to 6 under high temperature inert gas atmosphere in the vessel 6.
Heat treatment is performed at 00 ° C., and sulfuric acid and its ammonium salt are desorbed as SO 2 , NH 3 , and N 2 . The catalyst after the heat treatment is passed through a separator 7 such as a vibrating screen and further washed with water in a water washer 8 and then dried to a predetermined water content,
It is returned to the upper part of the second reactor 10 via a line 14 and is recycled. The heating and washing with water may be carried out continuously for the catalyst discharged from the reactor 3, but only a part of
Alternatively, it may be carried out intermittently at the time when the decrease in the activity of the catalyst becomes remarkable. It may also be performed after the exhaust gas treatment is completed. The high-temperature SO 2 gas recovered by the heater 6 is supplied to a manufacturing process of by-products (sulfuric acid, sulfur, gypsum, etc.) via a line 9.

【0024】[0024]

【実施例】以下実施例により本発明を更に説明するが、
本発明はこれらの実施例のみに限定されるものではな
い。
The present invention will be further described with reference to the following examples.
The invention is not limited to these examples only.

【0025】実施例1 排ガス処理装置として、直交流式移動床反応器と、これ
に付設された加熱器とを有するものを用いた。石炭だき
ボイラー排ガス10,000Nm3 /hを、炭素質触媒
(活性炭)を16.6m3 充填した直交流式移動床反応
器に導入し、脱硫・脱硝処理を行なう一方、排ガスの処
理に供した炭素質触媒の加熱再生を加熱器で400℃で
実施する排ガス処理装置から、3,000時間後に炭素
質触媒を取り出し、以下のようにして水洗処理した。す
なわち、加熱器を出た炭素質触媒を水洗器に導き、触媒
1リットル当り各1.5リットルの水を用いて3回浸漬
洗浄してK、Na等のアルカリ金属塩を除去した。次に
水洗器を出た炭素質触媒を120℃で1時間乾燥して炭
素質触媒を再生した。水洗再生された炭素質触媒は、既
に加熱処理により硫酸及びそのアンモニウム塩が定量的
に脱着されているため、加熱再生のみの触媒と脱硫性能
は同じであった。また水洗再生された炭素質触媒の脱硝
性能は以下のモデル実験により調べた。すなわち、再生
炭素質触媒1リットルを固定床反応器に充填した後、N
O 300ppm、NH3 300ppm、O2 3.
8%、H2 O 7.8%を含み、残りがN2 ガスである
モデル混合ガスを前記触媒充填反応器に毎分10リット
ル(SV 600h-1)の割合で流し、反応器を出たガ
ス中のNO濃度を測定することによりNO除去率を求
め、単に加熱処理のみによって再生した再生炭素質触媒
の場合のNO除去率と比較した。結果は図3に示す。図
3より、炭素質触媒充填反応器における排ガス処理温度
が同一温度の場合、加熱処理後に水洗処理して再生した
触媒を用いた場合(同図、実線(A)参照)、加熱処理
のみによって再生した触媒を用いた場合(同図、点線
(a)参照)よりもNO除去率が高く、脱硝性能に優れ
ていることが明らかとなった。
Example 1 An exhaust gas treatment apparatus having a cross flow type moving bed reactor and a heater attached thereto was used. 10,000 Nm 3 / h of coal-fired boiler exhaust gas was introduced into a cross-flow type moving bed reactor filled with a carbonaceous catalyst (activated carbon) of 16.6 m 3 to perform desulfurization and denitration treatment, while being used for exhaust gas treatment. A carbonaceous catalyst was taken out after 3,000 hours from an exhaust gas treating apparatus in which heating and regeneration of the carbonaceous catalyst was carried out at 400 ° C. with a heater, and washed with water as follows. That is, the carbonaceous catalyst discharged from the heater was introduced into a water washing device, and immersed and washed three times with 1.5 liters of water per liter of catalyst to remove alkali metal salts such as K and Na. Next, the carbonaceous catalyst discharged from the water washing device was dried at 120 ° C. for 1 hour to regenerate the carbonaceous catalyst. Since the sulfuric acid and its ammonium salt were quantitatively desorbed by the heat treatment, the carbonaceous catalyst regenerated by washing with water had the same desulfurization performance as the catalyst regenerated by heating. The denitration performance of the carbonaceous catalyst regenerated by washing with water was examined by the following model experiment. That is, after charging 1 liter of the regenerated carbonaceous catalyst into the fixed bed reactor,
O 300ppm, NH 3 300ppm, O 2 3.
A model mixed gas containing 8% and H 2 O 7.8% and the rest being N 2 gas was flowed into the catalyst-filled reactor at a rate of 10 liters per minute (SV 600 h −1 ), and left the reactor. The NO removal rate was determined by measuring the NO concentration in the gas, and compared with the NO removal rate in the case of the regenerated carbonaceous catalyst regenerated only by heat treatment. The results are shown in Figure 3. From FIG. 3, when the exhaust gas treatment temperature in the carbonaceous catalyst-filled reactor is the same temperature, and when the catalyst that has been heat-treated and washed with water is used (see the same figure, solid line (A)), regeneration is performed only by heat treatment. It was revealed that the NO removal rate was higher and the NOx removal performance was superior to the case where the above catalyst was used (see the same figure, dotted line (a)).

