JP3248956B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JP3248956B2
JP3248956B2 JP24824292A JP24824292A JP3248956B2 JP 3248956 B2 JP3248956 B2 JP 3248956B2 JP 24824292 A JP24824292 A JP 24824292A JP 24824292 A JP24824292 A JP 24824292A JP 3248956 B2 JP3248956 B2 JP 3248956B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gypsum
ammonia
solution
limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24824292A
Other languages
Japanese (ja)
Other versions
JPH0691132A (en
Inventor
隆志 木村
中 若林
洋一 梅原
尚紀 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP24824292A priority Critical patent/JP3248956B2/en
Publication of JPH0691132A publication Critical patent/JPH0691132A/en
Application granted granted Critical
Publication of JP3248956B2 publication Critical patent/JP3248956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、硫黄酸化物 (SOx)およ
び窒素酸化物 (NOx)を含有する排ガスの処理方法に関
し、更に詳しくは湿式排煙脱硫法と炭素質材料を使用し
た乾式排煙脱硝法を効率良く結合させた排ガスの処理方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas containing sulfur oxides (SOx) and nitrogen oxides (NOx), and more particularly to a wet flue gas desulfurization method and a dry flue gas using carbonaceous material. The present invention relates to an exhaust gas treatment method in which a smoke denitration method is efficiently combined.

【0002】[0002]

【従来の技術】各種燃焼排ガスや工場排ガスなどのSOx
やNOx を含む排ガスの処理方法としては、通常はSOx、N
Ox が別々に処理されている場合が多く、SOx に関して
は石灰石を中和吸収剤として使用し、有用且つ需要の多
い石膏として回収する湿式の石灰石−石膏法が主流を占
めている。一方、NOx に関しては 250〜400℃の高温で
金属酸化物を触媒とした乾式のアンモニアによる選択接
触還元法 (SCR) が主流を占めている。
[Prior Art] SOx of various combustion exhaust gas and factory exhaust gas
As a method of treating exhaust gas containing NOx and NOx, SOx, N
Ox is often treated separately, and for SOx, the wet limestone-gypsum method, which uses limestone as a neutralizing absorbent and recovers it as useful and demanding gypsum, is dominant. On the other hand, as for NOx, dry catalytic selective catalytic reduction (SCR) using ammonia at a high temperature of 250 to 400 ° C is dominant.

【0003】しかし、この金属酸化物触媒でのSCRは
高温が必要なことからボイラーのエアヒータ上流側に脱
硝反応器を設置して脱硝を行わねばならず、排ガス中に
含まれる三酸化硫黄 (SO3 ) や脱硝反応触媒上で生成す
るSO3 と脱硝用に吹き込んだアンモニアが反応し、生成
した硫酸アンモニウムや酸性硫酸アンモニウムが下流の
エアヒータ上あるいはガスガス熱交換器上で析出堆積し
て閉塞や腐蝕等を起こすと言う欠点があった。
However, since the SCR using this metal oxide catalyst requires a high temperature, a denitration reactor must be installed upstream of the air heater of the boiler to perform denitration, and the sulfur trioxide (SO 3 ) and SO 3 generated on the denitration reaction catalyst reacts with ammonia blown for denitration, and the generated ammonium sulfate or ammonium acid sulfate precipitates and deposits on a downstream air heater or a gas-gas heat exchanger to cause clogging and corrosion. There was a drawback to wake up.

【0004】また、このアンモニアによるSCRはエア
ヒータ上流側に脱硝反応器を設置する場所が無いときな
どには、湿式の排煙脱硫の後に加熱手段を設けて設置さ
れる場合もあるが、 250〜400℃の高温に加熱するため
の燃料費が嵩むという問題点があった。これらに対し、
近年エアヒータ下流の 130〜150℃程度の低温領域で活
性炭等の炭素質材料を用いた同時脱硫脱硝法が提案され
(たとえば特開昭50-104774号、特開昭50-104775号、特
開昭55-81728号および特開平1-274826号など) 、実際に
実用化されている。
[0004] In addition, when there is no place to install a denitration reactor upstream of the air heater, the SCR by ammonia may be installed by providing heating means after wet flue gas desulfurization. There is a problem that fuel cost for heating to a high temperature of 400 ° C. increases. In contrast,
In recent years, a simultaneous desulfurization and denitration method using a carbonaceous material such as activated carbon has been proposed in the low temperature range of 130 to 150 ° C downstream of the air heater.
(For example, JP-A-50-104774, JP-A-50-104775, JP-A-55-81728, JP-A-1-74826, etc.) have been put to practical use.

【0005】この方法は排ガスにアンモニアを添加して
活性炭等の炭素質材料に導入することにより、SOx は硫
酸アンモニウムや酸性硫酸アンモニウムとして除去し、
NOxは窒素と水に分解するものである。ここで生成した
硫酸アンモニウムや酸性硫酸アンモニウムは炭素質材料
の表面あるいは細孔中に蓄積し、脱硝反応活性を低下さ
せるため、通常は炭素質材料を移動層として反応器より
抜き出し、炭素質材料を不活性ガス中で約400℃に加熱
して、硫酸アンモニウムや酸性硫酸アンモニウムを還元
脱着させ、炭素質材料を再生している。
In this method, ammonia is added to exhaust gas and introduced into a carbonaceous material such as activated carbon to remove SOx as ammonium sulfate or acidic ammonium sulfate.
NOx decomposes into nitrogen and water. The ammonium sulfate or ammonium acid sulfate produced here accumulates on the surface or pores of the carbonaceous material and reduces the denitration reaction activity.Therefore, the carbonaceous material is usually extracted from the reactor as a moving bed, and the carbonaceous material is inerted. Heating to about 400 ° C in a gas reduces and desorbs ammonium sulfate and ammonium ammonium sulfate to regenerate carbonaceous materials.

