JPH08257366A - Regeneration of used carbonaceous catalyst - Google Patents

Regeneration of used carbonaceous catalyst

Info

Publication number
JPH08257366A
JPH08257366A JP7092020A JP9202095A JPH08257366A JP H08257366 A JPH08257366 A JP H08257366A JP 7092020 A JP7092020 A JP 7092020A JP 9202095 A JP9202095 A JP 9202095A JP H08257366 A JPH08257366 A JP H08257366A
Authority
JP
Japan
Prior art keywords
gas
inert gas
catalyst
carbonaceous catalyst
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7092020A
Other languages
Japanese (ja)
Inventor
Shinichi Yamada
慎一 山田
Kohei Goto
浩平 後藤
Kazuyoshi Takahashi
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP7092020A priority Critical patent/JPH08257366A/en
Publication of JPH08257366A publication Critical patent/JPH08257366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the desulfurizing and denitrating performance of a regenerated catalyst by adding ammonia to an inert gas which is to be supplied to an inert gas introducing region and utilized in the case of regeneration of used carbonaceous catalyst, e.g. activated carbon used for a dry desulfurizing and denitrating process to purify exhaust gas from a boiler. CONSTITUTION: After ammonia gas is introduced to an inlet of a cross-flow type fluidized-bed reactor R, exhaust gas from a boiler is introduced to the reactor R and sulfur oxides in the gas are absorbed as sulfuric acid and ammonium sulfate in a carbonaceous catalyst C. Meanwhile, nitrogen oxides in the exhaust gas are reduced to nitrogen gas by reduction reactions. After that, in the case used carbonaceous catalyst C is regenerated, the catalyst C is supplied to a regenerating apparatus 1 by a valve V1 , flows down in a thermally conductive tube 5..., and is heated by a heated gas 6 to release desorbed substances, e.g. sulfur dioxide, hydrogen chloride, and ammonia, and the desorbed substances are parted from the catalyst C by an inert gas 8 containing ammonia and discharged out of a line 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ボイラ等からの燃焼
排ガスの乾式脱硫脱硝法で使用された活性炭や活性コー
クス等の不活化炭素質触媒の再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an activated carbonaceous catalyst such as activated carbon or activated coke used in a dry desulfurization denitration method for combustion exhaust gas from a boiler or the like.

【0002】[0002]

【従来の技術】硫黄酸化物、窒素酸化物を含有するボイ
ラー等の排ガスにアンモニアを注入混合し、これを活性
炭、活性コークス等の炭素質触媒と接触させる乾式脱硫
脱硝法は、排ガスから硫黄酸化物と窒素酸化物を同時に
除去できる利点を有している。この場合、排ガス中の硫
黄酸化物は硫酸、酸性硫酸アンモニウム、硫酸アンモニ
ウム等として炭素質触媒に吸着される。一方、窒素酸化
物は還元剤としてのアンモニアの作用で窒素と水に分解
される。それ故、乾式脱硫脱硝法で使用される炭素質触
媒は、排ガスとの接触時間の経過と共に硫酸ないしは硫
酸塩などが触媒表面に蓄積して次第に不活化するが、こ
のようにして不活化した炭素質触媒は適当な時期にこれ
を加熱再生すれば上記の排ガス処理に再使用することが
できる。そして、この加熱再生時には、比較的高濃度の
二酸化硫黄ガスが得られ、このガスからは硫酸、硫黄あ
るいは石膏等を回収できることはよく知られているとこ
ろである。
2. Description of the Related Art A dry desulfurization denitration method in which ammonia is injected and mixed into exhaust gas from a boiler or the like containing sulfur oxides and nitrogen oxides and the mixture is brought into contact with a carbonaceous catalyst such as activated carbon or activated coke is a method of oxidizing sulfur from exhaust gas. It has an advantage that the substance and the nitrogen oxide can be removed simultaneously. In this case, the sulfur oxides in the exhaust gas are adsorbed on the carbonaceous catalyst as sulfuric acid, acidic ammonium sulfate, ammonium sulfate and the like. On the other hand, nitrogen oxides are decomposed into nitrogen and water by the action of ammonia as a reducing agent. Therefore, the carbonaceous catalyst used in the dry desulfurization and denitration method gradually inactivates due to the accumulation of sulfuric acid or sulfate on the catalyst surface as the contact time with the exhaust gas elapses, but the carbon thus inactivated. The quality catalyst can be reused for the above-mentioned exhaust gas treatment if it is heated and regenerated at an appropriate time. It is well known that a relatively high concentration of sulfur dioxide gas is obtained during this heating regeneration, and sulfuric acid, sulfur, gypsum, etc. can be recovered from this gas.

