JPS6061024A - Process for removing sox and nox simultaneously - Google Patents

Process for removing sox and nox simultaneously

Info

Publication number
JPS6061024A
JPS6061024A JP58170176A JP17017683A JPS6061024A JP S6061024 A JPS6061024 A JP S6061024A JP 58170176 A JP58170176 A JP 58170176A JP 17017683 A JP17017683 A JP 17017683A JP S6061024 A JPS6061024 A JP S6061024A
Authority
JP
Japan
Prior art keywords
tower
reaction tower
denitration
denitrification
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58170176A
Other languages
Japanese (ja)
Other versions
JPH0153568B2 (en
Inventor
Hayamizu Ito
伊東 速水
Yukio Kubo
幸雄 久保
Yoshitaka Kajihata
梶畠 賀敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58170176A priority Critical patent/JPS6061024A/en
Publication of JPS6061024A publication Critical patent/JPS6061024A/en
Publication of JPH0153568B2 publication Critical patent/JPH0153568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To improve denitration efficiency by regenerating an adsorbent used in a denitration tower by heating, sending the adsorbent to a denitration reaction tower without cooling the adsorbent, and allowing it to contact directly with waste gas which is previously admixed with ammonia. CONSTITUTION:SOX in the waste gas is removed by adsorption in a desulphurization reaction tower comprising a moving bed reactor contg. active carbon packed therein. The active carbon discharged from the desulphurization reaction tower 1 is sent to a regeneration tower 2 where it is regenerated by heating. The active carbon at high temp. is fed as it is from the regeneration tower 2 to the denitration reaction tower 4. Denitration reaction is caused by adding NH3 as reducing agent for NOX to the inlet of the denitration tower 4 stable simultaneous desulphurization and denitration are thus performed. Moreover, a cooler for sctive carbon is unnecessary. Stable operation is possible because formation of ammonium sulphate is prevented.

Description

【発明の詳細な説明】 本発明は、υ1ガス中の硫黄酸化物(SOx ) 、窒
素酸化物(NOx )を同時に効率よく除去する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for simultaneously and efficiently removing sulfur oxides (SOx) and nitrogen oxides (NOx) from υ1 gas.

従来の排煙脱硫脱硝方法は、排ガスを活性炭などの炭素
質吸着剤を充てんした移動床型反応器に導入し、別途ア
ンモニアを添加してSOxおよびNOxを同時に除去す
る乾式排煙脱硫脱硝方法が一般的である。この方法にお
いては、吸着による脱硫反応を主目的としている関係上
、吸着反応@g ljA度の設定が比較的低く、150
″C前後が一般的であり、得られる脱硝率が低温である
ために低いという欠点を有している。また、従来法にお
いては、脱硫反応塔入ロ排ガヌ中にNOx還元剤として
のNH3を注入し、脱1流反応塔単独で脱硫脱硝反応を
行わせるために、大部分のNH3が活性炭中に固定され
た硫酸(H2SO4)により消費され、NOxの還元反
応にあ捷り寄与しない。このため得られる脱硝率が低い
という欠点がある。同時に脱硫反応塔で生成する硫安(
’ (NHa ) 2SO4) 、酸性硫安(NH4H
8O4)のだめに、とくに脱硫反応塔ガス導入部で活性
炭のブロッキングが起こり、反応塔の閉塞につながり、
かつ活性炭の移動が円滑に行えないという欠点を有して
いる。なお反応塔内における反応式はつぎの通りである
The conventional flue gas desulfurization and denitration method is a dry flue gas desulfurization and denitration method in which flue gas is introduced into a moving bed reactor filled with a carbonaceous adsorbent such as activated carbon, and ammonia is added separately to simultaneously remove SOx and NOx. Common. In this method, since the main purpose is desulfurization reaction by adsorption, the adsorption reaction @ g ljA degree is set relatively low, and 150
The conventional method has the disadvantage that the denitrification rate obtained is low due to the low temperature.In addition, in the conventional method, NOx reduction agent is used in the desulfurization reaction tower exhaust gas. Since NH3 is injected and the desulfurization and denitration reaction is carried out in the single-stream denitration reaction tower alone, most of the NH3 is consumed by the sulfuric acid (H2SO4) fixed in the activated carbon and does not contribute to the NOx reduction reaction. .For this reason, the denitrification rate obtained is low.At the same time, ammonium sulfate (
' (NHa) 2SO4), acidic ammonium sulfate (NH4H
8O4), blocking of activated carbon occurs, especially at the gas introduction part of the desulfurization reaction tower, leading to blockage of the reaction tower.
Another disadvantage is that the activated carbon cannot be moved smoothly. The reaction formula in the reaction tower is as follows.