【0006】しかしこの方法では、硫酸アンモニウムや
酸性硫酸アンモニウムを還元脱着させるのに炭素質材料
やアンモニアを消費し、更にこの操作により炭素質材料
の強度が低下するため、炭素質材料の移動による損耗も
多くなり、運転コストが嵩むという問題点があった。ま
た、炭素質材料の損耗が多いことは活性金属を担持させ
た高活性の触媒を使用することを困難にし、反応器の大
型化を招く。さらに硫酸アンモニウムや酸性硫酸アンモ
ニウムの還元脱着生成物は二酸化硫黄 (SO2 )であり、
これを硫酸あるいは元素硫黄に変換して回収している
が、変換のための設備費が嵩むことと、これらは石膏に
比べ需要が小さく、且つ立地条件に制約が有るという問
題点があった。
However, in this method, a carbonaceous material or ammonia is consumed for reducing and desorbing ammonium sulfate or ammonium ammonium sulfate, and furthermore, the strength of the carbonaceous material is reduced by this operation. Therefore, there is a problem that the operating cost increases. Further, the large amount of wear of the carbonaceous material makes it difficult to use a highly active catalyst carrying an active metal, and causes an increase in the size of the reactor. Further, the product of reductive desorption of ammonium sulfate and ammonium ammonium sulfate is sulfur dioxide (SO 2 ),
This is converted into sulfuric acid or elemental sulfur and recovered. However, equipment costs for the conversion are increased, and there is a problem that these are less demanded than gypsum, and there are restrictions on location conditions.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決せんとす
る課題は、上記従来の排煙、脱硝方法の有する欠点を解
消する点にある。すなわち本発明は、エアヒータ下流の
低温域で実施しても炭素質材料の損耗を起こさない排煙
脱硝方法を、湿式石灰石−石膏法による排煙脱硫方法と
効果的に組合わせることにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the conventional smoke exhaust and denitration methods. That is, the present invention is to effectively combine a flue gas denitrification method that does not cause the loss of carbonaceous material even when it is performed in a low temperature region downstream of an air heater with a flue gas desulfurization method using a wet limestone-gypsum method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の排ガスの処理方法は、下記イ、ロ. ハおよびニの工
程からなることを特徴とする。 イ. 排ガスをpH3.5〜5.5の硫酸アンモニウム含有石灰
石−石膏スラリー溶液と接触させて該排ガス中の硫黄酸
化物の大部分を吸収除去すると共に、吸収した硫黄酸化
物により形成された亜硫酸を酸素含有ガスで酸化して石
膏を生成させる工程、 ロ. 上記工程イ. から排出する排ガスをpH5.5〜7の亜
硫酸アンモニウム溶液と接触させて残存硫黄酸化物を実
質的に除去すると共に、該亜硫酸アンモニウム溶液の一
部を前記工程イ. の石灰石−石膏スラリー溶液へ導入す
る工程、 ハ. 上記工程イ. から石膏を除去した後の溶液の一部を
抜き出し、これに消石灰を加えて該溶液中の硫酸アンモ
ニウムをアンモニアと石膏に複分解し、この複分解反応
液に空気または窒素を吹き込んでアンモニアを放散さ
せ、放散アンモニア含有空気または窒素を前記工程ロ.
の亜硫酸アンモニウム溶液に供給してアンモニアを吸収
させると共に、アンモニア放散後の石膏スラリー溶液は
前記工程イ. の石灰石−石膏スラリー溶液に加えるか、
又は石膏を分離後、石膏は前記工程イ. の石灰石−石膏
スラリー溶液に加え、分離液は系外へ排出する工程、 ニ. 上記工程ロ. から排出される残存硫黄酸化物が実質
的に除去された排ガスにアンモニアを添加した後、炭素
質材料を内蔵する反応層へ導入して該排ガス中の窒素酸
化物を還元除去する工程。
The method for treating exhaust gas according to the present invention, which solves the above-mentioned problems, is characterized by comprising the following steps (a), (b) and (d). A. The exhaust gas is brought into contact with a limestone-gypsum slurry solution containing ammonium sulfate having a pH of 3.5 to 5.5 to absorb and remove most of the sulfur oxides in the exhaust gas and to remove the sulfurous acid formed by the absorbed sulfur oxides. A step of oxidizing with an oxygen-containing gas to form gypsum; b. Contacting the exhaust gas discharged from the above step a with an ammonium sulfite solution having a pH of 5.5 to 7 to substantially remove residual sulfur oxides; A step of introducing a part of the ammonium sulfite solution into the limestone-gypsum slurry solution of the above step a. C. Extracting a part of the solution after removing the gypsum from the above step a., Adding slaked lime to the solution, Ammonium sulfate contained therein is metathesized into ammonia and gypsum, and air or nitrogen is blown into this metathesis reaction solution to diffuse ammonia, and the ammonia-containing air or nitrogen released in the above step .
While supplying ammonia to the ammonium sulfite solution to absorb ammonia, and adding the gypsum slurry solution after ammonia release to the limestone-gypsum slurry solution of the above step a.
Alternatively, after the gypsum is separated, the gypsum is added to the limestone-gypsum slurry solution in the above step a., And the separated liquid is discharged out of the system. D. The residual sulfur oxides discharged from the above step b. Are substantially removed. A step of adding ammonia to the exhaust gas and introducing it into a reaction layer containing a carbonaceous material to reduce and remove nitrogen oxides in the exhaust gas.

【0009】以下本発明を図1に示した工程にもとづ
き、説明する。ボイラー等燃焼設備より排出されたSOx,
NOxを含有する排ガスを導管1を経てガスガス熱交換器
2に供給し、後述するようにして脱硫され、導管13で供
給される排煙脱硫後の排ガスと熱交換した後、導管3に
より排ガス冷却塔4に導入する。
Hereinafter, the present invention will be described based on the steps shown in FIG. SOx discharged from combustion equipment such as boilers,
The exhaust gas containing NOx is supplied to the gas-gas heat exchanger 2 through the conduit 1, desulfurized as described later, and heat-exchanged with the exhaust gas after desulfurization supplied by the conduit 13, and then cooled by the conduit 3. Introduce into tower 4.

【0010】冷却塔4で導管5より供給される水溶液の
スプレーによって冷却された排ガスは導管6によって第
1脱硫塔7の下部に導入される。一方、第1脱硫塔7の
上部には、硫酸アンモニウムを含有するpH4.5〜5.5の
石灰石−石膏スラリー溶液 (以下、吸収液と略記する)
が第1脱硫塔7の下部から導管8によって供給され、ス
プレー等の手段により分散され、第1脱硫塔7を上昇す
る冷却された排ガスと向流接触して排ガス中のSOx が90
〜95% (又は大部分) 除去される。
The exhaust gas cooled by the spray of the aqueous solution supplied from the conduit 5 in the cooling tower 4 is introduced into the lower part of the first desulfurization tower 7 through the conduit 6. On the other hand, on the upper part of the first desulfurization tower 7, a limestone-gypsum slurry solution having a pH of 4.5 to 5.5 containing ammonium sulfate (hereinafter abbreviated as absorption liquid)
Is supplied from the lower part of the first desulfurization tower 7 by a conduit 8 and dispersed by means such as spraying, and countercurrently contacts the cooled exhaust gas rising in the first desulfurization tower 7 to reduce SOx in the exhaust gas to 90%.
~ 95% (or most) are removed.