【0003】ところで上記のごとく不活化した炭素質触
媒の再生方法としては、不活化した炭素質触媒を不活性
ガス雰囲気下で加熱する方法が知られており、かかる再
生方法は古くは特開昭55ー121907号公報に開示
されている。上記公報に開示されている再生方法は、不
活化炭素質触媒に不活性ガスを混合し、この混合物を加
熱領域に下向きに流下させながら当該領域を上向きに流
れる加熱ガスと間接的に熱交換させて前記の混合物を加
熱し、この加熱によって不活化炭素質触媒から離れる脱
離物を混合物中の不活性ガスでパージし、前記加熱領域
の下方に位置する分離領域で脱離物含有不活性ガスを炭
素質触媒から分離する方法であって、この方法によれば
不活化炭素質触媒から離れる脱離物は、炭素質触媒と並
列に流れる不活性ガスでパージされて、より高温側に移
動するのでこの脱離物が再凝縮する恐れがないという利
点があるものの、不活性ガスでパージされた脱離物中に
アンモニアが混在している点で問題がある。即ち、不活
化炭素質触媒を加熱再生した際には上記したとおり比較
的高濃度の二酸化硫黄ガスが副生されるのでこの副生ガ
スからは硫酸または硫黄を回収するのは通例であるが、
この場合にアンモニアが上記副生ガス中に含まれている
ことは好ましくない。
By the way, as a method for regenerating an inactivated carbonaceous catalyst as described above, a method is known in which an inactivated carbonaceous catalyst is heated in an inert gas atmosphere. No. 55-121907. The regeneration method disclosed in the above publication mixes an inert gas with an inactivated carbonaceous catalyst, and causes this mixture to flow indirectly downward to a heating region while indirectly exchanging heat with the heating gas flowing upward in the region. The mixture is heated by means of this heating, the desorbed substances leaving the deactivated carbonaceous catalyst by this heating are purged with an inert gas in the mixture, and the desorbed substance-containing inert gas is separated in the separation region located below the heating region. Is separated from the carbonaceous catalyst. According to this method, the desorbed substances separated from the inactivated carbonaceous catalyst are purged by an inert gas flowing in parallel with the carbonaceous catalyst and moved to a higher temperature side. Therefore, there is an advantage that the desorbed product is not recondensed, but there is a problem in that ammonia is mixed in the desorbed product purged with an inert gas. That is, when the deactivated carbonaceous catalyst is heated and regenerated, a relatively high concentration of sulfur dioxide gas is by-produced as described above, so it is usual to recover sulfuric acid or sulfur from this by-product gas.
In this case, it is not preferable that ammonia is contained in the by-product gas.

