JP3381973B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JP3381973B2
JP3381973B2 JP22606193A JP22606193A JP3381973B2 JP 3381973 B2 JP3381973 B2 JP 3381973B2 JP 22606193 A JP22606193 A JP 22606193A JP 22606193 A JP22606193 A JP 22606193A JP 3381973 B2 JP3381973 B2 JP 3381973B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
carbonaceous catalyst
desulfurization
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22606193A
Other languages
Japanese (ja)
Other versions
JPH0780245A (en
Inventor
慎一 山田
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP22606193A priority Critical patent/JP3381973B2/en
Publication of JPH0780245A publication Critical patent/JPH0780245A/en
Application granted granted Critical
Publication of JP3381973B2 publication Critical patent/JP3381973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガスの処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas.

【0002】[0002]

【従来の技術】硫黄酸化物(SOx)及び窒素酸化物
(NOx)等を含有するボイラー等の燃焼排ガス、製鉄
所等の焼結炉排ガス、ごみ焼却炉排ガス等にアンモニア
(NH3)を混合後、活性炭あるいは活性コークス等の
炭素質触媒を充填した直交流式移動床反応器に通過させ
て、排ガスを脱硫・脱硝処理する方法はよく知られてい
る。
2. Description of the Related Art Ammonia (NH 3 ) is mixed with combustion exhaust gas from boilers containing sulfur oxides (SOx) and nitrogen oxides (NOx), sintering furnace exhaust gas from iron mills, waste incinerator exhaust gas, etc. A method of desulfurizing and denitrifying exhaust gas by passing it through a cross-flow moving bed reactor filled with a carbonaceous catalyst such as activated carbon or activated coke is well known.

【0003】この方法によれば、炭素質触媒の作用によ
り脱硫・脱硝が同時に行われるという利点の他に炭素質
触媒の加熱再生における化学的消耗が低減され、また吸
着、再生の繰り返し使用により炭素質触媒の活性が向上
する利点がある。
According to this method, in addition to the advantage that desulfurization and denitration are simultaneously performed by the action of the carbonaceous catalyst, the chemical consumption in the heating regeneration of the carbonaceous catalyst is reduced, and the carbon is repeatedly used by adsorption and regeneration. There is an advantage that the activity of the quality catalyst is improved.

【0004】ところで、この方法においては、処理ガス
量が多くなると、多量の炭素質触媒を必要とするため、
炭素質触媒のうちでも安価で、賦活度が低く、比表面積
の小さい(通常100〜300m2 /g)低品質炭素質
触媒が使用されている。
By the way, in this method, when the amount of treated gas increases, a large amount of carbonaceous catalyst is required.
Among the carbonaceous catalysts, low-quality carbonaceous catalysts that are inexpensive, have low activation, and have a small specific surface area (usually 100 to 300 m 2 / g) are used.

【0005】[0005]

【発明が解決しようとする課題】しかし、この低品質炭
素質触媒を用いると、初期の脱硫・脱硝性能が劣り、所
望の性能が得られるまでに1000〜2000時間以上
必要であるという問題がある。所望の脱硫・脱硝状態が
得られるまでに長期間を必要とする理由は、脱硝のため
に注入されたNH3 ガスのために、加熱再生時、炭素質
触媒を構成する炭素のガス化による細孔の発達が抑えら
れ、比表面積の上昇が緩慢となるからである。
However, when this low-quality carbonaceous catalyst is used, the initial desulfurization / denitration performance is inferior and it takes 1000 to 2000 hours or more to obtain the desired performance. . The reason why a long period of time is required until the desired desulfurization / denitration state is obtained is that the NH 3 gas injected for denitration causes a small amount due to gasification of carbon constituting the carbonaceous catalyst during heating and regeneration. This is because the development of pores is suppressed and the increase in specific surface area becomes slow.

【0006】この問題は、低品質炭素質触媒の代りに活
性度の高い高品質炭素質触媒を初充填用に用いれば解決
するが、コスト的に高くなるばかりでなく、比表面積の
大きい高品質炭素質触媒は、触媒充填床の温度上昇を引
き起しやすく、着火しやすいという別の問題が生じる。
This problem can be solved by using a high-quality carbonaceous catalyst having high activity instead of the low-quality carbonaceous catalyst for the initial filling, but not only the cost becomes high, but also the high quality having a large specific surface area is provided. The carbonaceous catalyst causes another problem that it is easy to cause a temperature rise in the catalyst packed bed and is apt to ignite.

【0007】また排ガス処理開始当初は排ガスへのNH
3 の注入を行なわず、排ガスの脱硫を行ない、炭素質触
媒の反復使用により炭素質触媒が活性化した後NH3
注入して排ガスの脱硫・脱硝を行なう方法も提案されて
いる(特公昭63−1889号公報参照)。この方法
は、すぐれた方法であるが、所望の性能に達するまでに
数百時間を必要とする点で未だ不十分である。
In addition, at the beginning of exhaust gas treatment, NH
A method has also been proposed in which the exhaust gas is desulfurized without injecting 3, and NH 3 is injected after the carbonaceous catalyst is activated by the repeated use of the carbonaceous catalyst to inject the exhaust gas to desulfurize and denitrate. 63-1889 gazette). Although this method is excellent, it is still insufficient in that it requires several hundred hours to reach the desired performance.

【0008】また移動床方式の場合は、触媒移送量を速
くして運転すればある程度脱硫・脱硝率を向上させるこ
とは可能であるが、触媒の移動に伴う機械損耗が大きく
なるという欠点を有し、更に活性化された触媒表面が摩
耗して削られるため、活性化が遅れるという問題があ
る。
Further, in the case of the moving bed system, it is possible to improve the desulfurization / denitration rate to some extent by operating at a high catalyst transfer amount, but there is a drawback that the mechanical wear due to the movement of the catalyst becomes large. However, there is a problem that the activated catalyst surface is worn and scraped off, which delays the activation.