※ ※ NH3+ H2So4+ NH4TTSO4NH3++
40 + 202 + Nz + 7/2H20※;活
性炭中に固定 以上のような従来法の欠点を補うために、(1)活性炭
の低温下での脱硝活性の向上、(2)脱硫反応塔内の活
性炭充てん層の中間層へのNH3の注入、(3)脱硫反
応塔および脱硝反応塔の分1!llf、ならびに脱硝反
応塔温度の昇温、などが考えられるが、このうち(1)
については、有効な手段となりC)る可能性はあるが、
今だに有望な方法が見出されていない。
* * NH3+ H2So4+ NH4TTSO4NH3++
40 + 202 + Nz + 7/2H20 Injection of NH3 into the intermediate layer of the activated carbon packed bed, (3) 1 minute of the desulfurization reaction tower and denitrification reaction tower! Among these, (1)
Regarding C), it may be an effective method, but
No promising method has yet been found.

また(2)については活性炭充てん11へ7内に直接極
く少量のNH3を注入するために、N I−I 30分
散、混合の問題があり実用化は困難である。そこで脱硝
性能の向上、(流室の析出による活性炭充てん層の閉塞
防止の両面において、(3)が最も得策である。ただ脱
硫反応塔と脱硝反応塔の2塔を設け、脱硝反応塔の温度
を昇温させるだめには、(1)設備費の増額、(2)ガ
ス温度の昇温に伴うエネルギーロス、などの新たな問題
が発生する。
Regarding (2), since a very small amount of NH3 is directly injected into the activated carbon filling 11 7, there are problems with N I-I 30 dispersion and mixing, making it difficult to put it into practical use. Therefore, (3) is the most advantageous solution in terms of both improving the denitrification performance and preventing clogging of the activated carbon-filled bed due to precipitation in the flow chamber. If it is not possible to raise the gas temperature, new problems will arise, such as (1) increased equipment costs and (2) energy loss due to the increased gas temperature.

本発明者らは上記の諸点に鑑み、鋭意検尉を重ねた結果
、硫黄酸化物および窒素酸化物を含有する排ガスを炭素
質吸着剤を元てんした移動床型反応器に導入し、別途ア
ンモニアを添加して硫黄酸化物および窒素酸化物を同時
に除去する乾式排煙脱硫脱硝方法において、排ガスを脱
輪反応塔に導入し、この脱硫反応塔で硫黄酸化物を吸着
した使用済炭素質吸摺剤を再生塔に送り込み、加熱処理
により再生された炭素質吸着剤を冷却器を通さずに、高
温状態の寸まで脱硝反応塔に投入、充てんするとともに
、この脱硝反応塔内に予めアンモニアを添加した脱硫反
応塔出口排ガスを導入し直接接触させることにより、脱
硝効率を向上せしめることができることを知見し、本発
明を完成させるに至った。
In view of the above points, the inventors of the present invention conducted extensive inspections, and as a result, introduced exhaust gas containing sulfur oxides and nitrogen oxides into a moving bed reactor containing carbonaceous adsorbent, and separately added ammonia to the reactor. In the dry flue gas desulfurization and denitration method that simultaneously removes sulfur oxides and nitrogen oxides by adding The carbonaceous adsorbent regenerated by heat treatment is fed into the denitrification reaction tower and filled up to a high temperature without passing through a cooler, and ammonia is added to the denitrification reaction tower in advance. It was discovered that the denitrification efficiency could be improved by introducing and directly contacting the desulfurization reaction tower outlet exhaust gas, and the present invention was completed based on this finding.