【0004】そこで、本発明者等は上記のごとく不活化
炭素質触媒の加熱再生時に副生されるガスをアンモニア
が実質的に含まれない状態で取得することができ、しか
も不活化炭素質触媒を排ガス処理に再使用できる状態に
再生できる方法(特公平6ー59408号公報参照)を
発明した。この方法は図2に示すように、不活化炭素質
触媒Cを再生器1の熱交換域4の被加熱側に下向きに通
過させ、当該領域の加熱側を上向きに流れる加熱ガスと
の間接的熱交換により不活化炭素質触媒を加熱再生し
て、熱交換領域4の下方に位置する不活性ガス導入領域
7aに流下させ、この領域にライン8aから供給される
不活性ガスにて不活化炭素質触媒からの脱離物をパージ
し、この脱離物を伴う不活性ガスを熱交換領域4の被加
熱側を上昇させ、熱交換領域4の上方に位置する分離領
域3にて脱離物中のアンモニアガスを不活化炭素質触媒
に吸着させて脱離物中から分離し、アンモニアを含有し
ない脱離物(二酸化硫黄ガス)を不活性ガスと共に脱離
ガスライン9から副生ガスとして取出すようにしたもの
である。
Therefore, the present inventors can obtain the gas by-produced when the inactivated carbonaceous catalyst is heated and regenerated as described above in a state where ammonia is not substantially contained, and the inactivated carbonaceous catalyst is also obtained. Invented a method (see Japanese Examined Patent Publication No. 6-59408) that can recycle the waste gas for reuse in exhaust gas treatment. In this method, as shown in FIG. 2, the inactivated carbonaceous catalyst C is passed downward to the heated side of the heat exchange zone 4 of the regenerator 1, and indirectly with the heating gas flowing upward on the heating side of the zone. The inactivated carbonaceous catalyst is heated and regenerated by heat exchange and made to flow into the inert gas introduction region 7a located below the heat exchange region 4, and the inactivated carbon is supplied to this region by the inert gas supplied from the line 8a. The desorbed substances from the high quality catalyst, the inert gas accompanied with the desorbed substances is raised on the heated side of the heat exchange region 4, and the desorbed substances are separated in the separation region 3 located above the heat exchange region 4. The ammonia gas therein is adsorbed on the deactivated carbonaceous catalyst and separated from the desorbed matter, and the desorbed matter (sulfur dioxide gas) containing no ammonia is taken out as a by-product gas from the desorbed gas line 9 together with the inert gas. It was done like this.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
公平6ー59408号の発明方法ではアンモニアを含ま
ない高濃度二酸化硫黄ガスを得ることができるが、再生
された炭素質触媒の脱硫活性および脱硝活性が十分なも
のではない。そこで、この発明はアンモニアの含有しな
い副生ガスを取得するとともに、再生された炭素質触媒
の脱硫及び脱硝性能の向上を目的とするものである。
However, according to the method of the above Japanese Patent Publication No. 6-59408, a high concentration sulfur dioxide gas containing no ammonia can be obtained, but the desulfurization activity and denitrification activity of the regenerated carbonaceous catalyst are high. Is not enough. Therefore, the present invention aims to obtain a by-product gas containing no ammonia and to improve the desulfurization and denitration performance of the regenerated carbonaceous catalyst.

【0006】[0006]

【課題を解決するための手段】乾式脱硫脱硝装置で使用
されて不活化した炭素質触媒を再生器の熱交換領域で加
熱ガスとの間接的熱交換により不活化炭素質触媒を加熱
再生して、熱交換領域の下方に位置する不活性ガス導入
領域に流下させ、この領域に供給される不活性ガスに
て、不活化炭素質触媒からの脱離物をパージすると共に
炭素質触媒を活性化し、この脱離物を伴う不活性ガスを
熱交換領域の被加熱側を上昇させ、熱交換領域の上方に
位置する分離領域にて脱離物を不活性ガスと共に不活化
炭素質触媒から分離する再生方法において、前記不活性
ガス導入領域に供給される不活性ガスにアンモニアを含
有させたことを特徴とする。
[Means for Solving the Problems] The inactivated carbonaceous catalyst used in a dry desulfurization and denitration apparatus is heated and regenerated by indirect heat exchange with a heating gas in a heat exchange region of a regenerator. , It is made to flow down to an inert gas introduction region located below the heat exchange region, and the desorbed substances from the inactivated carbonaceous catalyst are purged and the carbonaceous catalyst is activated by the inert gas supplied to this region. , The inert gas accompanied by the desorbed product is raised on the heated side of the heat exchange region, and the desorbed product is separated from the deactivated carbonaceous catalyst together with the inert gas in the separation region located above the heat exchange region. The regeneration method is characterized in that the inert gas supplied to the inert gas introduction region contains ammonia.

【0007】[0007]