【0009】従って本発明の目的は、低品質炭素質触媒
を使用した場合にも排ガス処理の運転初期から所望の脱
硫・脱硝性能を得ることが可能な排ガスの処理方法を提
供することにある。
Therefore, an object of the present invention is to provide an exhaust gas treatment method capable of obtaining desired desulfurization / denitration performance from the initial stage of operation of exhaust gas treatment even when a low-quality carbonaceous catalyst is used.

【0010】[0010]

【課題を解決するための手段】本発明の上記目的は、S
OxとNOxを含有する排ガスを、炭素質触媒が充填さ
れた移動床反応器に導入してNH3 の共存下に脱硫・脱
硝処理をする一方、排ガスとの接触によって不活性化し
た炭素質触媒を再生器で加熱再生する排ガスの処理方法
において、脱硫・脱硝処理の運転開始前に再生器に酸素
含有ガスを導入して、炭素質触媒を酸化処理し、活性化
することにより達成された。
The above-mentioned object of the present invention is to
Exhaust gas containing Ox and NOx is introduced into a moving bed reactor filled with a carbonaceous catalyst for desulfurization / denitration treatment in the presence of NH 3 , while the carbonaceous catalyst is inactivated by contact with the exhaust gas. In the method for treating exhaust gas in which the carbon dioxide is heated and regenerated in the regenerator, it was achieved by introducing an oxygen-containing gas into the regenerator to oxidize and activate the carbonaceous catalyst before the start of the desulfurization and denitration treatment.

【0011】従って本発明は、硫黄酸化物(SOx)と
窒素酸化物(NOx)を含有する排ガスを、炭素質触媒
が充填された移動床反応器に導入してNH3 の共存下に
脱硫・脱硝処理をする一方、排ガスとの接触によって不
活性化した炭素質触媒を再生器で加熱再生する排ガスの
処理方法において、脱硫・脱硝処理の運転開始前に再生
器に酸素含有ガスを導入して、炭素質触媒を酸化処理
し、活性化することを特徴とする排ガスの処理方法を要
旨とするものである。
Therefore, according to the present invention, exhaust gas containing sulfur oxides (SOx) and nitrogen oxides (NOx) is introduced into a moving bed reactor filled with a carbonaceous catalyst to desulfurize in the presence of NH 3. In the exhaust gas treatment method in which the carbonaceous catalyst deactivated by contact with the exhaust gas is heated and regenerated in the regenerator while performing the denitration treatment, an oxygen-containing gas is introduced into the regenerator before the desulfurization / denitration treatment operation is started. A method for treating exhaust gas is characterized in that a carbonaceous catalyst is oxidized and activated.

【0012】[0012]

【作用】排ガスを炭素質触媒が充填された移動床反応器
へ導入してNH3 の共存下に脱硫・脱硝処理を行うと、
排ガスとの接触によって不活性化した炭素質触媒には硫
酸(H2 SO4 )、酸性硫安(NH4 HSO4 )、硫安
((NH4 2 SO4 )等が吸着されている。この触媒
を再生器で加熱再生する時に起きる反応は、非常に複雑
で明らかにすることは困難であるが、再生器内では下記
のような反応が起っているものと推定される。
[Operation] When the exhaust gas is introduced into a moving bed reactor filled with a carbonaceous catalyst to perform desulfurization / denitration treatment in the presence of NH 3 ,
Sulfuric acid (H 2 SO 4 ), acidic ammonium sulphate (NH 4 HSO 4 ), ammonium sulphate ((NH 4 ) 2 SO 4 ), etc. are adsorbed on the carbonaceous catalyst that has been inactivated by contact with the exhaust gas. The reaction that occurs when this catalyst is heated and regenerated in the regenerator is very complicated and difficult to clarify, but it is presumed that the following reaction occurs in the regenerator.

【0013】 H2 SO4 →SO3 +H2 O (1) (NH4 2 SO4 →NH4 HSO4 +NH3 (2) NH4 HSO4 →NH3 +SO3 +H2 O (3) 2/3NH3 +SO3 →SO2 +H2 O+1/3N2 (4) SO3 +1/2C→SO2 +1/2CO2 (5) SO3 +C→C…O+SO2 (6) C…O+NH3 →C…Red (7) (なお、式(6) ,(7) 中のC…Oは、炭素(C)と酸素
(O)とが結合している酸性酸化物と考えられるが、そ
の結合形態が不明であることを示す。また式(7) 中のC
…Redは、炭素(C)と還元性化合物(Red)とが
結合している塩基性窒素化合物と考えられるが、その結
合形態が不明であることを示す。)触媒に吸着されてい
る硫酸、酸性硫安、硫安は、式(1) 〜(3) の反応により
SO3 、NH3 、H2 Oに分解され、NH3 の大部分は
式(4) の反応でN2 に分解される。又、SO3 は式(5)
の反応によってSO2 に還元されると同時に、炭素をガ
ス化して細孔の発達をもたらす。更に式(6) および(7)
の反応も進行し、脱硝反応に有効な酸性酸化物、脱硫反
応に有効な塩基性窒素化合物が生成される。
H 2 SO 4 → SO 3 + H 2 O (1) (NH 4 ) 2 SO 4 → NH 4 HSO 4 + NH 3 (2) NH 4 HSO 4 → NH 3 + SO 3 + H 2 O (3) 2 / 3NH 3 + SO 3 → SO 2 + H 2 O + 1 / 3N 2 (4) SO 3 + 1 / 2C → SO 2 + 1 / 2CO 2 (5) SO 3 + C → C ... O + SO 2 (6) C ... O + NH 3 → C ... Red (7) (Note that C ... O in the formulas (6) and (7) is considered to be an acidic oxide in which carbon (C) and oxygen (O) are bound, but its binding form is unknown. C in formula (7)
... Red is considered to be a basic nitrogen compound in which carbon (C) and a reducing compound (Red) are bound to each other, but the binding form thereof is unknown. ) Sulfuric acid, acidic ammonium sulfate, and ammonium sulfate adsorbed on the catalyst are decomposed into SO 3 , NH 3 , and H 2 O by the reactions of formulas (1) to (3), and most of NH 3 is represented by formula (4). The reaction decomposes into N 2 . Also, SO 3 is calculated by the formula (5)
Is simultaneously reduced to SO 2 by the reaction of, and at the same time, carbon is gasified to cause the development of pores. Furthermore, equations (6) and (7)
The reaction also proceeds to produce an acidic oxide effective for the denitration reaction and a basic nitrogen compound effective for the desulfurization reaction.