以下、本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.

移動床型反応器からなり、活性炭を充てんした脱硫反応
塔lにおいて、まず排ガス中のSOxが150°C[)
IJ後の温度で下記反応式により除去される。なお一般
に、燃焼排ガスの場合は、nは1〜2である。
In the desulfurization reaction tower, which consists of a moving bed reactor and is filled with activated carbon, the SOx in the exhaust gas is first heated to 150°C.
It is removed according to the following reaction formula at the temperature after IJ. In general, n is 1 to 2 in the case of combustion exhaust gas.

So、、+’102+ (n+1 )H2OfI−12
SO4・nH2OSO3+ (n+1 ) H2O−y
PII□SO4・nH,、○ここで排ガス中のSOxを
吸着した活性炭は脱硫反応塔1下部から連続的に排出さ
れ、再生塔2に搬送される。この再生塔2で加熱用ガス
などで加熱され、活性炭に固定されたH2SO4はド記
反応により熱分解され、S02として活性炭から脱離し
、活性炭は再生される。
So,,+'102+ (n+1)H2OfI-12
SO4・nH2OSO3+ (n+1) H2O−y
PII□SO4·nH, ○Here, the activated carbon that has adsorbed SOx in the exhaust gas is continuously discharged from the lower part of the desulfurization reaction tower 1 and conveyed to the regeneration tower 2. In the regeneration tower 2, H2SO4 fixed on the activated carbon is heated with a heating gas or the like and is thermally decomposed by the reaction described above, and is desorbed from the activated carbon as S02, and the activated carbon is regenerated.

2H2S○4 + C−−ン 2H20+ CO2−ト
 2SO2ここで一般に、再生温度としては、350〜
400°C程度であり、壕だ再生塔2で脱聞1したS 
02ガス濃度は、再生塔2での加熱方法、活性炭での吸
着量によって異なるが、一般には数%〜数十%のオーダ
ーであり、次の硫黄分回収装置3で、単体硫黄としであ
るいは硫酸、石こうなどで回収される。
2H2S○4 + C--n 2H20+ CO2-t 2SO2 Here, the regeneration temperature is generally 350~
The temperature was around 400°C, and S, who had escaped from the trench in Reproduction Tower 2,
The concentration of 02 gas varies depending on the heating method in the regeneration tower 2 and the amount of adsorption on activated carbon, but it is generally on the order of several percent to several tens of percent. , recovered as gypsum, etc.

一方、再生塔2で脱離、再生された活性炭は、350〜
400°C程度ノ高温度f アルタW)、150°Cn
1T後まで冷却され、脱硫反応塔1へ搬送され、循環再
使用される。ここで本発明では、再生塔2から排出され
た高温度(350〜400°C)の活性炭を特別な冷却
器を通さずに、冷却および脱硝を兼ね備えた脱硝反応塔
4に導入し、まだ脱硝反応塔4人口部にNOx還元剤と
してのN H3を添加することにより、脱硝反応を起こ
させる。脱硝反応器4の大きさについては、使用する活
性炭の脱硝活性、必要とする脱硝性能に応じて、脱硫反
応塔lの大きさ、脱硫反応塔lからの活性炭排出量に無
関係に、任意に設定することが可能である。まだ脱硝反
応塔4の上部に再生塔を一体に設けることにより、再生
塔からの高温の活性炭を搬送することなく、直接脱硝反
応塔4に導入することが可能となり、装置の簡略化のた
めにより得策である。
On the other hand, the activated carbon desorbed and regenerated in the regeneration tower 2 has a
High temperature of about 400°C f Alta W), 150°Cn
It is cooled until after 1T, transported to the desulfurization reaction tower 1, and recycled for reuse. In the present invention, the activated carbon at a high temperature (350 to 400°C) discharged from the regeneration tower 2 is introduced into the denitrification reaction tower 4, which has both cooling and denitrification, without passing through a special cooler. By adding NH3 as a NOx reducing agent to the 4th part of the reaction tower, a denitrification reaction is caused. The size of the denitrification reactor 4 can be set arbitrarily depending on the denitrification activity of the activated carbon used and the required denitrification performance, regardless of the size of the desulfurization reaction tower 1 and the amount of activated carbon discharged from the desulfurization reaction tower 1. It is possible to do so. By providing the regeneration tower integrally above the denitrification reaction tower 4, it becomes possible to directly introduce the high-temperature activated carbon from the regeneration tower into the denitrification reaction tower 4 without having to transport it, which further simplifies the equipment. It's a good idea.