【0011】第1脱硫塔7で大部分のSOx が除去された
排ガスは、次いで第2脱硫塔9の下部に導入され、第2
脱硫塔を上昇する間に第2脱硫塔9の上部に導管10によ
り供給されスプレー等の手段によって分散されたpH5.5
〜7の亜硫酸アンモニウム水溶液と向流接触して排ガス
中の残存SOx が数ppm 以下にまで、徹底的に除去され
る。
The exhaust gas from which most of the SOx has been removed in the first desulfurization tower 7 is then introduced into the lower part of the second desulfurization tower 9 and
During the ascent of the desulfurization tower, the pH 5.5 supplied by a conduit 10 to the upper part of the second desulfurization tower 9 and dispersed by means such as spraying.
(7), the remaining SOx in the exhaust gas is thoroughly removed until the residual SOx in the exhaust gas becomes several ppm or less.

【0012】第2脱硫塔9で残存SOx が除去され、NOx
と亜硫酸アンモニウム水溶液より発生する少量のストリ
ッピング・アンモニアを含有する排ガスは、導管11を経
てミストエリミネータ12に送られ、ミストが除去された
後に導管13を経てガスガス熱交換器2において導管1に
より供給される排ガスとの熱交換によって80〜110℃に
再加熱され、導管14を通って排ガス温度調節器15に送ら
れる。排ガス温度調節器15では、周知の適当な方法、た
とえばアフターバーナー等によってNOx が炭素質材料上
で還元されやすい温度の80〜200℃に排ガスの温度が調
節される。温度調節器15を出た排ガスは導管16の途中で
アンモニア分析計17により排ガス中のストリッピングア
ンモニアの濃度が分析された後に、導管18により供給さ
れるアンモニアガスと混合され、炭素質材料を内蔵する
反応層19へ導入される。導管18からのアンモニアガスの
供給量Q (kgmol/hr) は、排ガス中のNOx およびストリ
ッピングアンモニア量によって決定され、通常次式で示
される範囲である。
The remaining SOx is removed in the second desulfurization tower 9 and NOx is removed.
Exhaust gas containing a small amount of stripping ammonia generated from an aqueous solution of ammonium and sulfite is sent to a mist eliminator 12 via a conduit 11 and supplied by a conduit 1 in a gas gas heat exchanger 2 via a conduit 13 after mist is removed. It is reheated to 80 to 110 ° C. by heat exchange with the exhaust gas to be sent, and sent to an exhaust gas temperature controller 15 through a conduit 14. In the exhaust gas temperature controller 15, the temperature of the exhaust gas is adjusted to 80 to 200 ° C., which is a temperature at which NOx is easily reduced on the carbonaceous material, by a well-known appropriate method such as an afterburner. The exhaust gas that has exited the temperature controller 15 is mixed with the ammonia gas supplied by the conduit 18 after the concentration of the stripping ammonia in the exhaust gas is analyzed by the ammonia analyzer 17 in the middle of the conduit 16 and contains the carbonaceous material. Into the reaction layer 19. The supply amount Q (kgmol / hr) of the ammonia gas from the conduit 18 is determined by the amounts of NOx and stripping ammonia in the exhaust gas, and is usually in a range represented by the following equation.

【0013】0.7a-b <Q<1.2a-b ここで、aは排ガス中のNOx 量 (kgmol/hr) 、bはスト
リッピングアンモニア量 (kgmol/hr) である。反応層19
に導入された排ガスは、層内に充填された炭素質材料と
接触し、排ガス中のNOx は炭素質材料の触媒作用によっ
てアンモニアと次式のように反応し、無害な窒素と水に
変換される。
0.7a-b <Q <1.2a-b where a is the amount of NOx in the exhaust gas (kgmol / hr), and b is the amount of stripping ammonia (kgmol / hr). Reaction layer 19
The exhaust gas introduced into the bed comes into contact with the carbonaceous material filled in the bed, and NOx in the exhaust gas reacts with ammonia by the catalytic action of the carbonaceous material as shown in the following formula, and is converted into harmless nitrogen and water. You.

【0014】4NO+4NH3 + O2 →4N2 +6H2O 6NO2 +8NH3 →7N2 + 12H2O 清浄化された排ガスは、導管20を経て系外に排出され
る。本発明で使用される炭素質材料としては例えば比表
面積は50〜1500m2/gで通常、活性炭あるいは活性コーク
スと呼ばれている炭素質材料、あるいはこれらにTi, C
r, Mn, Fe, Co, Ni, Cu, V, Mo, W等から選ばれた1種
以上が担持されたもの等が挙げられる。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O The purified exhaust gas is discharged out of the system through the conduit 20. As the carbonaceous material used in the present invention, for example, a carbonaceous material having a specific surface area of 50 to 1500 m 2 / g, usually called activated carbon or activated coke, or Ti, C
One supported by at least one selected from the group consisting of r, Mn, Fe, Co, Ni, Cu, V, Mo, W and the like can be mentioned.

【0015】本発明では排ガス中のSOx は脱硝反応層に
入る前に数ppm 以下にまで徹底的に除去されているの
で、炭素質材料に生成する硫酸アンモニウムはほとんど
なく、長期間にわたってNOx の還元反応活性が維持され
る。したがって炭素質材料の再生操作は例えば半年〜一
年に一回程度行なえば良く、ボイラー等燃焼設備の定修
時などにあわせて行うこともできる。炭素質材料の再生
操作としては例えば、水洗、加熱処理等によって行うこ
とができ、また、脱硝反応層より触媒のみを取り出して
行うことも可能である。
In the present invention, since SOx in the exhaust gas is thoroughly removed to several ppm or less before entering the denitration reaction layer, almost no ammonium sulfate is generated in the carbonaceous material, and the NOx reduction reaction is carried out for a long period of time. Activity is maintained. Therefore, the operation of regenerating the carbonaceous material may be performed, for example, about once every six months to one year, and may be performed at the time of regular maintenance of combustion equipment such as a boiler. The operation of regenerating the carbonaceous material can be performed, for example, by washing with water, heat treatment, or the like, or can be performed by taking out only the catalyst from the denitration reaction layer.