【0014】従来法に従って運転当初よりNH3 を注入
すると、式(4) の反応の起こる割合が高く、式(5) の反
応による触媒の侵食が進まず細孔の発達が遅くなる。そ
して式(6) の反応による脱硝活性を示す酸性酸化物の生
成も遅くなり、また式(7) の反応によって生成する脱硫
活性に有効な塩基性窒素化合物の生成も遅くなる。
When NH 3 is injected from the beginning of the operation according to the conventional method, the reaction of the formula (4) occurs at a high rate, and the erosion of the catalyst due to the reaction of the formula (5) does not proceed and the development of pores slows down. Then, the production of the acidic oxide exhibiting the denitration activity by the reaction of the formula (6) is delayed, and the production of the basic nitrogen compound effective for the desulfurization activity produced by the reaction of the formula (7) is also delayed.

【0015】本発明の方法に従って、炭素質触媒を運転
開始前に酸素含有ガスと接触させると、次式の反応が進
行する。
According to the method of the present invention, when the carbonaceous catalyst is brought into contact with the oxygen-containing gas before the start of operation, the reaction of the following formula proceeds.

【0016】 C+O2 →CO2 (8) C+1/2O2 →CO (9) C+O2 →C…O (10) すなわち、式(8) ,(9) の反応によって炭素質触媒を構
成する炭素がガス化して細孔が発達して比表面積が増大
する。また式(10)の反応によって、脱硝反応に有効な酸
性酸化物C…Oが生じ、この酸性酸化物は、さらに上記
式(7) に示す反応に従ってNH3 と反応して、脱硫反応
に有効な塩基性窒素化合物(C…Red)を生成する。
C + O 2 → CO 2 (8) C + 1 / 2O 2 → CO (9) C + O 2 → C ... O (10) That is, the carbon constituting the carbonaceous catalyst is changed by the reactions of the formulas (8) and (9). When gasified, the pores develop and the specific surface area increases. Further, the reaction of the formula (10) produces an acidic oxide C ... O effective for the denitration reaction, and this acidic oxide further reacts with NH 3 according to the reaction represented by the above formula (7) to be effective for the desulfurization reaction. A basic nitrogen compound (C ... Red) is produced.

【0017】従って本発明の排ガス処理方法によれば、
脱硫・脱硝処理の運転開始直後から所望の脱硫・脱硝性
能を得ることができる。
Therefore, according to the exhaust gas treatment method of the present invention,
The desired desulfurization / denitration performance can be obtained immediately after the start of the desulfurization / denitration treatment operation.

【0018】[0018]

【実施例】以下、図面を参照しながら、本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、一般的な排ガス処理方法を実施す
るための装置の一例を示すものである。
FIG. 1 shows an example of an apparatus for carrying out a general exhaust gas treatment method.

【0020】図1においてSOx及びNOxを含有する
排ガスは、ライン1において、ライン2を介して供給さ
れたアンモニアと混合されて直交流式移動床反応器3へ
導入される。反応器3へ導入される排ガスは60〜18
0℃程度に温調されているのが好ましい。
In FIG. 1, the exhaust gas containing SOx and NOx is mixed in line 1 with the ammonia supplied via line 2 and introduced into a cross flow type moving bed reactor 3. The exhaust gas introduced into the reactor 3 is 60-18
It is preferable that the temperature is controlled to about 0 ° C.

【0021】排ガスは反応器3内を下降する炭素質触媒
床4と接触して脱硫・脱硝処理された後、反応器3を出
た清浄ガスは直接又は集じん器を経てライン5より大気
中に放出される。
After the exhaust gas comes into contact with the carbonaceous catalyst bed 4 descending in the reactor 3 for desulfurization and denitration treatment, the clean gas leaving the reactor 3 is discharged directly or through a dust collector into the atmosphere from a line 5. Is released to.

【0022】また、反応器3内で不活性化した炭素質触
媒は、反応器3の下部より引き抜かれ、再生器6に供給
される。炭素質触媒は再生器6において不活性ガス雰囲
気下(不活性ガス供給下あるいは不活性ガスを使用せず
に発生するSO2 ガス雰囲気下)に300〜500℃に
加熱されることによりSOxを脱着し、再生される。
The carbonaceous catalyst inactivated in the reactor 3 is withdrawn from the lower part of the reactor 3 and supplied to the regenerator 6. The carbonaceous catalyst desorbs SOx by being heated to 300 to 500 ° C. in the regenerator 6 under an inert gas atmosphere (under an inert gas supply or under an SO 2 gas atmosphere generated without using an inert gas). Then played.