【作用】図1を参照してこの発明方法を説明する。Rは
ボイラー等の排ガスを乾式脱硫脱硝法により処理する公
知の直交流式移動床反応器であって、該反応器R本体内
には活性炭ないしは活性コークス等の炭素質触媒が充填
されている。ボイラー等からの排ガスは、直交流式移動
床反応器Rの入口で排ガス中にアンモニアガスが注入さ
れて該反応器Rに導入される。そして、排ガス中の硫黄
酸化物は硫酸や硫酸アンモニウム塩の形で炭素質触媒に
吸着される。また、排ガス中の窒素酸化物は還元反応に
より窒素ガスに還元されて、硫黄酸化物、窒素酸化物が
除去されて清浄ガスとなって反応器Rから大気中に放出
される。かくして、上記反応器Rで長時間使用されて不
活化した炭素質触媒Cは再生器1の頂部バルブV1を通
して再生器1内に供給される。
The method of the present invention will be described with reference to FIG. R is a known cross-flow moving bed reactor for treating exhaust gas from a boiler or the like by a dry desulfurization and denitration method, and the main body of the reactor R is filled with a carbonaceous catalyst such as activated carbon or activated coke. Exhaust gas from a boiler or the like is introduced into the reactor R by injecting ammonia gas into the exhaust gas at the inlet of the cross flow type moving bed reactor R. Then, the sulfur oxides in the exhaust gas are adsorbed on the carbonaceous catalyst in the form of sulfuric acid or ammonium sulfate salt. Further, the nitrogen oxides in the exhaust gas are reduced to nitrogen gas by a reduction reaction, the sulfur oxides and nitrogen oxides are removed and become clean gas, which is released from the reactor R into the atmosphere. Thus, the carbonaceous catalyst C, which has been used for a long time and deactivated in the reactor R, is supplied into the regenerator 1 through the top valve V 1 of the regenerator 1.

【0008】再生器1に供給された不活性炭素質触媒
は、貯留領域2、分離領域3を経て熱交換領域4内にほ
ぼ垂直に配置された複数本の伝熱管5内を移動床として
流下する。一方、熱交換領域4内の加熱側すなわち伝熱
管5の外側には、ライン6から供給される加熱ガスが上
向きに通過させられるので、伝熱管5内を流下する不活
化炭素質触媒Cは、この加熱ガスとの間接的熱交換によ
って約300〜600℃の再生温度に加熱される。再生
温度に加熱された不活性炭素質触媒は、二酸化硫黄、三
酸化硫黄、塩化水素及びアンモニアなどの脱離物を放出
し再生されて不活性ガス導入領域7へと移行する。そし
て、該領域7にはライン8からアンモニアガスを含有す
る不活性ガス(例えば炭酸ガス、水蒸気、窒素ガス、又
はそれらの混合ガス等酸素含有量の少ないガス)が供給
され、このアンモニアガス含有不活性ガスは不活化炭素
質触媒からの上記脱離物を炭素質触媒からパージし、こ
れら脱離物を伴いながら伝熱管5内を上昇し、比較的低
温度の不活化炭素質触媒が滞在する分離領域3に到達す
る。
The inert carbonaceous catalyst supplied to the regenerator 1 flows down as a moving bed through a plurality of heat transfer tubes 5 arranged substantially vertically in a heat exchange area 4 via a storage area 2 and a separation area 3. . On the other hand, since the heating gas supplied from the line 6 is passed upward on the heating side in the heat exchange region 4, that is, outside the heat transfer tube 5, the inactivated carbonaceous catalyst C flowing down in the heat transfer tube 5 is It is heated to a regeneration temperature of about 300 to 600 ° C. by indirect heat exchange with this heating gas. The inert carbonaceous catalyst heated to the regeneration temperature releases desorbed substances such as sulfur dioxide, sulfur trioxide, hydrogen chloride and ammonia, and is regenerated to move to the inert gas introduction region 7. An inert gas containing ammonia gas (for example, carbon dioxide gas, steam, nitrogen gas, or a gas having a low oxygen content such as a mixed gas thereof) is supplied to the region 7 through the line 8, and the ammonia gas-containing inert gas is supplied. The active gas purges the above-mentioned desorbed substances from the inactivated carbonaceous catalyst from the carbonaceous catalyst, rises in the heat transfer tube 5 with these desorbed substances, and the inactivated carbonaceous catalyst at a relatively low temperature stays there. The separation area 3 is reached.

【0009】一般に加熱再生に付される不活性炭素質触
媒は、吸着能力に余力を残しているのが普通であるの
で、不活性ガスに伴われて分離領域3に到達した上記脱
離物中及び不活性ガス中のアンモニアは硫酸塩として、
また三酸化硫黄は硫酸としてそれぞれ不活化炭素質触媒
に捕捉される。したがって、分離領域3からはアンモニ
アや三酸化硫黄を含まない高濃度の二酸化硫黄ガスをラ
イン9から取出し副生ガスとして取出すことができる。
脱離物を伴って分離領域3に上昇したガスが貯留領域2
に侵入した場合には結露等による再生器の腐食が心配さ
れるが、そうした場合には貯留領域2内に設けた整流体
10の近傍に、ライン8´から不活性ガスを付加的に供
給することによって、脱離物を伴うガスの貯留領域2へ
の侵入を防止することができる。またガスが侵入しても
整流体10の近傍にヒータ(図示せず)を設置すること
により結露を防止することができる。
In general, an inert carbonaceous catalyst that is subjected to heating regeneration usually has a surplus capacity for adsorption, so that the desorbed matter which has reached the separation region 3 due to the inert gas and Ammonia in the inert gas as sulfate,
Sulfur trioxide is captured as sulfuric acid on the inactivated carbonaceous catalyst. Therefore, a high-concentration sulfur dioxide gas containing neither ammonia nor sulfur trioxide can be taken out from the separation region 3 through the line 9 and taken out as a by-product gas.
The gas that has risen to the separation region 3 along with the desorbed substances is stored in the storage region 2
If it invades, the corrosion of the regenerator due to dew condensation or the like may occur. In such a case, an inert gas is additionally supplied from the line 8 ′ to the vicinity of the rectifying body 10 provided in the storage area 2. As a result, it is possible to prevent the gas accompanied with the desorbed substances from entering the storage region 2. Even if gas invades, dew condensation can be prevented by installing a heater (not shown) near the rectifying body 10.

【0010】この発明では伝熱管5下部で300〜60
0℃の再生温度に加熱された炭素質触媒にアンモニア含
有不活性ガスを接触させることにより、炭素質触媒表面
の化学的性質が変わり触媒活性(脱硫活性、および脱硝
活性)が向上される。その理由は明らかではないが、炭
素質触媒表面に窒素化合物が生成しこれが触媒活性を向
上させているものと考えられる。なお、不活性ガス中ア
ンモニア濃度は、0.5%以下では触媒の活性化の効果
が小さく、また15%以上では活性化の向上効果が緩和
されて無駄になること、更に伝熱管5内及び分離領域3
でのアンモニアの捕捉が困難となり、ライン9より取出
される脱離ガス中にアンモニアが混入するという問題が
あるので0.5〜15%とすることが好ましい。また、
触媒活性の向上は不活化した炭素質触媒の吸着二酸化硫
黄の量および吸着硫酸アンモニウムの量が多いほど顕著
になる性質があるのでライン8´に酸素含有ガス(空
気、排ガス等)を混入させることにより貯留領域2およ
び分離領域3で脱離ガス中の二酸化硫黄を硫酸に酸化し
て不活化炭素質触媒の二酸化硫黄の吸着量を増加させ、
この炭素質触媒を加熱再生領域で再生することによって
再生触媒の活性化を更に向上させることができる。かく
して、伝熱管5内で加熱再生され、アンモニアガス含有
不活性ガス導入領域7で脱離物を放出した炭素質触媒
は、冷却器11へ流下し、ライン14からの冷却流体と
熱交換して冷却されて再生器1の底部バルブV2から取
出され前記反応器Rへと搬送され排ガス処理に再使用さ
れる。なお、伝熱管5内での不活化炭素質触媒上の硫酸
および硫酸塩は凡そ化1の化学式(1)〜(3)に示さ
れる化学反応によって分解、脱離するとともに不活化炭
素質触媒は再生されるものと考えられる。また、脱離ガ
ス中に混在するアンモニアは分離領域3内で化1の化学
式(4)および(5)で示される化学反応を起こし、不
活化炭素質触媒に吸着されるのでアンモニアを含まない
高濃度の二酸化硫黄ガスが得られるものと考えられる。
In the present invention, 300 to 60 are provided below the heat transfer tube 5.