【0016】上述したように本発明では触媒として用い
る炭素質材料の移動がなく、さらに長期間にわたって炭
素質材料の再生を必要としないため、炭素質材料の損耗
はほとんどないという利点がある。したがって触媒とし
て、より活性の高い上記した活性金属を担持させた炭素
質材料を用いることが特に効果的と言える。一方、第1
脱硫塔7においてSOx の大部分を吸収した吸収液は、第
1脱硫塔7の下部で導管21により供給された酸素含有ガ
ス、たとえば空気と接触し、吸収液中の亜硫酸は酸化さ
れて石膏が生成する。
As described above, in the present invention, there is no movement of the carbonaceous material used as a catalyst, and since there is no need to regenerate the carbonaceous material for a long period of time, there is an advantage that the carbonaceous material is hardly worn. Therefore, it can be said that it is particularly effective to use a carbonaceous material supporting the above-mentioned active metal having higher activity as a catalyst. Meanwhile, the first
The absorption liquid that has absorbed most of SOx in the desulfurization tower 7 comes into contact with an oxygen-containing gas, for example, air supplied by a conduit 21 at the lower part of the first desulfurization tower 7, and the sulfurous acid in the absorption liquid is oxidized to form gypsum. Generate.

【0017】本発明では吸収液が硫酸アンモニウムを含
有しているので、硫酸アンモニウムのpH緩衝作用により
SOx の吸収が促進される。本発明における吸収液中の硫
酸アンモニウム濃度は通常では0.01〜1.0mol/l、好ま
しくは0.1〜0.7mol/l である。図2は50℃における硫
酸アンモニウム水溶液のpH緩衝作用を示し、硫酸アンモ
ニウムを含まない石膏スラリー溶液に比べ、SO2 吸収に
対し大きな緩衝作用を示すことがわかる。従って硫酸ア
ンモニウムを含有しない場合に比べてSOx の吸収による
pHの低下が少ないため、高い脱硫率を達成することがで
きる。
In the present invention, since the absorption solution contains ammonium sulfate, the pH buffering action of ammonium sulfate causes
SOx absorption is promoted. In the present invention, the concentration of ammonium sulfate in the absorbing solution is usually 0.01 to 1.0 mol / l, preferably 0.1 to 0.7 mol / l. FIG. 2 shows the pH buffering action of the ammonium sulfate aqueous solution at 50 ° C., and shows that it has a larger buffering action on SO 2 absorption than the gypsum slurry solution containing no ammonium sulfate. Therefore, due to SOx absorption compared to the case without ammonium sulfate
Since the decrease in pH is small, a high desulfurization rate can be achieved.

【0018】また、第1脱硫塔7の下部においても硫酸
アンモニウムのpH緩衝作用によって石灰石の表面近傍は
pH上昇が少なくてすみ、高い石灰石の溶解速度を達成す
ることができる。この結果、未反応石灰石が少なくな
り、石灰石の利用率を高めることができる。第1脱硫塔
7において生成した石膏を含む吸収液は、導管22を介し
て石膏分離器23に送られ、石膏が分離された吸収液は導
管24によって濾液タンク25に貯えられ、さらに導管26に
よって石灰石スラリータンク27へ送られ、導管28により
供給された石灰石をスラリー化した後に導管29によって
第1脱硫塔7に供給される。
In the lower part of the first desulfurization tower 7, the pH near the surface of the limestone is reduced due to the pH buffering action of ammonium sulfate.
The pH rise is small and a high limestone dissolution rate can be achieved. As a result, the amount of unreacted limestone is reduced, and the utilization rate of limestone can be increased. The gypsum-containing absorbent produced in the first desulfurization tower 7 is sent to a gypsum separator 23 via a conduit 22, and the absorbent from which the gypsum has been separated is stored in a filtrate tank 25 by a conduit 24, and further by a conduit 26. The limestone supplied to the limestone slurry tank 27 is slurried by the conduit 28 and then supplied to the first desulfurization tower 7 by the conduit 29.

【0019】一方、濾液タンク25から吸収液の一部が導
管30で取り出されて排ガス冷却塔4へ送られ、導管3に
より供給される排ガスの冷却に使用された後に導管31に
よって排水処理工程32に送られる。排水処理工程32で有
害物質が除去された吸収液は、導管33で複分解タンク34
へ送られ、排水中の硫酸アンモニウムは導管35により供
給される消石灰スラリーと反応してアンモニアと石膏に
複分解する。
On the other hand, a part of the absorbent is taken out from the filtrate tank 25 by the conduit 30 and sent to the exhaust gas cooling tower 4, where it is used for cooling the exhaust gas supplied by the conduit 3, and then the waste water is treated by the conduit 31. Sent to The absorbent from which harmful substances have been removed in the wastewater treatment process 32 is sent to the
Ammonium sulfate in the waste water reacts with the slaked lime slurry supplied by the conduit 35 to metathesize into ammonia and gypsum.

【0020】複分解はpH9〜12で行なうのが好ましい。
生成したアンモニアは複分解タンク34の下部より供給さ
れる空気または窒素36によって排水中から放散され、導
管37によって第2脱硫塔吸収液タンク38の亜硫酸アンモ
ニウム水溶液に吹き込まれて吸収され、一方、アンモニ
アが除去された空気または窒素は導管39を経て第2脱硫
塔9へ導入される。
The metathesis is preferably carried out at pH 9-12.
The produced ammonia is released from the wastewater by air or nitrogen 36 supplied from the lower part of the double decomposition tank 34, and is blown into the aqueous solution of ammonium sulfite in the second desulfurization tower absorption liquid tank 38 by the conduit 37 to be absorbed. The removed air or nitrogen is introduced into the second desulfurization tower 9 via a conduit 39.

【0021】複分解タンク34で生成した石膏スラリーは
導管40によって取り出されて第1脱硫塔7に送られる。
また複分解タンク34で複分解された吸収液は排水として
導管41により排水シックナー42に送られ、ここで微細石
膏等を分離した後、導管43でpH調整槽44に送られ、導管
45から添加される酸によってpH6〜8に調整後放流され
る。
The gypsum slurry produced in the double decomposition tank 34 is taken out by the conduit 40 and sent to the first desulfurization tower 7.
Absorbent solution decomposed in the metathesis tank 34 is sent as wastewater to a drainage thickener 42 by a conduit 41, where fine gypsum and the like are separated, and then sent to a pH adjustment tank 44 by a conduit 43.
After adjusting the pH to 6 to 8 with an acid added from 45, the mixture is discharged.