【0023】再生された炭素質触媒は振動スクリーン等
の分離器7で粉化した触媒及びダストを除去した後、コ
ンベア等によりライン8経由で反応器3の上部に循環さ
れる。一方、再生器6で回収された高濃度SOx含有ガ
スは、ライン9を経て、硫酸、硫黄、石膏等の副製品製
造工程に送られる。
The regenerated carbonaceous catalyst is circulated to the upper part of the reactor 3 via a line 8 by a conveyor or the like after removing powdered catalyst and dust by a separator 7 such as a vibrating screen. On the other hand, the high-concentration SOx-containing gas recovered by the regenerator 6 is sent to a by-product manufacturing process of sulfuric acid, sulfur, gypsum, etc. via the line 9.

【0024】図1に示す排ガス処理方法において、安価
な低品質炭素質触媒を用いた場合、既に述べたように、
脱硫・脱硝処理の運転開始後、所望の脱硫・脱硝性能が
得られるまでに長期間を要する。そこで本発明によれ
ば、脱硫・脱硝処理の運転開始前に再生器に酸素含有ガ
スを導入して、炭素質触媒を酸化処理し、炭素質触媒の
細孔の発達による比表面積の増大を図るとともに、炭素
質表面に酸性酸化物、さらに塩基性窒素化合物を生成さ
せて、炭素質触媒を予め活性化するものであり、これに
より、脱硫・脱硝処理の運転開始時から所望の脱硫・脱
硝性能を得ることができる。
In the exhaust gas treatment method shown in FIG. 1, when an inexpensive low-quality carbonaceous catalyst is used, as described above,
It takes a long time after the desulfurization / denitration treatment is started to obtain desired desulfurization / denitration performance. Therefore, according to the present invention, an oxygen-containing gas is introduced into the regenerator to oxidize the carbonaceous catalyst before the start of the desulfurization / denitrification operation, and the specific surface area is increased by the development of pores in the carbonaceous catalyst. At the same time, it produces an acidic oxide and a basic nitrogen compound on the carbonaceous surface to activate the carbonaceous catalyst in advance.This enables the desired desulfurization / denitration performance from the start of desulfurization / denitration treatment operation. Can be obtained.

【0025】酸素含有ガスを炭素質触媒と接触させて、
触媒を活性化させる際の再生器の構造例を図2に示す。
Contacting the oxygen-containing gas with a carbonaceous catalyst,
FIG. 2 shows an example of the structure of the regenerator when the catalyst is activated.

【0026】図2において、脱硫・脱硝処理の運転前の
新規炭素質触媒は脱硫・脱硝装置内を循環されており、
移動床反応器3の底部を出た炭素質触媒は、再生器6の
頂部に位置する貯留領域11に貯留された後、混合領域
12aに流下する。混合領域12aの炭素質触媒は、次
いで伝熱管13内を経由して分離領域14aに送られ、
整流体15によって整流された後、図1に示すように再
生器6の下部から排出されて、分離器7を経由後、ライ
ン8により移動床反応器3の頂部に循環される。なお、
伝熱管13内の炭素質触媒は、ライン16より加熱領域
17に供給され、ライン18より排出される加熱ガスに
よって、酸化に適した所望の温度(100〜400℃)
に加熱される(なお、排ガス処理を行っている場合の温
度は300〜500℃である)。
In FIG. 2, the new carbonaceous catalyst before the desulfurization / denitration treatment operation is circulated in the desulfurization / denitration apparatus.
The carbonaceous catalyst exiting the bottom of the moving bed reactor 3 is stored in the storage region 11 located at the top of the regenerator 6 and then flows down to the mixing region 12a. The carbonaceous catalyst in the mixing area 12a is then sent to the separation area 14a via the heat transfer tube 13.
After being rectified by the rectifier 15, it is discharged from the lower part of the regenerator 6 as shown in FIG. 1, passed through the separator 7, and then circulated to the top of the moving bed reactor 3 by the line 8. In addition,
The carbonaceous catalyst in the heat transfer tube 13 is supplied to the heating region 17 from the line 16 and is heated to a desired temperature (100 to 400 ° C.) suitable for oxidation by the heating gas discharged from the line 18.
(The temperature when the exhaust gas treatment is performed is 300 to 500 ° C.).

【0027】一方、酸素含有ガスは、ライン19から混
合領域12aに供給され、炭素質触媒と並流で伝熱管1
3内を下降し、分離領域14aの上部に設けたライン2
0より系外に排出される。
On the other hand, the oxygen-containing gas is supplied from the line 19 to the mixing region 12a and flows in parallel with the carbonaceous catalyst in the heat transfer tube 1.
Line 2 which descends in 3 and is provided above the separation region 14a
It is discharged from the system from 0.

【0028】図2に示す態様によれば、酸素含有ガス
は、混合領域12a、伝熱管13内および分離領域14
aにおいて炭素質触媒と接触して、脱硫・脱硝処理の運
転開始当初より所望の脱硫・脱硝性能が得られるように
炭素質触媒を活性化する。
According to the embodiment shown in FIG. 2, the oxygen-containing gas is mixed in the mixing area 12a, the heat transfer tube 13 and the separation area 14.
In step a, the carbonaceous catalyst is activated by contacting with the carbonaceous catalyst so that desired desulfurization / denitration performance can be obtained from the beginning of the desulfurization / denitration treatment operation.

【0029】なお、図2において、ライン19およびラ
イン20は脱硫・脱硝処理の運転開始後には不活性ガス
の供給ラインおよび排出ラインとして使用される。不活
性ガスを使用しない場合はライン19は閉ざされてい
る。
In FIG. 2, lines 19 and 20 are used as an inert gas supply line and an exhaust line after the start of the desulfurization / denitrification operation. The line 19 is closed when no inert gas is used.