本発明の方法においては、再生塔2での加熱に要した熱
を、排ガスとともに大気に放出するため、経済的に損失
が大きいことが懸念されるが、ただ冷却器を設けて熱を
回収する場合、たとえば冷却媒体として水を用いる場合
、間接冷却によらざるを得ない。ところが、間接冷却の
場合、液−固(活性炭−水)間の伝熱係数が小さいがた
めに、多量の水を必要とし、高温度の水あるいはスチー
ムを得ることが困難であり、従って回収した熱を有効に
利用できず、むしろ、冷却水の循環使用のだめのクーリ
ングタワーなどの付帯設備が必要となり、経済的に殆ど
得るところがなく、本発明の方法の方が、むしろ冷却媒
体、付帯膜(liftを必要としないことから経済的に
も有利である。まだ高温状態で排ガス中にさらすことに
よる、活性炭の着火に対する懸念については、活性炭の
空気中での着火温度が450°C以上であるだめ、また
一般の燃焼排ガス中の酸素分圧がはるかに小さいことか
ら、再生温度350〜400°C程度の温度ではまった
く問題とならない。
In the method of the present invention, the heat required for heating in the regeneration tower 2 is released into the atmosphere together with the exhaust gas, so there is concern that there will be a large economic loss. In some cases, for example, when water is used as a cooling medium, indirect cooling must be used. However, in the case of indirect cooling, the heat transfer coefficient between liquid and solid (activated carbon and water) is small, so a large amount of water is required, and it is difficult to obtain high-temperature water or steam. Heat cannot be used effectively, and instead requires ancillary equipment such as a cooling tower for circulating cooling water, so there is little economic gain. It is also economically advantageous as it does not require ignition of activated carbon due to exposure to exhaust gas while it is still at high temperature. Further, since the oxygen partial pressure in general combustion exhaust gas is much lower, there is no problem at all at a regeneration temperature of about 350 to 400°C.

以上説明したように、本発明の方法によれば、つぎのよ
うな効果を得ることができる。
As explained above, according to the method of the present invention, the following effects can be obtained.

(1)安定した同時脱硫脱硝処理が可能となる。(1) Stable simultaneous desulfurization and denitration treatment becomes possible.

(2) 高温度の活性炭などの炭素質吸着剤で脱硝反応
を起こさせるだめ、従来法に比べて脱硝効率が向上する
(2) Since the denitrification reaction is caused by a carbonaceous adsorbent such as high-temperature activated carbon, the denitrification efficiency is improved compared to conventional methods.

(3)再生塔から出た炭素質吸着剤の冷却のだめの冷却
器、冷却媒体(水、空気など)を必要としない。
(3) No cooler or cooling medium (water, air, etc.) is required to cool the carbonaceous adsorbent discharged from the regeneration tower.