【0022】一方、第2脱硫塔9において、排ガス中の
残存SOx を吸収した吸収液は、導管46によって吸収液タ
ンク38へ送られ、吸収液タンク38の吸収液中に吹き込ま
れる上記アンモニア含有空気または窒素と接触してアン
モニアを吸収し、残存SOx の吸収によって生成した酸性
亜硫酸アンモニウムは亜硫酸アンモニウムに賦活再生さ
れる。
On the other hand, in the second desulfurization tower 9, the absorbent containing the residual SOx in the exhaust gas is sent to an absorbent tank 38 by a conduit 46 and blown into the absorbent in the absorbent tank 38. Alternatively, it absorbs ammonia by contacting with nitrogen, and the ammonium acid sulfite generated by absorption of residual SOx is activated and regenerated by ammonium sulfite.

【0023】本発明における第2吸収塔で使用される吸
収液中の亜硫酸アンモニウム濃度は通常では 0.001〜0.
1mol/l、好ましくは 0.005〜0.05mol/l である。亜硫
酸アンモニウムは使用するpH範囲5.5〜7では大きなpH
緩衝作用を示すので、排ガス中のSOx 濃度が希薄でも効
率良く吸収することができる。また、本発明では亜硫酸
アンモニウムを吸収液として使用するため、通常数ppm
〜数10ppm のアンモニアが排ガス中へ放散されるが、後
段の脱硝反応用に供給するアンモニア量を排ガス中の放
散アンモニア量に応じ調整することができ、全体として
のアンモニアのバランスを保つことができる。
The concentration of ammonium sulfite in the absorbing solution used in the second absorption tower in the present invention is usually 0.001 to 0.1.
It is 1 mol / l, preferably 0.005 to 0.05 mol / l. Ammonium sulfite has a large pH in the pH range of 5.5 to 7
Since it exhibits a buffering action, it can be efficiently absorbed even when the SOx concentration in the exhaust gas is low. In addition, in the present invention, since ammonium sulfite is used as an absorbing solution, usually several ppm
Up to several tens of ppm of ammonia are diffused into the exhaust gas, but the amount of ammonia supplied for the subsequent denitration reaction can be adjusted according to the amount of diffused ammonia in the exhaust gas, and the overall ammonia balance can be maintained .

【0024】第2脱硫塔での残存SOx の吸収により吸収
液中の亜硫酸アンモニウム濃度は時間とともに上昇する
が、吸収液の一部を導管47によって第1脱硫塔下部の吸
収液中へ導入することで一定濃度を維持させることがで
きる。第1脱硫塔下部の吸収液中へ導入された亜硫酸ア
ンモニウムは、上述のとおり第1脱硫塔下部より供給さ
れる空気によって酸化され、硫酸アンモニウムとなり、
最終的には消石灰により、複分解され石膏として回収さ
れる。
Although the concentration of ammonium sulfite in the absorbing solution increases with time due to the absorption of residual SOx in the second desulfurization tower, a part of the absorbing solution must be introduced into the absorbing solution at the lower part of the first desulfurization tower by the conduit 47. Can maintain a constant concentration. Ammonium sulfite introduced into the absorption liquid at the lower part of the first desulfurization tower is oxidized by the air supplied from the lower part of the first desulfurization tower to form ammonium sulfate, as described above.
Finally, it is double-decomposed by slaked lime and collected as gypsum.

【0025】図1の脱硫塔7にはスプレー等を使用した
ガス連続、液分散型の吸収操作を示したが、吸収液中に
バブリング等により排ガスを分散させSOx の吸収を行う
液連続、ガス分散型すなわち、一槽内に収容したpH3.5
〜4.5の硫酸アンモニウムを含有する石灰石−石膏スラ
リーの液相連続の溶液中で、排ガス中のSOx の吸収と、
生成する亜硫酸の酸化と、生成した石膏の晶析とを行う
プロセスも使用できる。この場合には吸収液のpHは3.5
〜4.5とガス連続、液分散型より低いが、図2に示すよ
うに硫酸アンモニウムのpH緩衝作用はいっそう顕著であ
り、SOx の吸収が促進され、高脱硫率が達成できる。さ
らに、石灰石の中和反応も硫酸アンモニウムの緩衝作用
により円滑に進行するため石灰石の利用率をいっそう高
めることができる。
In the desulfurization tower 7 of FIG. 1, a continuous gas and liquid dispersion type absorption operation using a spray or the like is shown. Dispersion type, that is, pH 3.5 contained in one tank
Absorption of SOx in flue gas in a liquid phase continuous solution of limestone-gypsum slurry containing ~ 4.5 ammonium sulphate;
Processes that oxidize the resulting sulfurous acid and crystallize the formed gypsum can also be used. In this case, the pH of the absorbing solution is 3.5
The pH buffer action of ammonium sulfate is even more remarkable, as shown in FIG. 2, but the absorption of SOx is promoted, and a high desulfurization rate can be achieved. Further, the neutralization reaction of limestone also proceeds smoothly due to the buffering action of ammonium sulfate, so that the utilization rate of limestone can be further increased.