【0030】図3の態様は、酸素含有ガスをライン20
より再生器6の下部の混合領域14bに供給し、伝熱管
13内および上部の分離領域12bを順次上昇させて、
下降する炭素質触媒と向流接触させた後、ライン19よ
り排出させる点で図2の態様と異なる。
In the embodiment of FIG. 3, the oxygen-containing gas is supplied through the line 20.
The regenerator 6 is further supplied to the lower mixing region 14b, and the heat transfer tubes 13 and the upper separation region 12b are sequentially raised,
It differs from the embodiment of FIG. 2 in that it is discharged from the line 19 after being brought into countercurrent contact with the descending carbonaceous catalyst.

【0031】酸素含有ガスとしては、炭素質触媒を活性
化し得る濃度の酸素を含有するものであれば、その種類
は問わない。例えば、排ガス処理後の清浄ガス、未処理
排ガス、炭素質触媒の加熱用ガス、空気またはこれらに
窒素などの不活性ガスあるいは酸素を添加して酸素濃度
を調節したものなどを用いることができる。
The oxygen-containing gas may be of any type as long as it contains oxygen at a concentration capable of activating the carbonaceous catalyst. For example, clean gas after exhaust gas treatment, untreated exhaust gas, gas for heating carbonaceous catalyst, air, or an inert gas such as nitrogen or oxygen added thereto to adjust the oxygen concentration can be used.

【0032】また本発明の効果を最大限に達成するため
に、炭素質触媒としては、安価で、賦活度が低く、比表
面積の小さい低品質のものが用いられる。その具体例と
して、炭素含有物質である石炭、ピッチ、木材、ヤシガ
ラ等の植物由来物質、プラスチック等を炭化あるいは更
に水蒸気等で賦活して得られたものが挙げられるが、更
に触媒活性を向上させるためにバナジウム、鉄、銅等の
金属酸化物を担持させたものを使用してもよい。
In order to maximize the effects of the present invention, as the carbonaceous catalyst, a low-quality one having a low cost, a low activation rate and a small specific surface area is used. Specific examples thereof include coal, which is a carbon-containing substance, pitch, wood, plant-derived substances such as coconut husks, those obtained by activating plastics or the like by carbonization or further steam, and further improve the catalytic activity. For this reason, those supporting metal oxides such as vanadium, iron and copper may be used.

【0033】なお、本発明においては、脱硫・脱硝処理
の運転開始前だけでなく、運転開始後も引き続き再生器
6内の炭素質触媒に酸素含有ガスを供給し、炭素質触媒
を活性化してもよく、この場合には、不活性ガスに少量
の酸素含有ガスを加えた混合ガスを、図2の態様におい
てはライン19から再生器6の上部の混合領域12a
に、図3の態様においてはライン20から再生器6の下
部の混合領域14bに供給する。なお、この場合に、再
生器6は温度勾配があり、通常、上部の混合領域12a
又は分離領域12bの温度は約100〜200℃、下部
の分離領域14a又は混合領域14bの温度は約300
〜500℃であって、後者の温度が前者の温度よりも高
いので、後者の温度が400℃以上の場合には、図3の
態様により酸素含有ガスを導入すると、炭素質触媒の酸
化反応が急速に起り、触媒表面が灰化してしまう。そこ
で温度が低い上部の混合領域12aに酸素含有ガスを供
給する図2の態様を採用するのが好ましい。
In the present invention, the oxygen-containing gas is supplied to the carbonaceous catalyst in the regenerator 6 not only before the desulfurization / denitrification treatment is started, but also after the start of the operation to activate the carbonaceous catalyst. In this case, a mixed gas obtained by adding a small amount of oxygen-containing gas to an inert gas may be supplied from the line 19 to the mixing region 12a above the regenerator 6 in the embodiment of FIG.
In the embodiment of FIG. 3, the line 20 is supplied to the mixing region 14b below the regenerator 6. In addition, in this case, the regenerator 6 has a temperature gradient, and normally the upper mixing region 12a is
Alternatively, the temperature of the separation region 12b is about 100 to 200 ° C., and the temperature of the lower separation region 14a or the mixing region 14b is about 300.
Since the temperature of the latter is higher than the temperature of the former, when the temperature of the latter is 400 ° C. or higher, when the oxygen-containing gas is introduced according to the embodiment of FIG. It occurs rapidly and the catalyst surface is incinerated. Therefore, it is preferable to adopt the mode of FIG. 2 in which the oxygen-containing gas is supplied to the upper mixing region 12a having a low temperature.

【0034】尚、一般的には再生器6内で加熱された炭
素質触媒は、空気又は水等で直接あるいは間接的に冷却
されるが、図2,図3ではその部分は省略してある。
Generally, the carbonaceous catalyst heated in the regenerator 6 is directly or indirectly cooled with air, water or the like, but that portion is omitted in FIGS. 2 and 3. .

【0035】本発明は、1基の移動床反応器を用いた図
1に示した排ガス処理方法に適用されるのみならず、2
基以上の移動床反応器を用いた排ガス処理方法にも適用
される。例えば、SOxとNoxを含有する排ガスを直
接あるいはNH3 と混合後、炭素質触媒が充填された第
1の移動床反応器に導入して脱硫・脱硝処理した後、こ
の処理ガス中にNH3 を混入し、炭素質触媒が充填され
た第2の移動床反応器に導入して脱硫・脱硝処理する一
方、排ガスとの接触によって不活化した炭素質触媒を加
熱再生する排ガスの処理方法に本発明を適用することに
より、脱硫・脱硝処理の運転初期より所望の脱硫・脱硝
性能を得ることができる。
The present invention is applicable not only to the exhaust gas treatment method shown in FIG. 1 using one moving bed reactor,
It is also applied to an exhaust gas treatment method using a moving bed reactor having more than one base. For example, an exhaust gas containing SOx and Nox is directly or after being mixed with NH 3 , introduced into a first moving bed reactor filled with a carbonaceous catalyst for desulfurization / denitration treatment, and then NH 3 is added to the treated gas. Is introduced into a second moving bed reactor filled with a carbonaceous catalyst for desulfurization and denitration treatment, while the carbonaceous catalyst inactivated by contact with the exhaust gas is heated and regenerated. By applying the invention, desired desulfurization / denitration performance can be obtained from the initial stage of the desulfurization / denitration treatment operation.