(4)脱硝反応塔でNH3を吸着した状態(未反応NH
3)の炭素質吸着剤を脱硫反応塔に投入することによシ
、脱硫性能が向上し、かつ脱硫反応塔での硫安、酸性硫
安の生成に伴う閉塞、活性炭のブロッキングを起こすこ
となく安定した運転が可能となる。
(4) State in which NH3 is adsorbed in the denitrification reaction tower (unreacted NH
By introducing the carbonaceous adsorbent described in 3) into the desulfurization reaction tower, the desulfurization performance was improved, and the desulfurization reaction tower was stabilized without clogging due to the formation of ammonium sulfate or acidic ammonium sulfate or blocking of activated carbon. Driving becomes possible.

つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.

実施例 脱硫反応塔出口の排ガス温度150°C1脱硫率95%
の脱硫反応塔から抜き出した活性炭を400°Cで再生
し、再生した活性炭を脱硝反応塔に投入し、150°C
の排ガスを通すと、排ガスの平均温度は約25°C上昇
した。
Example Exhaust gas temperature at the outlet of the desulfurization reaction tower 150°C1 Desulfurization rate 95%
The activated carbon extracted from the desulfurization reaction tower is regenerated at 400°C, and the regenerated activated carbon is charged into the denitrification reaction tower and heated at 150°C.
When passing through the exhaust gas, the average temperature of the exhaust gas increased by about 25°C.

各種石炭から作った活性炭A、Bの2種について、S○
22001)pm、 NOx 200ppm、、002
10%、H2O1O%、1q2バランスの組成の4ジ1
ガスを、空間速度1ooo 4、アンモニア添加率40
011]’)m、温度]50°C,175°C,200
°Cの条件下で脱硝性能を試験したところ、下表のよう
な結果を得た。
Regarding two types of activated carbon A and B made from various types of coal, S○
22001) pm, NOx 200ppm, 002
4-di-1 with a composition of 10%, H2O1O%, 1q2 balance
Gas, space velocity 1ooo 4, ammonia addition rate 40
011]') m, temperature] 50°C, 175°C, 200
When the denitrification performance was tested under the conditions of °C, the results shown in the table below were obtained.

表から明らかなように、反応温度が約25°C上昇する
ことにより、脱硝性能は10〜b いることがわかる。
As is clear from the table, when the reaction temperature increases by about 25°C, the denitrification performance increases by 10-b.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の硫黄酸化物および窒素酸化物を同時に除
去する方法を実施する装置の一例を示すフローシートで
ある。 1・・・脱硫反応塔、2・・再生塔、3 ・硫黄分回収
装置、4 ・脱硝反応塔 出 願 人 川崎重工業株式会社
The drawing is a flow sheet showing an example of an apparatus for carrying out the method of simultaneously removing sulfur oxides and nitrogen oxides of the present invention. 1... Desulfurization reaction tower, 2... Regeneration tower, 3 - Sulfur content recovery device, 4 - Denitrification reaction tower Applicant: Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄酸化物および窒素酸化物を含有する排ガスを炭
素質吸着剤を充てんした移動床型反応器に導入し、別途
アンモニアを添加して硫黄酸化物および窒素酸fヒ物を
同時に除去する乾式り1煙脱硫脱硝方法において、排ガ
スを脱硫反応塔に導入し、この脱硫反応塔で硫黄酸化物
を吸着した使用済炭素質吸着剤を再生塔に送り込み、加
熱処理により再生された炭素質吸着剤を冷却器を通さず
に、高温状態のままで脱硝反応塔に投入、充てんすると
ともに、この脱硝反応塔内に予めアンモニアを添加した
脱硫反応塔高L1排ガスを導入し直接接触させることを
特徴とする硫黄酸化物および窒素酸化物を同時に除去す
る方法。
1 A dry process in which exhaust gas containing sulfur oxides and nitrogen oxides is introduced into a moving bed reactor filled with a carbonaceous adsorbent, and ammonia is added separately to simultaneously remove sulfur oxides and nitrogen acids and arsenics. In the 1-smoke desulfurization and denitrification method, exhaust gas is introduced into a desulfurization reaction tower, and the spent carbonaceous adsorbent that has adsorbed sulfur oxides in this desulfurization reaction tower is sent to a regeneration tower, where the carbonaceous adsorbent regenerated by heat treatment is It is characterized by charging and filling the denitrification reaction tower in a high temperature state without passing through a cooler, and introducing the desulfurization reaction tower height L1 exhaust gas to which ammonia has been added in advance into the denitrification reaction tower and bringing it into direct contact. A method for simultaneously removing sulfur oxides and nitrogen oxides.
JP58170176A 1983-09-14 1983-09-14 Process for removing sox and nox simultaneously Granted JPS6061024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170176A JPS6061024A (en) 1983-09-14 1983-09-14 Process for removing sox and nox simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170176A JPS6061024A (en) 1983-09-14 1983-09-14 Process for removing sox and nox simultaneously