【0026】実施例2 石炭だきボイラー排ガスの代りに、製鉄所焼結排ガスを
用いた以外は実施例1と同様に実施した。その結果、再
生された炭素質触媒の脱硫性能は、実施例1におけると
同じであった。また図3に示すように、加熱処理後水洗
処理して再生された炭素質触媒の脱硝性能(同図の実線
(B))は加熱処理のみによって再生された炭素質触媒
の脱硝性能(同図の点線(b))よりもはるかに優れて
いた。
Example 2 The same procedure as in Example 1 was carried out except that the iron plant sintering exhaust gas was used in place of the coal-fired boiler exhaust gas. As a result, the desulfurization performance of the regenerated carbonaceous catalyst was the same as in Example 1. Further, as shown in FIG. 3, the denitration performance of the carbonaceous catalyst regenerated by heating and washing with water (solid line (B) in the figure) is the denitration performance of the carbonaceous catalyst regenerated only by the heat treatment (FIG. 3). It was far superior to the dotted line (b)) in FIG.

【0027】[0027]

【発明の効果】以上詳述したように、本発明によれば、
排ガスの脱硫・脱硝処理に供した触媒から硫酸及びその
アンモニウム塩だけでなくアルカリ金属塩も除去するこ
とにより、脱硫活性及び脱硝活性に優れた触媒を再生す
ることができる排ガス処理触媒の再生方法およびこの排
ガス処理触媒の再生方法を組み込んだ排ガス処理方法が
提供された。
As described in detail above, according to the present invention,
By removing not only sulfuric acid and its ammonium salt but also alkali metal salts from the catalyst that has been subjected to desulfurization / denitration treatment of exhaust gas, it is possible to regenerate a catalyst excellent in desulfurization activity and denitration activity, and a method for regenerating an exhaust gas treatment catalyst and An exhaust gas treatment method incorporating the method for regenerating this exhaust gas treatment catalyst has been provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の排ガス処理方法を示す概略図であ
る。
FIG. 1 is a schematic view showing an exhaust gas treatment method of the present invention.

【図2】は本発明のもう1つの排ガス処理方法を示す概
略図である。
FIG. 2 is a schematic view showing another exhaust gas treatment method of the present invention.

【図3】は排ガス処理温度と炭素質触媒のNO除去率の
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the exhaust gas treatment temperature and the NO removal rate of the carbonaceous catalyst.

【符号の説明】[Explanation of symbols]

1…ライン、2…ライン、3…移動床反応器、4…炭素
質触媒、5…ライン、6…加熱器、7…分離器、8…水
洗器、9…ライン、10…移動床反応器、11…炭素質
触媒、12…ライン、13…ライン、14…ライン。
1 ... Line, 2 ... Line, 3 ... Moving bed reactor, 4 ... Carbonaceous catalyst, 5 ... Line, 6 ... Heater, 7 ... Separator, 8 ... Water washer, 9 ... Line, 10 ... Moving bed reactor , 11 ... Carbonaceous catalyst, 12 ... Line, 13 ... Line, 14 ... Line.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガスの脱硫・脱硝処理に供した炭素質
触媒を加熱処理した後、水洗処理することを特徴とする
排ガス処理触媒の再生方法。
1. A method for regenerating an exhaust gas treatment catalyst, which comprises heat-treating a carbonaceous catalyst that has been subjected to desulfurization / denitration treatment of exhaust gas and then washing with water.
【請求項2】 イオウ酸化物及び窒素酸化物を含有する
約60〜180℃の排ガスをアンモニアとともに炭素質
触媒を充填した移動床反応器に供給し、脱硫・脱硝処理
するとともに、排ガスの脱硫・脱硝処理に供した炭素質
触媒を加熱処理した後、水洗処理して再生することを特
徴とする排ガスの処理方法。
2. An exhaust gas containing sulfur oxides and nitrogen oxides at a temperature of about 60 to 180 ° C. is supplied together with ammonia to a moving bed reactor filled with a carbonaceous catalyst for desulfurization / denitration treatment and desulfurization of exhaust gas. A method for treating exhaust gas, which comprises subjecting a carbonaceous catalyst that has been subjected to denitration treatment to heat treatment, followed by washing treatment with water and regeneration.
【請求項3】 イオウ酸化物及び窒素酸化物を含有する
約60〜180℃の排ガスを単独でまたはアンモニアと
ともに、炭素質触媒を充填した第1の移動床反応器に供
給し、脱硫・脱硝処理した後、第1の移動床反応器を出
た処理ガスにアンモニアを混合し、炭素質触媒を充填し
た第2の移動床反応器に供給し、脱硫・脱硝処理すると
ともに、排ガスの脱硫・脱硝処理に供した炭素質触媒を
加熱処理した後、水洗処理して再生することを特徴とす
る排ガスの処理方法。
3. Desulfurization and denitration treatment by supplying exhaust gas containing sulfur oxides and nitrogen oxides at about 60 to 180 ° C. alone or together with ammonia to a first moving bed reactor filled with a carbonaceous catalyst. Then, ammonia is mixed with the process gas discharged from the first moving bed reactor and supplied to the second moving bed reactor filled with a carbonaceous catalyst for desulfurization / denitration treatment, and desulfurization / denitration of exhaust gas. A method for treating exhaust gas, which comprises subjecting a carbonaceous catalyst subjected to treatment to heat treatment, followed by washing treatment with water and regeneration.
JP5018719A 1993-02-05 1993-02-05 Recycling of exhaust gas treatment catalyst and treatment of exhaust gas Pending JPH06226103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018719A JPH06226103A (en) 1993-02-05 1993-02-05 Recycling of exhaust gas treatment catalyst and treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018719A JPH06226103A (en) 1993-02-05 1993-02-05 Recycling of exhaust gas treatment catalyst and treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPH06226103A true JPH06226103A (en) 1994-08-16

Family

ID=11979472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018719A Pending JPH06226103A (en) 1993-02-05 1993-02-05 Recycling of exhaust gas treatment catalyst and treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPH06226103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162351A (en) * 2014-03-05 2014-11-26 杭州龙山化工有限公司 Double-sodium tail gas clarification device and clarification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162351A (en) * 2014-03-05 2014-11-26 杭州龙山化工有限公司 Double-sodium tail gas clarification device and clarification method

Similar Documents

Publication Publication Date Title
JP4574851B2 (en) Method for regenerating deactivated catalyst
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
CN109553152B (en) Stainless steel mixed acid waste liquid regenerated acid process
US6814948B1 (en) Exhaust gas treating systems
JPS61287423A (en) Treatment of exhaust gas
JPH06226103A (en) Recycling of exhaust gas treatment catalyst and treatment of exhaust gas
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPH09225310A (en) Method for regenerating denitration catalyst
JP3381973B2 (en) Exhaust gas treatment method
JPH06262038A (en) Method for treatment of exhaust gas
JPS60220129A (en) Treatment of exhaust gas
JPH08196920A (en) Regenerating method for denitrating catalyst
JPH07265667A (en) Treatment of exhaust gas
JPH1147536A (en) Method for treating exhaust gas
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JP3704159B2 (en) Exhaust gas treatment method
JPH06210139A (en) Waste gas treatment
JPH06262036A (en) Treatment of exhaust gas
JPH0747228A (en) Treatment of exhaust gas
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JPH06246134A (en) Treatment of waste gas
JP2002370011A (en) Exhaust gas treatment method
JPH09210563A (en) Apparatus for treating exhaust gas of dl type sintering machine and method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021106