By bringing the ammonia-containing inert gas into contact with the carbonaceous catalyst heated to the regeneration temperature of 0 ° C., the chemical properties of the surface of the carbonaceous catalyst are changed and the catalytic activity (desulfurization activity and denitration activity) is improved. Although the reason is not clear, it is considered that a nitrogen compound is generated on the surface of the carbonaceous catalyst, which improves the catalytic activity. If the ammonia concentration in the inert gas is 0.5% or less, the effect of activating the catalyst is small, and if it is 15% or more, the effect of improving the activation is alleviated and wasted. Separation area 3
Therefore, it is difficult to capture ammonia, and there is a problem that ammonia is mixed in the desorbed gas taken out through the line 9, so 0.5 to 15% is preferable. Also,
Since the improvement of the catalytic activity becomes more remarkable as the amount of the adsorbed sulfur dioxide and the amount of adsorbed ammonium sulfate of the deactivated carbonaceous catalyst becomes more remarkable, it is possible to mix the oxygen-containing gas (air, exhaust gas, etc.) in the line 8 '. In the storage area 2 and the separation area 3, the sulfur dioxide in the desorbed gas is oxidized to sulfuric acid to increase the adsorption amount of sulfur dioxide on the inactivated carbonaceous catalyst,
By regenerating this carbonaceous catalyst in the heating regeneration region, the activation of the regenerated catalyst can be further improved. Thus, the carbonaceous catalyst that has been heated and regenerated in the heat transfer tube 5 and released the desorbed substances in the ammonia gas-containing inert gas introduction region 7 flows down to the cooler 11 and exchanges heat with the cooling fluid from the line 14. After being cooled, it is taken out from the bottom valve V 2 of the regenerator 1 and conveyed to the reactor R to be reused for exhaust gas treatment. The sulfuric acid and the sulfate on the inactivated carbonaceous catalyst in the heat transfer tube 5 are decomposed and desorbed by the chemical reactions represented by the chemical formulas (1) to (3) of general formula 1, and the inactivated carbonaceous catalyst is It is considered to be regenerated. Further, the ammonia mixed in the desorbed gas causes the chemical reactions represented by the chemical formulas (4) and (5) of Chemical formula 1 in the separation region 3 and is adsorbed by the deactivated carbonaceous catalyst, so that the ammonia does not contain high ammonia. It is believed that a concentration of sulfur dioxide gas will be obtained.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【発明の効果】この発明によれば、アンモニア含有不活
性ガスを再生温度に加熱された炭素質触媒に接触させる
ことにより再生触媒の活性化を向上させることができ
た。さらに、貯留領域2へ酸素含有ガスを供給すること
により再生触媒の活性化を一層向上させることができ
た。
According to the present invention, the activation of the regenerated catalyst could be improved by bringing the ammonia-containing inert gas into contact with the carbonaceous catalyst heated to the regeneration temperature. Furthermore, by supplying the oxygen-containing gas to the storage region 2, the activation of the regenerated catalyst could be further improved.