【0026】この液連続、ガス分散型の吸収操作を行う
ためには、一般にジェットバブリングリアクター (JB
R) と呼ばれている装置を使用するのが好ましい。ここ
でJBRにおけるSOx の除去について図面を用いて概説
する。図3は典型的なJBRの模式図である。排ガスは
入口プレナム50およびそれから液面下に伸びる多数のス
パージャーパイプ51を通って液面下 100〜400mm に吹き
込まれ、ジェットバブリング層52を形成する。この層で
高効率な気液接触が行われてSOx が吸収される。脱硫さ
れたガスはガスライザー53を通って外部に排出される。
ジェットバブリング層52の下には酸化用空気の供給によ
って連続した酸素溶解領域54が形成されており、ジェッ
トバブリング層で吸収されたSOx はその場ですぐに硫酸
イオン (SO4 2-) に酸化される。吸収液は、排ガス気泡
が分離された後に装置下部に移動し、これに中和および
カルシウムイオンの供給のために石灰石スラリーが注入
される。吸収液は次いで酸素溶解領域に移動する。この
領域で酸素を溶解した吸収液はジェットバブリング層に
移動してSOx の吸収および酸化の媒体として再び働くこ
とになる。生成した石膏の結晶は吸収液中に懸濁した状
態で存在するが、吸収液の一部が槽下部から引き抜かれ
るのに伴って槽外へ排出され、固液分離にかけられる。
このようにJBRは一槽で吸収、酸化、中和および晶析
の各操作が行なわれるため、装置が極めてコンパクトで
あり、しかも効率の良い脱硫を行うことができるのであ
る。
In order to carry out the liquid continuous and gas dispersion type absorption operation, a jet bubbling reactor (JB
It is preferable to use a device called R). Here, the removal of SOx in the JBR will be outlined with reference to the drawings. FIG. 3 is a schematic diagram of a typical JBR. The exhaust gas is blown 100-400 mm below the liquid level through an inlet plenum 50 and a number of sparger pipes 51 extending below the liquid level to form a jet bubbling layer 52. In this layer, highly efficient gas-liquid contact is performed and SOx is absorbed. The desulfurized gas is discharged to the outside through the gas riser 53.
A continuous oxygen dissolution region 54 is formed under the jet bubbling layer 52 by the supply of oxidizing air, and the SOx absorbed by the jet bubbling layer is immediately oxidized to sulfate ions (SO 4 2- ) on the spot. Is done. The absorbing liquid moves to the lower part of the apparatus after the exhaust gas bubbles are separated, and limestone slurry is injected into the lower part for neutralization and supply of calcium ions. The absorbent then moves to the oxygen dissolution zone. The absorbing solution in which oxygen is dissolved in this region moves to the jet bubbling layer and works again as a medium for absorbing and oxidizing SOx. The generated gypsum crystals exist in a suspended state in the absorbing liquid, but are discharged out of the tank as part of the absorbing liquid is withdrawn from the lower part of the tank, and subjected to solid-liquid separation.
As described above, since the operations of absorption, oxidation, neutralization, and crystallization are performed in a single tank, the apparatus is extremely compact, and efficient desulfurization can be performed.

【0027】さらに、JBRではガスライザー53出口部
に上部空間55を有しているので、この部分を利用して亜
硫酸アンモニウムの吸収液で残存SOx を除去することが
できる。この場合には上部空間55に吸収液をスプレーす
る方法等により実施することができ、全体として極めて
コンパクトな吸収装置となる。以下、本発明の実施例を
示す。
Furthermore, since the JBR has an upper space 55 at the outlet of the gas riser 53, the residual SOx can be removed by using this portion with an ammonium sulfite absorbing solution. In this case, it can be carried out by a method of spraying the absorbing liquid into the upper space 55 or the like, and an extremely compact absorbing device as a whole is obtained. Hereinafter, examples of the present invention will be described.

【0028】[0028]

【実施例】【Example】

実施例1:脱硫 図4に示した構成の装置を使用し、下記組成の模擬排ガ
スの処理を行った。 温度50℃の模擬排ガスを塔径45mmφ、塔高2,000mmの第
1脱硫塔60の上部に導入した。脱硫塔60は液連続、ガス
分散型の吸収装置であり、吸収液は0.3mol/l硫酸アン
モニウムを含有する石灰石−石膏スラリー溶液である。
導入された排ガスはガス分散管61より吸収液中に分散さ
れた。この時のガス分散口までの液深は静止液深として
150mm、ガス分散口から脱硫塔底部までの液深は1,000m
mであった。同時に酸化空気12Nl/hr を脱硫塔下部より
導入し、さらにガス分散口の直下のpHが4.0を維持する
ように炭酸カルシウムを含有するスラリー溶液を下記の
ように導入した。この時の脱硫率は95%であった。生成
した石膏を含有するスラリー溶液は脱硫塔下部よりポン
プで石膏分離器62に送り、石膏を分離された溶液を、吸
収液タンク63へ導入し、一部を炭酸カルシウムスラリー
タンク64へ供給して、炭酸カルシウムをスラリー状態に
分散させた後、脱硫塔60へ導入した。
Example 1 Desulfurization A simulated exhaust gas having the following composition was treated using the apparatus having the configuration shown in FIG. Simulated exhaust gas at a temperature of 50 ° C. was introduced into the upper part of the first desulfurization tower 60 having a tower diameter of 45 mmφ and a tower height of 2,000 mm. The desulfurization tower 60 is a liquid continuous, gas-dispersion type absorption device, and the absorption solution is a limestone-gypsum slurry solution containing 0.3 mol / l ammonium sulfate.
The introduced exhaust gas was dispersed in the absorption liquid through the gas dispersion pipe 61. At this time, the liquid depth up to the gas dispersion port is the stationary liquid depth.
150mm, liquid depth from gas dispersion port to bottom of desulfurization tower is 1,000m
m. At the same time, 12Nl / hr of oxidizing air was introduced from the lower part of the desulfurization tower, and a slurry solution containing calcium carbonate was introduced as described below so that the pH immediately below the gas dispersion port was maintained at 4.0. At this time, the desulfurization rate was 95%. The slurry solution containing the formed gypsum is sent from the lower part of the desulfurization tower to a gypsum separator 62 by a pump, and the gypsum separated solution is introduced into an absorption liquid tank 63, and a part is supplied to a calcium carbonate slurry tank 64. After the calcium carbonate was dispersed in a slurry state, it was introduced into the desulfurization tower 60.

【0029】脱硫塔60上部より排出した排ガスは第2脱
硫塔65の下部に導入した。第2脱硫塔65は塔径45mmφ、
塔高800mm で5mmφ×7mmの磁性ラシヒリングが層高40
0mm充填されている。脱硫塔65下部に導入した排ガスは
脱硫塔上部から5l/hrの流量で供給されるpH6.5の亜硫
酸アンモニウム0.02mol/l の吸収液と接触した後、脱硫
塔65の上部より排出した。
The exhaust gas discharged from the upper part of the desulfurization tower 60 was introduced into the lower part of the second desulfurization tower 65. The second desulfurization tower 65 has a tower diameter of 45 mmφ,
A magnetic Raschig ring with a tower height of 800 mm and a diameter of 5 mmφ x 7 mm has a layer height of 40
0mm is filled. The exhaust gas introduced into the lower part of the desulfurization tower 65 was discharged from the upper part of the desulfurization tower 65 after coming into contact with 0.02 mol / l of ammonium sulfite having a pH of 6.5 supplied from the upper part of the desulfurization tower at a flow rate of 5 l / hr.