【0036】本発明においては、再生器で炭素質触媒を
酸素含有ガスで処理するときに、NH3 を共存させる
か、あるいは酸素含有ガスで処理した後、更にNH3
スで処理することにより炭素質触媒を更に活性化するこ
とができる。
In the present invention, when the carbonaceous catalyst is treated with the oxygen-containing gas in the regenerator, NH 3 is allowed to coexist or is treated with the oxygen-containing gas and then further treated with the NH 3 gas. The quality catalyst can be further activated.

【0037】酸素を含まないNH3 ガスによる再活性化
は炭素の酸化は起らず、従って温度は特に限定されない
が、室温から再生器の最大温度である300〜500℃
に設定するのが好都合である。
Reactivation by NH 3 gas containing no oxygen does not cause carbon oxidation, and therefore the temperature is not particularly limited, but from room temperature to 300 to 500 ° C. which is the maximum temperature of the regenerator.
It is convenient to set to.

【0038】以下、本発明を実験例により具体的に説明
する。
The present invention will be described in detail below with reference to experimental examples.

【0039】実験例1 内径52.7mmの固定床反応器に新規活性炭1リット
ルを充填し、250℃の温度で0.5リットル/min
で空気を48時間供給して活性炭の活性化を行った。そ
の後、第1サイクルとして100ppmのSO2 ,20
0pmのNO,5%のO2 及び8%のH2 Oを含むN2
ガスに280ppmのNH3 ガスを注入し、この混合ガ
スを上記の反応器に145℃で30時間、流量0.6N
3 /h(空間速度600h-1に相当)で通過させ、通
ガス時間と共に変化するSO2 除去率、NO除去率を測
定した。
Experimental Example 1 A fixed bed reactor having an inner diameter of 52.7 mm was charged with 1 liter of new activated carbon, and 0.5 liter / min at a temperature of 250 ° C.
At this point, air was supplied for 48 hours to activate the activated carbon. Then, as the first cycle, 100 ppm of SO 2 , 20
N 2 with 0 pm NO, 5% O 2 and 8% H 2 O
280 ppm NH 3 gas was injected into the gas, and the mixed gas was introduced into the above reactor at 145 ° C. for 30 hours and the flow rate was 0.6N.
It was passed at m 3 / h (corresponding to a space velocity of 600 h −1 ) and the SO 2 removal rate and NO removal rate, which varied with the gas passing time, were measured.

【0040】第1サイクルの試験が終了後、この活性炭
をN2 気流下400℃で3時間再生した。再生後、第2
サイクルとして上記のSO2 ,NOを含有する混合ガス
を同一条件で反応器に通過させ、SO2 除去率、NO除
去率を測定した。更に同様の繰り返しテストを5回まで
行った。通ガス30時間後のNO除去率の結果を図4の
曲線(a)に示す。
After the test of the first cycle was completed, the activated carbon was regenerated at 400 ° C. for 3 hours under N 2 stream. Second after playback
As a cycle, the mixed gas containing SO 2 and NO was passed through the reactor under the same conditions, and the SO 2 removal rate and NO removal rate were measured. Further, the same repeated test was performed up to 5 times. The result of NO removal rate after 30 hours of passing gas is shown in the curve (a) of FIG.

【0041】比較実験例1として空気による活性化を行
わない以外は実験例1と同様にしてNO,SO2 除去率
を測定した。NO除去率の結果を図4の曲線(b)に示
す。
In Comparative Experimental Example 1, the NO and SO 2 removal rates were measured in the same manner as in Experimental Example 1 except that activation by air was not performed. The result of the NO removal rate is shown in the curve (b) of FIG.

【0042】図4の結果から明らかなように空気で活性
化処理した活性炭の方が、脱硝性能向上が著しく良く、
早い時期に高い脱硝性能に安定することが判明した。な
お、SO2 除去率は実験例1、比較実験例1の各サイク
ルにおいていずれも100%であった。
As is apparent from the results of FIG. 4, the activated carbon activated by air has a significantly improved denitration performance,
It was discovered that the denitration performance was stable at an early stage. The SO 2 removal rate was 100% in each cycle of Experimental Example 1 and Comparative Experimental Example 1.

【0043】実験例2 内径52.7mmの固定床反応器に新規活性炭1リット
ルを充填し、250℃の温度で0.5リットル/min
で空気を48時間供給して活性炭の活性化を行った。そ
の後更に、400℃で0.5%のNH3 を含むN2 ガス
を0.5リットル/minで10時間供給して再活性化
を行った。活性化の操作を終了した後、第1サイクルと
して1000ppmのSO2 ,200ppmのNO,5
%のO2及び8%のH2 Oを含むN2 ガスに750pp
mのNH3 ガスを注入し、この混合ガスを上記の反応器
に145℃で30時間、流量0.6Nm3 /h(空間速
度600h-1に相当)で通過させ、通ガス時間と共に変
化するSO2 除去率、NO除去率を測定した。
Experimental Example 2 A fixed bed reactor having an inner diameter of 52.7 mm was charged with 1 liter of new activated carbon, and at a temperature of 250 ° C., 0.5 liter / min.
At this point, air was supplied for 48 hours to activate the activated carbon. After that, N 2 gas containing 0.5% NH 3 at 400 ° C. was further supplied at 0.5 liter / min for 10 hours for reactivation. After the activation operation was completed, the first cycle was 1000 ppm SO 2 , 200 ppm NO, 5
750 pp for N 2 gas containing 10% O 2 and 8% H 2 O
m 3 NH 3 gas was injected, and this mixed gas was passed through the above reactor at 145 ° C. for 30 hours at a flow rate of 0.6 Nm 3 / h (corresponding to a space velocity of 600 h −1 ) and changed with the gas passage time. The SO 2 removal rate and the NO removal rate were measured.

【0044】第1サイクルの試験が終了後、この活性炭
をN2 気流下400℃で3時間再生した。再生後、第2
サイクルとして上記の混合ガスを同一条件で反応器に通
過させ、SO2 除去率、NO除去率を測定した。更に同
様の繰り返しテストを5回まで行った。通ガス30時間
後のNO除去率の結果を図5の曲線(a1 )に、SO2
除去率の結果を図5の曲線(a2 )に示す。
After the test of the first cycle was completed, the activated carbon was regenerated at 400 ° C. for 3 hours under N 2 stream. Second after playback
As a cycle, the above mixed gas was passed through the reactor under the same conditions, and the SO 2 removal rate and the NO removal rate were measured. Further, the same repeated test was performed up to 5 times. The results of the NO removal rate of 30 hours after the passing gas curve of Fig. 5 (a1), SO 2
The result of the removal rate is shown in the curve (a2) of FIG.

【0045】比較実験例2として、空気による活性化及
びNH3 による再活性化を行わない以外は、実験例2と
同様にしてNO,SO2 除去率を測定した。NO除去率
及びSO2 除去率の結果をそれぞれ図5の曲線(b1
)、図5の曲線(b2 )に示す。
As Comparative Experimental Example 2, NO and SO 2 removal rates were measured in the same manner as in Experimental Example 2 except that activation by air and reactivation by NH 3 were not performed. The results of NO removal rate and SO 2 removal rate are shown in the curve (b1
) And the curve (b2) in FIG.

【0046】図5の結果から明らかなように空気で活性
化した後、更にNH3 で再活性化した活性炭の方が、脱
硫・脱硝性能が著しく良く、しかも早い時期に高い性能
に安定化することが分かる。
As is clear from the results shown in FIG. 5, the activated carbon after being activated with air and then reactivated with NH 3 has significantly better desulfurization / denitration performance, and stabilizes to high performance at an early stage. I understand.

【0047】実験例3 図1に示すように排ガスを1000Nm3 /hで処理可
能な移動床反応器と再生器からなる脱硫・脱硝装置に新
規活性炭触媒を1.67m3 充填し、排ガスを通過させ
て処理する前に、触媒の移送量を35kg/hに設定し
て系内で活性炭を循環移送させた。この時、再生器(容
積0.2m3 )の最高温度を250℃に設定して5m3
/hの流量の燃焼排ガス(再生器の昇温用の燃焼排ガス
でO2 含有量4%のもの)を供給した。この操作を5サ
イクル継続して活性炭を活性化した。次に、活性炭移送
量18.5kg/hでSO2 500ppm、NOx20
0ppmを含有する1000Nm3 /hのボイラー排ガ
スにNH3 を700ppm混合後、反応器に供給して排
ガスを処理した。
[0047] Experimental Example 3 of the exhaust gas as shown in FIG. 1 the new activated carbon catalyst was 1.67 m 3 filled in desulfurization and denitrification apparatus consisting regenerator and 1000 Nm 3 / h at a processable moving bed reactor, passing the exhaust gas Before the treatment, the amount of catalyst transferred was set to 35 kg / h and the activated carbon was circulated and transferred in the system. At this time, set the maximum temperature of the regenerator (volume 0.2 m 3 ) to 250 ° C. and set it to 5 m 3
A combustion exhaust gas (combustion exhaust gas for heating the regenerator, having an O 2 content of 4%) was supplied at a flow rate of / h. This operation was continued for 5 cycles to activate the activated carbon. Next, when the activated carbon transfer rate was 18.5 kg / h, SO 2 500 ppm, NOx 20
After mixing 700 ppm of NH 3 with 1000 Nm 3 / h of boiler exhaust gas containing 0 ppm of NH 3 , it was supplied to the reactor to treat the exhaust gas.

【0048】得られたNOx除去率及びSO2 除去率の
結果を図6の曲線(a1 )及び(a2 )に示す。
The results of the obtained NOx removal rate and SO 2 removal rate are shown by the curves (a1) and (a2) in FIG.

【0049】比較実験例3として運転前(排ガス処理
前)に活性炭の活性化操作を行なわない以外は、実験例
3と同様に排ガスを処理した。得られたNOx除去率及
びSO2 除去率の結果を図6の曲線(b1 )及び(b2
)に示す。
As Comparative Experimental Example 3, the exhaust gas was treated in the same manner as in Experimental Example 3 except that the activated carbon was not activated before the operation (before the exhaust gas treatment). The obtained NOx removal rate and SO 2 removal rate results are shown in curves (b1) and (b2) of FIG.
).

【0050】図6より明らかなように、運転前に活性炭
の活性化処理した場合は、処理を行わなかった場合に比
べて著しく早い時期に高い除去率に安定化することが明
らかとなった。
As is clear from FIG. 6, when the activated carbon was activated before the operation, it became clear that the removal rate was stabilized at a high rate significantly earlier than when it was not treated.

【0051】[0051]

【発明の効果】本発明によれば、低品質炭素質触媒を用
いても排ガス処理の運転開始時から所望の脱硫・脱硝性
能を得ることが可能な方法が提供された。
EFFECTS OF THE INVENTION According to the present invention, there is provided a method capable of obtaining desired desulfurization / denitration performance from the start of operation of exhaust gas treatment even when a low quality carbonaceous catalyst is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な排ガス処理方法を実施するための装置
の一例を示す図
FIG. 1 is a diagram showing an example of an apparatus for carrying out a general exhaust gas treatment method.

【図2】本発明の方法を実施するに好適な再生器の一例
を示す図
FIG. 2 is a diagram showing an example of a regenerator suitable for carrying out the method of the present invention.

【図3】本発明の方法を実施するに好適な再生器の他の
例を示す図
FIG. 3 is a diagram showing another example of a regenerator suitable for carrying out the method of the present invention.

【図4】実験例1におけるNO除去率を示すグラフFIG. 4 is a graph showing the NO removal rate in Experimental Example 1.

【図5】実験例2におけるNO,SO2 除去率を示すグ
ラフ
FIG. 5 is a graph showing NO and SO 2 removal rates in Experimental Example 2.

【図6】実験例3におけるNOx,SO2 除去率を示す
グラフ
FIG. 6 is a graph showing NOx and SO 2 removal rates in Experimental Example 3.

【符号の説明】[Explanation of symbols]

1,2,5,8,9 ライン 3 移動床反応器 4 炭素質触媒 6 再生器 7 分離器 11 貯留領域 12a 混合領域 12b 分離領域 13 伝熱管 14a 分離領域 14b 混合領域 15 整流体 16,18,19,20 ライン 17 加熱領域 1,2,5,8,9 lines 3 moving bed reactor 4 Carbonaceous catalyst 6 regenerator 7 separator 11 Storage area 12a mixing area 12b separation area 13 Heat transfer tube 14a separation area 14b Mixed area 15 Rectifier 16, 18, 19, 20 lines 17 Heating area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/94 (58)調査した分野(Int.Cl.7,DB名) B01D 53/60,53/56 B01D 53/83,53/86 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI B01D 53/94 (58) Fields investigated (Int.Cl. 7 , DB name) B01D 53/60, 53/56 B01D 53/83 , 53/86

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫黄酸化物と窒素酸化物を含有する排ガ
スを、炭素質触媒が充填された移動床反応器に導入して
NH3 の共存下に脱硫・脱硝処理をする一方、排ガスと
の接触によって不活性化した炭素質触媒を再生器で加熱
再生する排ガスの処理方法において、脱硫・脱硝処理の
運転開始前に再生器に酸素含有ガスを導入して、炭素質
触媒を酸化処理し、活性化することを特徴とする排ガス
の処理方法。
1. Exhaust gas containing sulfur oxides and nitrogen oxides is introduced into a moving bed reactor filled with a carbonaceous catalyst for desulfurization / denitration treatment in the presence of NH 3 , while exhaust gas In a method for treating exhaust gas in which a carbonaceous catalyst inactivated by contact is heated and regenerated in a regenerator, an oxygen-containing gas is introduced into the regenerator before the operation of desulfurization / denitration treatment is started to oxidize the carbonaceous catalyst, A method for treating exhaust gas, which is characterized by being activated.
【請求項2】 脱硫・脱硝処理を1基または2基以上の
移動床反応器で行なう、請求項1に記載の方法。
2. The method according to claim 1, wherein the desulfurization / denitration treatment is carried out in one or more moving bed reactors.
【請求項3】 再生器で炭素質触媒を酸素含有ガスで処
理するときにNH3を共存させるか、あるいは酸素含有
ガスで処理した後、更にNH3 ガスで再処理して炭素質
触媒を更に活性化する、請求項1または2に記載の排ガ
スの処理方法。
3. When the carbonaceous catalyst is treated with the oxygen-containing gas in the regenerator, NH 3 is allowed to coexist, or after the treatment with the oxygen-containing gas, the carbonaceous catalyst is further treated with the NH 3 gas. The method for treating exhaust gas according to claim 1 or 2, which is activated.
JP22606193A 1993-09-10 1993-09-10 Exhaust gas treatment method Expired - Lifetime JP3381973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22606193A JP3381973B2 (en) 1993-09-10 1993-09-10 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22606193A JP3381973B2 (en) 1993-09-10 1993-09-10 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH0780245A JPH0780245A (en) 1995-03-28
JP3381973B2 true JP3381973B2 (en) 2003-03-04

Family

ID=16839194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22606193A Expired - Lifetime JP3381973B2 (en) 1993-09-10 1993-09-10 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3381973B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015829B2 (en) * 2001-07-27 2007-11-28 新日本製鐵株式会社 Method for producing activated carbon having high strength and high denitration performance
CN108722180A (en) * 2018-07-23 2018-11-02 唐山钢铁集团有限责任公司 A kind of smoke catalytic denitration device and catalytic denitration method
CN110652852A (en) * 2019-10-08 2020-01-07 中国科学院过程工程研究所 Flue gas purifying device

Also Published As

Publication number Publication date
JPH0780245A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
US4273748A (en) Process for removing harmful components from gas
JP3381973B2 (en) Exhaust gas treatment method
JPS61287423A (en) Treatment of exhaust gas
JP2001523564A (en) Method for reducing SO2 from wet lime / limestone tail gas in power plant desulfurization process
JPH06262038A (en) Method for treatment of exhaust gas
JPH07265667A (en) Treatment of exhaust gas
JPH07251024A (en) Method for purifying raw gas containing hydrogen sulfide and nitrogen
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH0776348B2 (en) Refining method for high temperature reducing gas
JPH06262036A (en) Treatment of exhaust gas
JPH1147536A (en) Method for treating exhaust gas
JPH0747228A (en) Treatment of exhaust gas
JPH06210139A (en) Waste gas treatment
JP2000254453A (en) Process and equipment for waste gas treatment
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JPH0659377B2 (en) Refining method for high temperature reducing gas
JP2002370011A (en) Exhaust gas treatment method
JPH0966222A (en) Treatment of exhaust gas
JPS6350052B2 (en)
JPS5732720A (en) Method for purification of waste combustion gas
JPH1033936A (en) Treatment of nh3 mixed in so2-containing gas
JPH0788332A (en) Treatment of waste gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021202

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11