【0013】[0013]

【実施例】【Example】

実施例1 500ppmの硫黄酸化物と50ppmの窒素酸化物を含有す
る石炭だきボイラー排ガスを流量1000Nm3/hで取出
し、これに300ppmのアンモニアガスを混合後、14
5℃で直交流式移動床反応器に導入した。この場合、反
応器における活性炭の充填量は2.5m3、活性炭の滞
留時間は70時間に設定されている。反応器で使用され
て不活化した活性炭を図1に示す再生器1に25kg/h
で供給して再生した。伝熱管5内での炭素質触媒の滞留
時間は7時間とし、最終的に得られる再生活性炭触媒の
温度を450℃とした。ライン8からのアンモニアガス
含有不活性ガス(5%NH3+N2)の供給量は0.5Nm
3/hとし、またライン8´からの不活性ガス(N2)供
給量を0.5Nm3/hとした。このとき、ライン9に得ら
れる脱離ガスの組成は、SO2:16.6%、CO2
2.8%、CO:0.2%、H2O:38.2%、N
3:0.002%、HCl:1%、N2:41.2%で
あった。なお、各ガス濃度は湿基準表示である。再生さ
れた活性炭は直交流式移動床反応器Rの頂部に戻して連
続運転を行なった。上記条件で排ガス処理を行なった結
果処理ガスの脱硫率は99%、脱硝率は70%であっ
た。 実施例2 実施例1において、ライン8´に空気を注入し、酸素1
0%を含む窒素ガスを0.5Nm3/h供給した以外は同
じ条件で運転した結果、反応器Rでの脱硫率は100
%、脱硝率は80%であった。 比較例1 再生器1のアンモニアガス含有不活性ガスの代わりに窒
素のみの不活性ガスを使用する以外は実施例1と同じ条
件で運転を行なった。このときの脱離ガスの組成はSO
2:16.4%、CO2:2.8%、CO:0.2%、H
2O:38%、NH3:0.001%、HCl:1%、
2:41.6%であった。また、反応器Rでの脱硫率
は97.5%、脱硝率は57%であった。
Example 1 A coal-fired boiler exhaust gas containing 500 ppm of sulfur oxides and 50 ppm of nitrogen oxides was taken out at a flow rate of 1000 Nm 3 / h and mixed with 300 ppm of ammonia gas.
It was introduced into a cross-flow moving bed reactor at 5 ° C. In this case, the charged amount of activated carbon in the reactor is set to 2.5 m 3 , and the residence time of activated carbon is set to 70 hours. The activated carbon used in the reactor and deactivated was placed in the regenerator 1 shown in Fig. 1 at 25 kg / h.
It was supplied and regenerated. The residence time of the carbonaceous catalyst in the heat transfer tube 5 was 7 hours, and the temperature of the finally obtained regenerated activated carbon catalyst was 450 ° C. The supply amount of the inert gas containing ammonia gas (5% NH 3 + N 2 ) from the line 8 is 0.5 Nm.
3 / h, and the amount of inert gas (N 2 ) supplied from the line 8 ′ was 0.5 Nm 3 / h. At this time, the composition of the desorbed gas obtained in the line 9 is SO 2 : 16.6%, CO 2 :
2.8%, CO: 0.2%, H 2 O: 38.2%, N
H 3: 0.002%, HCl: 1%, N 2: was 41.2%. In addition, each gas concentration is a wet standard display. The regenerated activated carbon was returned to the top of the cross flow type moving bed reactor R and continuously operated. As a result of exhaust gas treatment under the above conditions, the desulfurization rate of the treated gas was 99% and the denitration rate was 70%. Example 2 In Example 1, air was injected into the line 8'to obtain oxygen 1
As a result of operating under the same conditions except that 0.5 Nm 3 / h of nitrogen gas containing 0% was supplied, the desulfurization rate in the reactor R was 100.
%, And the denitration rate was 80%. Comparative Example 1 The operation was performed under the same conditions as in Example 1 except that an inert gas containing only nitrogen was used in place of the ammonia gas-containing inert gas in the regenerator 1. The composition of the desorbed gas at this time is SO
2 : 16.4%, CO 2 : 2.8%, CO: 0.2%, H
2 O: 38%, NH 3 : 0.001%, HCl: 1%,
N 2 : It was 41.6%. The desulfurization rate in the reactor R was 97.5%, and the denitration rate was 57%.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施する再生器の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a regenerator for carrying out the method of the present invention.

【図2】公知の再生器の縦断面図である。FIG. 2 is a vertical sectional view of a known regenerator.

【符号の説明】[Explanation of symbols]

1 再生器 2 貯留領域 3 分離
領域 4 熱交換領域 5 伝熱管 6 加熱
ガスライン 7 アンモニアガス含有不活性ガス導入領域 7a 不活性ガス導入領域 8 アンモニアガス含有不活性ガスライン 8a 不活性ガスライン 8´ 不活性ガスライン 9 脱離ガスライン 10、12、13 整流体 11 冷却器 14 冷却流体ライン C 不活化炭素質触媒 R 直交流式移動床反応器 V1、V2 バルブ
DESCRIPTION OF SYMBOLS 1 Regenerator 2 Storage area 3 Separation area 4 Heat exchange area 5 Heat transfer tube 6 Heating gas line 7 Ammonia gas-containing inert gas introduction area 7a Inert gas introduction area 8 Ammonia gas-containing inert gas line 8a Inert gas line 8 ' Inert gas line 9 Desorbed gas line 10, 12, 13 Rectifier 11 Cooler 14 Cooling fluid line C Inactivated carbonaceous catalyst R Cross flow type moving bed reactor V 1 , V 2 valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】乾式脱硫脱硝装置で使用されて不活化した
炭素質触媒を再生器の熱交換領域で加熱ガスとの間接的
熱交換により不活化炭素質触媒を加熱再生して、熱交換
領域の下方に位置する不活性ガス導入領域に流下させ、
この領域に供給される不活性ガスにて、不活化炭素質触
媒からの脱離物をパージすると共に炭素質触媒を活性化
し、この脱離物を伴う不活性ガスを熱交換領域の被加熱
側を上昇させ、熱交換領域の上方に位置する分離領域に
て脱離物を不活性ガスと共に不活化炭素質触媒から分離
する再生方法において、前記不活性ガス導入領域に供給
される不活性ガスにアンモニアを含有させたことを特徴
とする不活化炭素質触媒の再生方法。
1. A carbon dioxide catalyst used in a dry desulfurization and denitration apparatus is inactivated by heating the inactivated carbonaceous catalyst by indirect heat exchange with a heating gas in a heat exchange area of a regenerator, and a heat exchange area. Flow into an inert gas introduction area located below
With the inert gas supplied to this region, the desorbed substances from the inactivated carbonaceous catalyst are purged and the carbonaceous catalyst is activated, and the inert gas accompanied with the desorbed substances is supplied to the heated side of the heat exchange region. In a separation region located above the heat exchange region, the desorbed product is separated from the deactivated carbonaceous catalyst together with the inert gas in a regeneration method, in which the inert gas is supplied to the inert gas introduction region. A method for regenerating an inactivated carbonaceous catalyst characterized by containing ammonia.
【請求項2】不活性ガスに含有させるアンモニアの量
は、該不活性ガスの0.5〜15%であることを特徴と
する請求項1記載の不活化炭素質触媒の再生方法
2. The method for regenerating an inactivated carbonaceous catalyst according to claim 1, wherein the amount of ammonia contained in the inert gas is 0.5 to 15% of the inert gas.
【請求項3】再生器の不活化炭素質触媒貯留領域へ不活
性ガスおよび/または酸素含有ガスを供給することを特
徴とする請求項2または請求項3記載の不活化炭素質触
媒の再生方法。
3. The method for regenerating an inactivated carbonaceous catalyst according to claim 2 or 3, wherein an inert gas and / or an oxygen-containing gas is supplied to the inactivated carbonaceous catalyst storage area of the regenerator. .
JP7092020A 1995-03-27 1995-03-27 Regeneration of used carbonaceous catalyst Pending JPH08257366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7092020A JPH08257366A (en) 1995-03-27 1995-03-27 Regeneration of used carbonaceous catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7092020A JPH08257366A (en) 1995-03-27 1995-03-27 Regeneration of used carbonaceous catalyst

Publications (1)

Publication Number Publication Date
JPH08257366A true JPH08257366A (en) 1996-10-08

Family

ID=14042860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7092020A Pending JPH08257366A (en) 1995-03-27 1995-03-27 Regeneration of used carbonaceous catalyst

Country Status (1)

Country Link
JP (1) JPH08257366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909104A (en) * 2012-09-26 2013-02-06 广东电网公司电力科学研究院 Thermal regeneration method and device of SCR (selective catalytic reduction) denitration catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909104A (en) * 2012-09-26 2013-02-06 广东电网公司电力科学研究院 Thermal regeneration method and device of SCR (selective catalytic reduction) denitration catalyst

Similar Documents

Publication Publication Date Title
JP2912145B2 (en) Purification method of sulfur oxide containing gas
US5489421A (en) Process for preparing hydroxylamine from NOx -containing flue gases
JP3248956B2 (en) Exhaust gas treatment method
US6627110B1 (en) Hydrogen sulfide removal process
JPH08257366A (en) Regeneration of used carbonaceous catalyst
US20140086813A1 (en) Process and plant for the removal of nitrogen oxides from oxygen-containing gas streams
JPH0966222A (en) Treatment of exhaust gas
JP2000102719A (en) Treatment of waste gas and device therefor
JP3704159B2 (en) Exhaust gas treatment method
JPH0433492B2 (en)
JPH0260368B2 (en)
JP2002370011A (en) Exhaust gas treatment method
JP3807634B2 (en) Carbonaceous catalyst regeneration method and regenerator
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JP3381973B2 (en) Exhaust gas treatment method
JP3360854B2 (en) Exhaust gas treatment method using carbon material
JPH09225310A (en) Method for regenerating denitration catalyst
JPS6350052B2 (en)
JPS6061024A (en) Process for removing sox and nox simultaneously
JPH0659408B2 (en) Regeneration method of desulfurization carbonaceous catalyst
JPH0747228A (en) Treatment of exhaust gas
JPS60220129A (en) Treatment of exhaust gas
JPH06262038A (en) Method for treatment of exhaust gas
JP2003290624A (en) Exhaust gas treatment method, exhaust gas treatment apparatus, gas treatment method and gas treatment apparatus
KR20230094529A (en) Flue Gas Treatment Process in which Carbon Dioxide Capture Process and Denitrification Process are Linked

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315