【0030】排ガス中のSO2 を吸収した吸収液を脱硫塔
65の下部より抜き出して吸収タンク66に導入し、SO2
吸収に伴い吸収液pHが低下するため、タンク67より供給
されるアンモニア水によりpHを6.5に調整した後、再び
脱硫塔65上部へ供給した。さらに、SO2 の吸収に伴い吸
収液中の亜硫酸アンモニウムが増加するため、吸収液の
一部を第1脱硫塔60吸収液中へ導入して脱硫テストを続
けた。この時の第2脱硫塔出口ガス中のSO2 濃度は0.6p
pm、ストリッピングアンモニア濃度は15ppm であった。
第2脱硫塔での脱硫率は98.8%、第1脱硫塔も含めた全
脱硫率は99.94%であった。 実施例2:脱硝 前記脱硫テストの結果をもとに、下記組成の模擬排ガス
を調製し、脱硝処理を行った。
The absorbing solution having absorbed SO 2 in the exhaust gas is supplied to a desulfurization tower.
It is extracted from the lower part of 65 and introduced into the absorption tank 66. Since the pH of the absorbing solution decreases with the absorption of SO 2 , the pH is adjusted to 6.5 with ammonia water supplied from the tank 67, and then the desulfurization tower 65 is returned. Feed to the top. Further, since the amount of ammonium sulfite in the absorbing solution increases with the absorption of SO 2 , a part of the absorbing solution was introduced into the first desulfurizing tower 60 absorbing solution to continue the desulfurization test. At this time, the SO 2 concentration in the outlet gas of the second desulfurization tower was 0.6 p
pm, stripping ammonia concentration was 15 ppm.
The desulfurization rate in the second desulfurization tower was 98.8%, and the total desulfurization rate including the first desulfurization tower was 99.94%. Example 2: Denitration Based on the results of the desulfurization test, a simulated exhaust gas having the following composition was prepared and subjected to a denitration treatment.

【0031】 温度50℃の模擬排ガスに濃度1%のアンモニアガス30Nl
/hr を混合した後、管状電気炉中の脱硝反応器に導入し
た。脱硝反応器中の触媒層には40mmφ×320mmで4mmφ
×5mmのバナジウム担持活性炭触媒を充填した。触媒層
の温度を 100℃にし、SV約2,500hr-1の条件で排ガス
を処理した。脱硝率は初期は88%であったが、徐々に上
昇し、91〜93%で安定し、 4,000時間経過後も脱硝率の
低下は見られなかった。
[0031] Simulated exhaust gas at a temperature of 50 ° C and 30Nl of 1% ammonia gas
After mixing / hr, the mixture was introduced into a denitration reactor in a tubular electric furnace. 4mmφ at 40mmφ × 320mm for the catalyst layer in the denitration reactor
A 5 mm x 5 mm vanadium-loaded activated carbon catalyst was charged. The temperature of the catalyst layer was set to 100 ° C., and the exhaust gas was treated under the conditions of SV of about 2,500 hr −1 . The denitration rate was 88% in the beginning, but gradually increased, stabilized at 91 to 93%, and did not decrease after 4,000 hours.

【0032】[0032]

【発明の効果】以上述べたとおり、本発明の排ガスの処
理方法は、エアヒータ下流の低温域で脱硝可能な炭素質
材料を触媒としたアンモニア接触還元排煙脱硝プロセス
に最適な条件を提供すべく、前段の湿式石灰石−石膏法
をベースとした排煙脱硫でSOxを数ppm 以下に徹底的に
除去することを図ったものであり、これにより脱硝触媒
である炭素質材料は長期間再生する必要がなくなるた
め、炭素質材料の損耗がほとんどなく、したがって活性
金属を担持した高活性の触媒を使用することで脱硝反応
層の容積も小さくでき、さらに副生物は石膏のみであ
り、従来技術の問題点を解決した排ガスの処理方法と言
える。
As described above, the method for treating exhaust gas of the present invention is intended to provide optimum conditions for the ammonia catalytic reduction flue gas denitration process using a carbonaceous material capable of being denitrated in a low temperature region downstream of an air heater. It is intended to thoroughly remove SOx to several ppm or less by flue gas desulfurization based on the wet limestone-gypsum method in the previous stage, and it is necessary to regenerate carbonaceous materials as a denitration catalyst for a long period of time. Since there is no loss of carbonaceous material, the volume of the denitration reaction layer can be reduced by using a highly active catalyst supporting an active metal, and the by-product is only gypsum. It can be said that this is a method of treating exhaust gas that solves the problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程を示す図である。FIG. 1 is a view showing a process of the present invention.

【図2】硫酸アンモニア水溶液がSO2 吸収におよぼす緩
衝作用を示す図である。
FIG. 2 is a view showing a buffering effect of an aqueous solution of ammonium sulfate on SO 2 absorption.

【図3】SOx の大部分を吸収させるための石灰石−石膏
スラリーの液連続、ガス分散型ジェットバブリングリア
クターの概要図である。
FIG. 3 is a schematic diagram of a liquid continuous, gas-dispersed jet bubbling reactor of limestone-gypsum slurry for absorbing most of SOx.

【図4】実施例1に使用した模擬排ガスの脱硫装置を示
す。
FIG. 4 shows a simulated exhaust gas desulfurization apparatus used in Example 1.

【符号の説明】[Explanation of symbols]

7 第1脱硫塔 9 第2脱硫塔 18 アンモニアガス導管 19 炭素質材料反応層 21 酸素含有ガス導管 38 第2脱硫塔吸収タ
ンク 34 複分解タンク 35 消石灰供給導管
7 First desulfurization tower 9 Second desulfurization tower 18 Ammonia gas pipe 19 Carbonaceous material reaction layer 21 Oxygen-containing gas pipe 38 Second desulfurization tower absorption tank 34 Double decomposition tank 35 Slaked lime supply pipe

フロントページの続き (72)発明者 曽根原 尚紀 神奈川県横浜市鶴見区鶴見中央2丁目12 番1号 千代田化工建設株式会社内 (56)参考文献 特開 昭53−22870(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/50 B01D 53/77 Continuation of the front page (72) Inventor Naoki Sonehara 2-1-1, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Chiyoda Chemical Construction Co., Ltd. (56) References JP-A-53-22870 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/50 B01D 53/77

