JPS60220129A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPS60220129A
JPS60220129A JP59076157A JP7615784A JPS60220129A JP S60220129 A JPS60220129 A JP S60220129A JP 59076157 A JP59076157 A JP 59076157A JP 7615784 A JP7615784 A JP 7615784A JP S60220129 A JPS60220129 A JP S60220129A
Authority
JP
Japan
Prior art keywords
reactor
exhaust gas
catalyst
ammonia
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59076157A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takahashi
和義 高橋
Shinichi Yamada
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59076157A priority Critical patent/JPS60220129A/en
Publication of JPS60220129A publication Critical patent/JPS60220129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To perform the desulfurization and denitration of low temp. exhaust gas, in an exhaust gas treatment method, by removing NOx and SOx by a first reactor of a carbonaceous catalyst and mixing NH3 in exhaust gas to perform denitration and desulfurization in a second reactor while regenerating a catalyst before treating the same with NH3 for the purpose of reuse. CONSTITUTION:Exhaust gas having temp. of 100-200 deg.C is contacted with the carbonaceus catalyst bed falling in a reactor 2 through a line 1 to receive desulfurization and denitration treatment while the treated gas is subsequently introduced into a second moving bed type reactor 6. At this time, NH3 is added to the exhaust gas from a line 5. The exhaust gas is contacted with the carbonaceous catalyst bed in the reactor 6 to receive desulfurization and denitration treatment and the treated gas is treated by a dust collector 9 through a line 8 and discharged. The catalyst discharged from the reactor 6 is supplied to the upper part of the reactor 2 and supplied to a regenerator 11 while discharged from the reactor 2 to receive regeneration under heating and the regenerated catalyst is sent to an NH3 activation vessel 12 and treated with NH3 from a line 13 to be returned to the reactor 6 for the purpose of recirculation and use.

Description

【発明の詳細な説明】 本発aA紘イオク酸化物と窒素酸化物を含有する低温度
域の排ガスの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating exhaust gas in a low-temperature range containing an aA hydrochloride oxide and nitrogen oxide.

石炭、重油だきゼイラ排ガスや製鉄所焼結炉排ガス等の
様にイオウ酸化物(Box)及び窒素酸化物(NOりを
高濃度に含有する排ガスの処理方法として、排ガス中に
アンモニアを混入した後、炭素質触媒の充填床に排ガス
を通過させて処理する方法が知られている。この方法で
は、SOxとNOxを同時に除去できる上、触媒の再生
使用が可能でおる等の利点を備えている。
As a treatment method for exhaust gas containing high concentrations of sulfur oxides (Box) and nitrogen oxides (NO), such as coal and heavy oil-fired zeila exhaust gas and ironworks sintering furnace exhaust gas, ammonia is mixed into the exhaust gas. A known method is to process exhaust gas by passing it through a packed bed of carbonaceous catalysts.This method has the advantages of simultaneously removing SOx and NOx and allowing the catalyst to be reused. .

しかしながら、この方法でNOxを効率よく除去するに
は、少なくとも200℃以上の、好ましくは220〜2
50℃程度の反応温度が必要でちって、これよル低温度
ではNOxを充分に除去することはできない。ところが
、200℃の反応温度では排ガス中の酸素によって炭素
質触媒の一部が、C+ 02→CO2の如く消費されて
しまう問題がある。また、はイラ等からの排ガスはエア
ヒータ等の出口でほぼ150℃前後であるので、排ガス
を200℃以上の温度に予熱しなければならない点でも
不利である。
However, in order to efficiently remove NOx with this method, the temperature must be at least 200°C or higher, preferably 220-220°C.
A reaction temperature of about 50° C. is required, and NOx cannot be removed sufficiently at lower temperatures. However, at a reaction temperature of 200° C., there is a problem that a part of the carbonaceous catalyst is consumed by oxygen in the exhaust gas as C+02→CO2. Further, since the temperature of the exhaust gas from the blower is approximately 150°C at the outlet of the air heater, etc., it is disadvantageous that the exhaust gas must be preheated to a temperature of 200°C or higher.

これに対し、SOxは勿論、150℃程度の温度におい
てもNOxを高い除去率でもって除去可能な方法が提案
されている。この方法は、排ガス中にアンモニアを混入
し、この混合ガスを第1の反応器に導いて大部分のSO
Xを除去した後、処理済ガスに改めてアンモニアを混入
し、この混合ガスを第20反応器に導いて再処理するも
のである。
In contrast, a method has been proposed that can remove not only SOx but also NOx at a high removal rate even at a temperature of about 150°C. In this method, ammonia is mixed into the exhaust gas, and this mixed gas is led to the first reactor to remove most of the SO
After removing X, ammonia is mixed into the treated gas again, and this mixed gas is led to the 20th reactor for reprocessing.

しかしながら、この方法では、炭素質触媒の活性維持の
点で第1の反応器へ注入するアンモニア量が、SOx1
モルに対して通常0.2〜0.8モルと多く不経済であ
る。また触媒を加熱再生すると、回収される高濃度SO
,ガス中のアンモニア濃度が高い(通常0.3〜2%)
ため、後続機器の閉塞や腐食、回収副生品の純度低下と
いった問題が生ずる。他に第1の反応器入口のアンモニ
ア注入量を低減すると触媒の活性が低くなるため、高い
脱硫・脱硝率を得るには反応器内の触媒の移送速度を速
めなければならず、触媒の粉化が増加して不経済となる
問題もある。
However, in this method, the amount of ammonia injected into the first reactor is limited to SOx1 in order to maintain the activity of the carbonaceous catalyst.
It is usually 0.2 to 0.8 moles per mole, which is uneconomical. In addition, when the catalyst is heated and regenerated, high concentration SO is recovered.
, high ammonia concentration in the gas (usually 0.3-2%)
This results in problems such as blockage and corrosion of subsequent equipment and reduced purity of recovered by-products. In addition, reducing the amount of ammonia injected at the inlet of the first reactor lowers the activity of the catalyst, so in order to obtain a high desulfurization and denitrification rate, the transfer speed of the catalyst in the reactor must be increased, and the catalyst powder There is also the problem that the number of people is increasing and it becomes uneconomical.

本発明の目的は、低温域の排ガスでおっても高い脱硫・
脱硝率が得られ、かつアンモニア使用による機器のトラ
ブルも生じない排ガスの処理方法を提供することにある
The purpose of the present invention is to provide high desulfurization and
It is an object of the present invention to provide a method for treating exhaust gas that provides a high denitrification rate and that does not cause equipment trouble due to the use of ammonia.

即ち、本発明の排ガスの処理方法は、イオウ酸化物と窒
素酸化物を含有する約100〜200℃の排ガスを炭素
質触媒が充填された第1の反応器に導入して脱硫・脱硝
処理した後、この処理ガスにアンモニアを混入し、炭素
質触媒が充填された第2の反応器に導入して脱硝・脱硫
処理する一方、排ガスの処理に供した炭素質触媒を加熱
再生する排ガスの処理方法において、加熱再生された炭
素質触媒をアンモニアと接触させて処理した後に排ガス
の処理に使用することを特徴とするものである。
That is, in the exhaust gas treatment method of the present invention, exhaust gas containing sulfur oxides and nitrogen oxides at a temperature of about 100 to 200°C is introduced into a first reactor filled with a carbonaceous catalyst to perform desulfurization and denitrification treatment. Afterwards, this treated gas is mixed with ammonia and introduced into a second reactor filled with a carbonaceous catalyst for denitrification and desulfurization treatment, while the exhaust gas treatment involves heating and regenerating the carbonaceous catalyst used for exhaust gas treatment. The method is characterized in that the heated and regenerated carbonaceous catalyst is brought into contact with ammonia to be treated and then used for the treatment of exhaust gas.

SOxとNOxを含有する排ガスの処理プロセスの一例
を示した図にそって本発明を説明する。
The present invention will be explained with reference to a diagram showing an example of a process for treating exhaust gas containing SOx and NOx.

100〜200℃程度に温調された排ガスはラインエを
介して第1の直交流式移動床反応器2に導入される。排
ガスは、第1の反応器2内を下降する炭素質触媒床3と
接触して脱硫・脱硝処理された後、第1の反応器2から
排出される。
The exhaust gas whose temperature is controlled to about 100 to 200° C. is introduced into the first cross-flow moving bed reactor 2 via the line. The exhaust gas is discharged from the first reactor 2 after being desulfurized and denitrated by contacting the carbonaceous catalyst bed 3 descending within the first reactor 2 .

この排出された排ガスは、ライン4を介して第2の直交
流式移動床反応器6へ導入される。この際ライン5を介
してアンモニアが注入される、排ガス杖、第2の反応器
6内を下降する炭素質触媒床フとIIp!!Aシて脱硝
・脱硫処理された後、ライン8を介して集じん器9へ導
入される。集じん器9で処理されたガスはジイン10を
介して大気へ放出され、補集されたフライアッシュはI
イ2−等で焼却処理される。なお、集じん器としては電
気業じん器、バグフィルタ、その他マルチサイクロン等
のいずれを使用しても喪い。
This discharged exhaust gas is introduced into a second cross-flow moving bed reactor 6 via line 4 . In this case, ammonia is injected via line 5, the exhaust gas cane flows down into the second reactor 6, and the carbonaceous catalyst bed flows down IIp! ! After being subjected to denitrification and desulfurization treatment, it is introduced into a dust collector 9 via a line 8. The gas treated by the dust collector 9 is released into the atmosphere through the dust collector 10, and the collected fly ash is
It is incinerated by A2- etc. In addition, it does not matter whether you use an electric dust collector, bag filter, or other multi-cyclone as a dust collector.

一方、触媒唸第2の反応器6よシ排出されたものが第1
の反応器2の上部へ供給され、第1の反応器20下部よ
シ排出された触媒が再生器11へ導かれる。触媒は再生
器11内で高温不活性ガス雰囲気のもとに800〜60
0℃に加熱されて再生される。再生された触媒はアンモ
ニア賦活器12へ送られ、ライン13よシ供給されるア
ンモニアと接触して処理された後、第2の反応器6の上
部へ戻されて循環使用される。
On the other hand, the catalyst discharged from the second reactor 6 is
The catalyst supplied to the upper part of the first reactor 2 and discharged from the lower part of the first reactor 20 is led to the regenerator 11. The catalyst is heated in the regenerator 11 under a high temperature inert gas atmosphere.
It is heated to 0°C and regenerated. The regenerated catalyst is sent to the ammonia activator 12, treated by contacting with ammonia supplied through the line 13, and then returned to the upper part of the second reactor 6 for circulation.

あるいは触媒の流れとして、第!の反応器2及び第2の
反応器6よ)排出される触媒を再生器11へ供給し、再
生後アンモニア賦活器12で処理して、第1の反応器2
及び第2の反応器6へそれぞれ供給して循環使用しても
よい。
Or as a catalyst flow, No.! The catalyst discharged from the reactor 2 and the second reactor 6) is supplied to the regenerator 11, and after regeneration, it is treated in the ammonia activator 12, and then the catalyst is discharged from the first reactor 2.
It may also be supplied to the second reactor 6 and used for circulation.

再生器11で回収される高濃度SO,ガスは、ライン1
4をへて硫酸、イオウ、石コウ等の製造工程へ供給され
る。
The high concentration SO and gas recovered by the regenerator 11 are transferred to the line 1.
4 and is supplied to the manufacturing process of sulfuric acid, sulfur, gypsum, etc.

触媒をアンモニアで処理する際の温度社高温がよいが、
昇温の点で室温〜s o o ’c程度でよい。また、
アンモニアとしてはアンモニアガスな直接使用すること
ができるが、水蒸気、窒素、排ガス、空気等で希釈して
0,1〜15%程度のアンモニアを使用することが好ま
しい。なお、低温でアンモニア処理する場合(宸温〜約
150℃)触媒へのアンモニア吸着量が比較的多くなシ
、第2の反応器6へ触媒が供給されると、吸着アンモニ
アが排ガスによりパージされて処理ガス中へ放出される
ので、触媒を排ガス又は空気等と接触させて、大部分の
吸着アンモニアをパージした後、反応器へ供給すること
が好ましい。
A high temperature is preferable when treating the catalyst with ammonia, but
In terms of temperature increase, it is sufficient to raise the temperature from room temperature to SO'C. Also,
As ammonia, ammonia gas can be used directly, but it is preferable to use ammonia diluted with water vapor, nitrogen, exhaust gas, air, etc. to a concentration of about 0.1 to 15%. Note that when ammonia treatment is carried out at low temperatures (temperature to about 150°C), the amount of ammonia adsorbed on the catalyst is relatively large, and when the catalyst is supplied to the second reactor 6, the adsorbed ammonia is purged with exhaust gas. Since most of the adsorbed ammonia is purged by bringing the catalyst into contact with exhaust gas or air, it is preferable to supply the catalyst to the reactor.

使用済のアンモニアガスは循環使用するか、ライン15
を介して第1の反応器入口又は第2の反応器入口へ直接
供給できるため、何ら処理装置を必要としない。
Used ammonia gas can be recycled or used in line 15.
Since it can be directly supplied to the first reactor inlet or the second reactor inlet via the reactor, no treatment equipment is required.

アンモニアと触媒の気固接触は移動床、流動床などいず
れでもよく、移動床の場合、ガスの供給方式は並流・向
流・直交流などいずれであってもよい。また、アンモニ
アと触媒の接触を行うための賦活器を設けずに、触媒を
移送するコンベア内等でアンモニアを接触させてもよい
The gas-solid contact between ammonia and the catalyst may be carried out using either a moving bed or a fluidized bed. In the case of a moving bed, the gas supply method may be parallel flow, countercurrent flow, or cross flow. Further, without providing an activator for bringing ammonia into contact with the catalyst, ammonia may be brought into contact within a conveyor for transporting the catalyst or the like.

本発明の1g1及び第2の反応器には活性炭、石炭を乾
留らるい社水蒸気等で賦活して得られる活性コークス粒
等の炭素質触媒が一般に使用されるが、この触媒にノマ
ナジウム、鉄、銅等の金属酸化物を担持させることもで
きる。
In the 1g1 and second reactors of the present invention, carbonaceous catalysts such as activated carbon and activated coke grains obtained by activating coal with carbonized water vapor are generally used. Metal oxides such as copper can also be supported.

本発明によれば、排ガスとの接触に使われた炭素質触媒
を加熱再生した後にアンモニアで処理し、触媒表面に活
性な塩基性化合物を生成させて触媒活性を高めて使用す
るため、脱硫は勿論のこと、150℃前後の反応温度に
おいても高い脱硝性能が得られる。また本発明では第1
の反応器に注入するアンモニアが不要あるいは少ないた
め、触媒を加熱再生する際に発生するアンモニア量が著
しく少なく、後続機器のトラブルや回収製品の純度低下
といった問題が解決される。
According to the present invention, the carbonaceous catalyst used in contact with the exhaust gas is heated and regenerated and then treated with ammonia to generate active basic compounds on the catalyst surface to increase the catalytic activity. Of course, high denitrification performance can be obtained even at a reaction temperature of around 150°C. In addition, in the present invention, the first
Since the amount of ammonia injected into the reactor is unnecessary or small, the amount of ammonia generated when heating and regenerating the catalyst is significantly reduced, which solves problems such as troubles with subsequent equipment and reduced purity of recovered products.

以下、実施例によシ本発明の効果を具体的に示す。Hereinafter, the effects of the present invention will be specifically illustrated by examples.

実施例 向流型のアンモニア賦活器(賦活条件:N、+5%NH
,ガス、温度180℃、賦活時間30分)でアンモニア
処理した後、第2の直交流式移動床反応器に供給し、更
にこの反応器より排出された粒状の炭素質触媒が充填さ
れた第1の直交流式移動床反応器にSox 970 p
pm 5NOx200pPmSOt 5%、H3O7%
を含有する145℃の排ガスを空間速度600 hr−
’の速度で通過させた。この場合、反応器内の触媒の滞
留時間は33時間に設定されている。この反応器での脱
硫率は90%、脱硝率は13%であった。
Example Countercurrent type ammonia activator (activation conditions: N, +5% NH
, gas, temperature 180°C, activation time 30 minutes), and then supplied to a second cross-flow type moving bed reactor, and further filled with a granular carbonaceous catalyst discharged from this reactor. 1 cross-flow moving bed reactor with Sox 970p
pm 5NOx200pPmSOt 5%, H3O7%
The exhaust gas at 145°C containing
It passed at a speed of '. In this case, the residence time of the catalyst in the reactor was set to 33 hours. The desulfurization rate in this reactor was 90%, and the denitrification rate was 13%.

前記第1の反応器出口ガスにアンモ纂アを220ppm
注入して第2の直交流式移動床反応器に空間速度800
 hr””の速度で通過した。この場合の反応器内の触
媒の滞留時間は25時間に設定されている。
220 ppm of ammonia was added to the first reactor outlet gas.
was injected into the second cross-flow moving bed reactor at a space velocity of 800.
It passed at a speed of hr"". The residence time of the catalyst in the reactor in this case is set to 25 hours.

第2の反応器での脱硫率、脱硝率は第2の反応器の導入
ガスに対して各々100%、79%であった。即ち、総
合の脱硫率、脱硝率は各々Zo。
The desulfurization rate and the denitrification rate in the second reactor were 100% and 79%, respectively, relative to the gas introduced into the second reactor. That is, the overall desulfurization rate and denitrification rate are each Zo.

襲、81.7%であった。また、NH,リーク量は7p
pmであった。
The rate was 81.7%. Also, NH, leakage amount is 7p
It was pm.

比較例として、アンモニア賦活を行わずまた第2の反応
器入口のNH,注入量を290 ppmとした以外は実
施例1と同じ条件で処理した結果、第1反応器での脱硫
率は83%、脱硝率は8%であった。また第2の反応器
での脱硫率、脱硝率は各々100%、68%であった。
As a comparative example, the desulfurization rate in the first reactor was 83% as a result of processing under the same conditions as in Example 1 except that ammonia activation was not performed and the NH injection amount at the inlet of the second reactor was 290 ppm. , the denitrification rate was 8%. Further, the desulfurization rate and the denitrification rate in the second reactor were 100% and 68%, respectively.

即ち、総合の脱硫率、脱硝率は各々100%、70.6
%でおった。また、NH,リーク量は10ppmであっ
た。
That is, the overall desulfurization rate and denitrification rate are 100% and 70.6, respectively.
It was written in %. Further, the amount of NH leakage was 10 ppm.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の排ガスの処理プロセスの一例を示したもの
である。 2・・・第1の直交流式移動床反応器 6・・・第2の直交流式移動床反応器 9・・・集じんM 11・・・再生器 12・・・アンモニア賦活器
The figure shows an example of the exhaust gas treatment process of the present invention. 2... First cross-flow type moving bed reactor 6... Second cross-flow type moving bed reactor 9... Dust collection M 11... Regenerator 12... Ammonia activator

Claims (1)

【特許請求の範囲】[Claims] 1、 イオウ酸化物と窒素酸化物を含有する約100〜
200℃の排ガスを炭素質触媒が充填された第1の反応
器に導入して脱硫・脱硝処理した後、この処理ガスにア
ンモニアを混入し、炭素質触媒が充填された第2の反応
器に導入して脱硝・脱硫処理する一方、排ガスの処理に
供した炭素質触媒を加熱再生する排ガスの処理方法にお
いて、加熱再生された炭素質触媒をアンモニアと接触さ
せて処理した後に排ガスの処理に使用することを特徴と
する排ガスの処理方法。
1. Approximately 100 ~ containing sulfur oxides and nitrogen oxides
Exhaust gas at 200°C is introduced into a first reactor filled with a carbonaceous catalyst to undergo desulfurization and denitrification treatment, and then ammonia is mixed into this treated gas, and the mixture is introduced into a second reactor filled with a carbonaceous catalyst. In an exhaust gas treatment method that heats and regenerates the carbonaceous catalyst used for exhaust gas treatment, the carbonaceous catalyst that has been heated and regenerated is brought into contact with ammonia and treated, and then used for exhaust gas treatment. A method for treating exhaust gas characterized by:
JP59076157A 1984-04-16 1984-04-16 Treatment of exhaust gas Pending JPS60220129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076157A JPS60220129A (en) 1984-04-16 1984-04-16 Treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076157A JPS60220129A (en) 1984-04-16 1984-04-16 Treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPS60220129A true JPS60220129A (en) 1985-11-02

Family

ID=13597209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076157A Pending JPS60220129A (en) 1984-04-16 1984-04-16 Treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPS60220129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867953A (en) * 1985-02-16 1989-09-19 Kraftanlagen Ag Method for the selective elimination of nitrogen oxides from exhaust gases
WO2003011756A1 (en) * 2001-07-27 2003-02-13 Nippon Steel Corporation Method for producing activated carbon having high strength and high capability for denitration, and activated carbon produced by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867953A (en) * 1985-02-16 1989-09-19 Kraftanlagen Ag Method for the selective elimination of nitrogen oxides from exhaust gases
WO2003011756A1 (en) * 2001-07-27 2003-02-13 Nippon Steel Corporation Method for producing activated carbon having high strength and high capability for denitration, and activated carbon produced by the method

Similar Documents

Publication Publication Date Title
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
CN112638504A (en) Selective catalytic reduction process and process for regenerating deactivated catalyst of process
JPH0154089B2 (en)
CN112638505A (en) Selective catalytic reduction process and method for regenerating deactivated SCR catalyst of parallel flue gas treatment system
JPS60220129A (en) Treatment of exhaust gas
JPS6158805A (en) Method of removing nh3 in gas containing s02
JP2000102719A (en) Treatment of waste gas and device therefor
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
JPS6350052B2 (en)
JPH1147536A (en) Method for treating exhaust gas
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH06226103A (en) Recycling of exhaust gas treatment catalyst and treatment of exhaust gas
JPH06262038A (en) Method for treatment of exhaust gas
JPH07265667A (en) Treatment of exhaust gas
JP2000061253A (en) Dry type exhaust gas treatment and treating device
JPS6061024A (en) Process for removing sox and nox simultaneously
JP3360854B2 (en) Exhaust gas treatment method using carbon material
JP3807634B2 (en) Carbonaceous catalyst regeneration method and regenerator
JPH06246134A (en) Treatment of waste gas
JPS6211891B2 (en)
JPH0747228A (en) Treatment of exhaust gas
JP2002370011A (en) Exhaust gas treatment method
JPS6358605B2 (en)