Publications (2)

Publication Number Publication Date
JPS6061024A true JPS6061024A (en) 1985-04-08
JPH0153568B2 JPH0153568B2 (en) 1989-11-14

Family

ID=15900099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170176A Granted JPS6061024A (en) 1983-09-14 1983-09-14 Process for removing sox and nox simultaneously

Country Status (1)

Country Link
JP (1) JPS6061024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071215A1 (en) * 2006-12-14 2008-06-19 Horst Grochowski Method and device for scrubbing effluent gases from a sintering process for ores or other metal-containing materials in metal production
CN103007735A (en) * 2012-10-30 2013-04-03 上海克硫环保科技股份有限公司 High-efficiency active coke desulfuration and denitration system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843222A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Method for removing sulfur oxide and nitrogen oxide from waste gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071215A1 (en) * 2006-12-14 2008-06-19 Horst Grochowski Method and device for scrubbing effluent gases from a sintering process for ores or other metal-containing materials in metal production
WO2008071446A1 (en) * 2006-12-14 2008-06-19 Horst Grochowski Method and device for purifying the flue gases of a sintering process of ores and/or other material-containing materials in metal production
JP2010512984A (en) * 2006-12-14 2010-04-30 グロコウスキー、ホルスト Method and apparatus for purifying exhaust gas in the sintering process of ores and / or other metal-containing materials in metal production
US8192706B2 (en) 2006-12-14 2012-06-05 Horst Grochowski Method and device for purifying the flue gases of a sintering process of ores and/or other material-containing materials in metal production
CN103007735A (en) * 2012-10-30 2013-04-03 上海克硫环保科技股份有限公司 High-efficiency active coke desulfuration and denitration system and method
CN103007735B (en) * 2012-10-30 2015-08-26 上海克硫环保科技股份有限公司 A kind of high-efficiency activated burnt system for desulfuration and denitration and method

Also Published As

Publication number Publication date
JPH0153568B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
CA2193638C (en) Exhaust gas treating systems
JP3504674B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
CA1039031A (en) Method for removing so2 and nox simultaneously from the exhaust of a combustion furnace
US6106791A (en) Exhaust gas treating systems
JP2786562B2 (en) Treatment method of combustion exhaust gas
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
US6814948B1 (en) Exhaust gas treating systems
JPS6061024A (en) Process for removing sox and nox simultaneously
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JPS61287423A (en) Treatment of exhaust gas
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
JPH08196920A (en) Regenerating method for denitrating catalyst
JPS60220129A (en) Treatment of exhaust gas
KR20230094529A (en) Flue Gas Treatment Process in which Carbon Dioxide Capture Process and Denitrification Process are Linked
JPH0249122B2 (en) HAIGASUDATSURYUHOHO
JPS5864117A (en) Dry stack-gas desulfurization process
JPS6358605B2 (en)
JPH06226103A (en) Recycling of exhaust gas treatment catalyst and treatment of exhaust gas
JPH08257366A (en) Regeneration of used carbonaceous catalyst
JPS60257821A (en) Denitration and desulfurization of exhaust gas