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記イ、ロ、ハおよびニの工程からなる
ことを特徴とする排ガスの処理方法。 イ. 排ガスをpH3.5〜5.5の硫酸アンモニウム含有石灰
石−石膏スラリー溶液と接触させて該排ガス中の硫黄酸
化物の大部分を吸収除去すると共に、吸収した硫黄酸化
物により形成された亜硫酸を酸素含有ガスで酸化して石
膏を生成させる工程、 ロ. 上記工程イ. から排出する排ガスをpH5.5〜7の亜
硫酸アンモニウム溶液と接触させて残存硫黄酸化物を実
質的に除去すると共に、該亜硫酸アンモニウム溶液の一
部を前記工程イ. の石灰石−石膏スラリー溶液へ導入す
る工程、 ハ. 上記工程イ. から石膏を除去した後の溶液の一部を
抜き出し、これに消石灰を加えて該溶液中の硫酸アンモ
ニウムをアンモニアと石膏に複分解し、この複分解反応
液に空気または窒素を吹き込んでアンモニアを放散さ
せ、放散アンモニア含有空気または窒素を前記工程ロ.
の亜硫酸アンモニウム溶液に供給してアンモニアを吸収
させると共に、アンモニア放散後の石膏スラリー溶液は
前記工程イ. の石灰石−石膏スラリー溶液に加えるか、
又は石膏を分離後、石膏は前記工程イ. の石灰石−石膏
スラリー溶液に加え、分離液は系外へ排出する工程、 ニ. 上記工程ロ. から排出される残存硫黄酸化物が実質
的に除去された排ガスにアンモニアを添加した後、炭素
質材料を内蔵する反応層へ導入して該排ガス中の窒素酸
化物を還元除去する工程。
1. A method for treating exhaust gas, comprising the following steps (a), (b), (c) and (d). A. The exhaust gas is brought into contact with a limestone-gypsum slurry solution containing ammonium sulfate having a pH of 3.5 to 5.5 to absorb and remove most of the sulfur oxides in the exhaust gas and to remove the sulfurous acid formed by the absorbed sulfur oxides. A step of oxidizing with an oxygen-containing gas to form gypsum; b. Contacting the exhaust gas discharged from the above step a with an ammonium sulfite solution having a pH of 5.5 to 7 to substantially remove residual sulfur oxides; A step of introducing a part of the ammonium sulfite solution into the limestone-gypsum slurry solution of the above step a. C. Extracting a part of the solution after removing the gypsum from the above step a., Adding slaked lime to the solution, Ammonium sulfate contained therein is metathesized into ammonia and gypsum, and air or nitrogen is blown into this metathesis reaction solution to diffuse ammonia, and the ammonia-containing air or nitrogen released in the above step .
While supplying ammonia to the ammonium sulfite solution to absorb ammonia, and adding the gypsum slurry solution after ammonia release to the limestone-gypsum slurry solution of the above step a.
Alternatively, after the gypsum is separated, the gypsum is added to the limestone-gypsum slurry solution in the above step a., And the separated liquid is discharged out of the system. D. The residual sulfur oxides discharged from the above step b. Are substantially removed. A step of adding ammonia to the exhaust gas and introducing it into a reaction layer containing a carbonaceous material to reduce and remove nitrogen oxides in the exhaust gas.
JP24824292A 1992-09-17 1992-09-17 Exhaust gas treatment method Expired - Fee Related JP3248956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24824292A JP3248956B2 (en) 1992-09-17 1992-09-17 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24824292A JP3248956B2 (en) 1992-09-17 1992-09-17 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH0691132A JPH0691132A (en) 1994-04-05
JP3248956B2 true JP3248956B2 (en) 2002-01-21

Family

ID=17175275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24824292A Expired - Fee Related JP3248956B2 (en) 1992-09-17 1992-09-17 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3248956B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943612B4 (en) * 1999-09-11 2004-07-15 Robert Bosch Gmbh Method for operating a gas burner with modulating burner output
JP5335740B2 (en) * 2010-08-03 2013-11-06 株式会社日立製作所 Exhaust gas treatment method and equipment
JP6632279B2 (en) * 2015-09-11 2020-01-22 東京瓦斯株式会社 Desulfurizing agent for fuel gas
CN106512697A (en) * 2016-11-04 2017-03-22 华电电力科学研究院 Limestone-lime combined flue gas desulfurization device
CN108014610A (en) * 2018-01-05 2018-05-11 靳新令 Ammonia desulfurizing process and its desulfurizer
CN111265997B (en) * 2020-03-27 2023-09-22 张明 Tubular pressurized oxidation ammonification integrated reaction system for flue gas ammonia desulfurization
CN111450678B (en) * 2020-04-07 2022-07-29 宁波弗镁瑞环保科技有限公司 Method and device for purifying waste gas containing chlorine or/and sulfur to obtain byproduct ammonium salt
CN111495160A (en) * 2020-05-29 2020-08-07 广东佳德环保科技有限公司 Desulfurization and denitrification system and method by using ozone oxidation in cooperation with ammonia process
CN115041007A (en) * 2022-06-23 2022-09-13 河北冀衡药业股份有限公司 Sulfur dioxide gas recovery system and method
CN116081646A (en) * 2022-11-21 2023-05-09 昆明理工大学 Method for efficiently treating ammonia desulfurization mother liquor through multistage oxidation

Also Published As

Publication number Publication date
JPH0691132A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
US8110164B2 (en) Flue-Gas purification and reclamation system and method thereof
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
CN102188882B (en) Integrated method for simultaneously realizing denitrification, desulfurization and heavy metal removal from flue gas, and special equipment
CN101385943A (en) Deprivation technique based on semi-dry process
CN106823785A (en) A kind of desulfurizing industrial fume denitrification apparatus and method based on NACF
CN101632897B (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
JP3248956B2 (en) Exhaust gas treatment method
JP2678697B2 (en) Method of removing acid gas from combustion exhaust gas
JPH0262296B2 (en)
CN106540524A (en) For the semi-dry desulfurization and denitrification device and desulfurizing and denitrifying process of high sulfur concentration flue gas
CN110064293B (en) Method for desulfurization, denitrification and demercuration of flue gas
EP0827774A1 (en) Process for removing SO2 and NOx from a gaseous stream
CN205127700U (en) System for low temperature wet process is to desulfurization of sintering flue gas denitration
JP3337382B2 (en) Exhaust gas treatment method
JP2003053134A (en) Desulfurization and decarbonation method
CN212492355U (en) Ozone oxidation is SOx/NOx control system of ammonia process in coordination
JPH05317646A (en) Waste gas treating method
CN202036917U (en) Integrated equipment for desulfurization, denitration and demetalization of flue gas
JPH0768132A (en) Desulfurizing and denitrifying method
JP2000102719A (en) Treatment of waste gas and device therefor
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system
JPH02277522A (en) Process for removing sox from gas mixture
JPH06114232A (en) Method for desulfurizing exhaust gas
JP2000262861A (en) Exhaust gas treatment method and apparatus
CN211987938U (en) Ozone oxidation desulfurization and denitrification system capable of realizing flue gas waste heat recovery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees