JPH05317646A - Waste gas treating method - Google Patents

Waste gas treating method

Info

Publication number
JPH05317646A
JPH05317646A JP4126458A JP12645892A JPH05317646A JP H05317646 A JPH05317646 A JP H05317646A JP 4126458 A JP4126458 A JP 4126458A JP 12645892 A JP12645892 A JP 12645892A JP H05317646 A JPH05317646 A JP H05317646A
Authority
JP
Japan
Prior art keywords
carbonaceous material
exhaust gas
ammonia
gypsum
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4126458A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
隆志 木村
Ataru Wakabayashi
中 若林
Yoichi Umehara
洋一 梅原
Hisanori Sonehara
尚紀 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4126458A priority Critical patent/JPH05317646A/en
Publication of JPH05317646A publication Critical patent/JPH05317646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To provide a treating method in which a desulfurization method excellent in SOx absorbing ability even at low pH and a flue gas denitrification method having a few loss of carbonaceous material are combined. CONSTITUTION:Nitrogen oxide contg. waste gas after removing most of sulfur oxide by a wet limestone-gypsum flue gas desulfurization method is heated to 90-200 deg.C and after adding ammonia, the gas is introduced into reaction layers 17-19, 24 incorporating carbonaceous material, where nitrogen oxide is reduced to nitrogen to remove nitrogen oxide from the waste gas. Simultaneously, the carbonaceous material whose catalytic ability was lowered by ammonium sulfate formed on the carbonaceous material is washed with water to regenerate it and water solution of ammonium sulfate obtained by the water washing is introduced into a liquid absorbent of the wet limestone-gypsum flue gas desulfurization method. Alkali is added to waste water discharged by the wet limestone-gypsum flue gas desulfurization method to double-decompose ammonium sulfate in the waste water into alkali sulfate and ammonia and the generated ammonia-contg. gas is added to the waste gas before the latter is introduced into the reaction layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫黄酸化物 (SOx)およ
び窒素酸化物 (NOx)を含有する排ガスの処理方法に関
し、更に詳しくは湿式排煙脱硫法と炭素質材料を使用し
た乾式排煙脱硝法を有機的に結合させた排ガスの処理方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas containing sulfur oxides (SOx) and nitrogen oxides (NOx), and more particularly to a wet flue gas desulfurization method and a dry exhaust method using a carbonaceous material. The present invention relates to a method for treating exhaust gas organically combined with a smoke denitration method.

【0002】[0002]

【従来の技術】各種燃焼排ガスや工場排ガスなどのSOx
やNOx を含む排ガスの処理方法としては、通常はSOx、N
Ox が別々に処理されている場合が多く、SOx に関して
は石灰石を中和吸収剤として使用し、有用且つ需要の多
い石膏として回収する湿式の石灰石−石膏法が主流を占
めている。しかしながら、この湿式石灰石−石膏法で
は、吸収した亜硫酸の酸化をスムーズにし、生成亜硫酸
カルシウムによるスケーリングを防止するために、吸収
液は3.5〜5.5といった低いpHで運転されており、石灰
石の溶解速度が小さいためSOx の吸収能力が小さく、大
きな液/ガス比を必要とし、必要動力が大きいという問
題があった。一方、NOx に関しては 250〜400℃の高温
で金属酸化物を触媒とした乾式のアンモニアによる選択
接触還元法(SCR) が主流を占めている。
[Prior Art] SOx such as various combustion exhaust gas and factory exhaust gas
SOx and N are usually used to treat exhaust gas containing NOx and NOx.
Ox is often treated separately, and for SOx, the wet limestone-gypsum method, which uses limestone as a neutralizing absorbent and recovers it as useful and highly demanded gypsum, is the mainstream. However, in this wet limestone-gypsum method, the absorption liquid is operated at a low pH of 3.5 to 5.5 in order to smooth the oxidation of the absorbed sulfite and prevent the scaling due to the generated calcium sulfite. The SOx absorption capacity is low due to its low dissolution rate, a large liquid / gas ratio is required, and the required power is large. On the other hand, the mainstream of NOx is the selective catalytic reduction method (SCR) with dry ammonia using metal oxide as a catalyst at a high temperature of 250 to 400 ° C.

【0003】しかし、この金属酸化物触媒でのSCRは
高温が必要なことからボイラーのエアヒータ上流側に脱
硝反応器を設置して脱硝を行わねばならず、排ガス中に
含まれる三酸化硫黄 (SO3) や脱硝反応触媒上で生成す
るSO3 と脱硝用に吹き込んだアンモニアが反応し、生成
した硫酸アンモニウムや酸性硫酸アンモニウムが下流の
エアヒータ上あるいはガスガス熱交換器上で析出堆積し
て閉塞や腐蝕等を起こすと言う欠点があった。
However, since the SCR with this metal oxide catalyst requires a high temperature, a denitration reactor must be installed upstream of the air heater of the boiler to denitrate, and sulfur trioxide (SO 3) contained in the exhaust gas (SO 3 ) and SO 3 produced on the denitration reaction catalyst react with ammonia blown for denitration, and the produced ammonium sulfate or ammonium acid sulfate deposits and deposits on the downstream air heater or gas gas heat exchanger to prevent clogging and corrosion. It had the drawback of causing it.

【0004】また、このアンモニアによるSCRはエア
ヒータ上流側に脱硝反応器を設置する場所が無いときな
どには、湿式の排煙脱硫の後に加熱手段を設けて設置さ
れる場合もあるが、 250〜400℃の高温に加熱するため
の燃料費が嵩むという問題点があった。これらに対し、
近年エアヒータ下流の 130〜150℃程度の低温領域で活
性炭等の炭素質材料を用いた同時脱硫脱硝法が提案され
(たとえば特開昭50-104774号、特開昭50-104775号、特
開昭55-81728号および特開平1-274826号など) 、実際に
実用化されている。この方法は排ガスにアンモニアを添
加して活性炭等の炭素質材料に導入することにより、SO
x は硫酸アンモニウムや酸性硫酸アンモニウムとして除
去し、NOx は窒素と水に分解するものである。ここで生
成した硫酸アンモニウムや酸性硫酸アンモニウムは炭素
質材料の表面あるいは細孔中に蓄積し、脱硝反応活性を
低下させるため、通常は炭素質材料を移動層として反応
器より抜き出し、炭素質材料を不活性ガス中で約400℃
に加熱して、硫酸アンモニウムや酸性硫酸アンモニウム
を還元脱着させ、炭素質材料を再生している。
In addition, when there is no place to install a denitration reactor on the upstream side of the air heater, the ammonia-based SCR may be installed with a heating means after the wet flue gas desulfurization. There has been a problem that the fuel cost for heating to a high temperature of 400 ° C increases. Against these,
In recent years, a simultaneous desulfurization denitration method using a carbonaceous material such as activated carbon has been proposed in a low temperature range of 130 to 150 ° C downstream of an air heater.
(For example, JP-A-50-104774, JP-A-50-104775, JP-A-55-81728 and JP-A-1-274826) have been put to practical use. In this method, ammonia is added to the exhaust gas and introduced into carbonaceous materials such as activated carbon.
X is removed as ammonium sulfate or acidic ammonium sulfate, and NOx is decomposed into nitrogen and water. The ammonium sulphate and ammonium acid sulphate produced here accumulate on the surface or in the pores of the carbonaceous material and reduce the denitration reaction activity.Therefore, the carbonaceous material is usually withdrawn as a moving layer from the reactor and the carbonaceous material is inactive. About 400 ℃ in gas
The carbonaceous material is regenerated by heating and desorbing ammonium sulfate or acidic ammonium sulfate to reduce and desorb it.

【0005】しかしこの方法では、硫酸アンモニウムや
酸性硫酸アンモニウムを還元脱着させるのに炭素質材料
やアンモニアを消費し、更にこの操作により炭素質材料
の強度が低下するため、炭素質材料の移動による損耗も
多くなり、運転コストが嵩むという問題点があった。さ
らに硫酸アンモニウムや酸性硫酸アンモニウムの還元脱
着生成物は二酸化硫黄 (SO2) であり、これを硫酸ある
いは元素硫黄に変換して回収しているが、変換のための
設備費が嵩むことと、これらは石膏に比べ需要が小さ
く、且つ立地条件に制約が有るという問題点があった。
However, according to this method, carbonaceous material and ammonia are consumed for the reductive desorption of ammonium sulfate and acidic ammonium sulfate, and the strength of the carbonaceous material is reduced by this operation, so that the carbonaceous material is often worn away. Therefore, there is a problem that the operating cost increases. Furthermore, the reductive desorption product of ammonium sulfate and acidic ammonium sulfate is sulfur dioxide (SO 2 ), which is converted to sulfuric acid or elemental sulfur for recovery, but the equipment cost for conversion is high, and these are plaster. There was a problem that the demand was small compared to the above and there were restrictions on location conditions.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決せんとす
る課題は、上記従来の脱硫、脱硝方法の有する欠点を解
消する点にある。すなわち、現在最も優れた排煙脱硫法
として知られている湿式石灰石−石膏法と、エアヒータ
下流の低温域で実施可能な炭素質材料を用いた排煙脱硝
法とを有機的に結合させることで、低pHでもSOXの吸収
能力の優れた排煙脱硫法と炭素質材料の損耗の少ない排
煙脱硝法とを組合せた技術を提供することにある。
The problem to be solved by the present invention is to eliminate the drawbacks of the above conventional desulfurization and denitration methods. That is, by organically combining the wet limestone-gypsum method, which is currently known as the best flue gas desulfurization method, and the flue gas denitrification method using a carbonaceous material that can be performed in the low temperature region downstream of the air heater. The purpose of the present invention is to provide a technology that combines the flue gas desulfurization method, which has excellent SO X absorption capacity even at low pH, with the flue gas desulfurization method, which causes less wear of carbonaceous materials.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の排ガスの処理方法は、湿式石灰石−石膏排煙脱硫法
により硫黄酸化物の大部分を除去した後の窒素酸化物含
有排ガスを80〜200℃に加熱し、この加熱した排ガスに
アンモニアを添加した後に炭素質材料を内蔵する反応層
へ導入して前記窒素酸化物を窒素に還元して前記排ガス
から該窒素酸化物を除去すると共に、前記炭素質材料上
に生成した硫酸アンモニウムにより触媒能力の低下した
炭素質材料を水洗して炭素質材料を再生し、該再生した
炭素質材料を前記窒素酸化物の除去に供し、炭素質材料
の前記水洗により得られた硫酸アンモニウム水溶液を湿
式石灰石−石膏排煙脱硫法の吸収液中へ導入し、湿式石
灰石−石膏排煙脱硫法より排出された排水にアルカリを
添加して排水中の硫酸アンモニウムを硫酸アルカリとア
ンモニアに複分解し、発生したアンモニア含有ガスを前
記反応層へ導入前の前記排ガスに添加することを特徴と
するものである。
A method for treating exhaust gas according to the present invention which solves the above-mentioned problems, is a method for treating exhaust gas containing nitrogen oxides after removing most of sulfur oxides by wet limestone-gypsum flue gas desulfurization method. ~ 200 ℃, and after adding ammonia to the heated exhaust gas, introduce the carbonaceous material into a reaction layer containing a carbonaceous material to reduce the nitrogen oxides to nitrogen and remove the nitrogen oxides from the exhaust gas. The carbonaceous material whose catalytic ability has been lowered by ammonium sulfate formed on the carbonaceous material is washed with water to regenerate the carbonaceous material, and the regenerated carbonaceous material is subjected to removal of the nitrogen oxides. The ammonium sulphate aqueous solution obtained by washing with water is introduced into the absorbent of the wet limestone-gypsum flue gas desulfurization method, and alkali is added to the wastewater discharged from the wet limestone-gypsum flue gas desulfurization method to remove sulfur in the wastewater. Ammonium was metathesis sulfate alkali and ammonia, characterized in that the addition of generated ammonia-containing gas to the exhaust gas prior to introduction into the reaction layer.

【0008】以下本発明を図1に示した工程にもとづ
き、説明する。ボイラー等燃焼設備より排出されたSOx,
NOxを含有する 130〜150℃の排ガスを導管1を経てガ
スガス熱交換器2で排煙脱硫後の排ガスと熱交換した
後、導管3により排ガス冷却塔4に導入する。冷却塔4
で導管5より供給される水溶液のスプレーによって冷却
された排ガスは導管6によって脱硫塔7の下部に導入さ
れる。一方、脱硫塔7の上部には、石灰石を含有するpH
5〜5.5の吸収液が導管8によって供給され、スプレー
等の手段により噴霧され、脱硫塔7を上昇する冷却され
た排ガスと向流接触して排ガス中のSOx の大部分が除去
される。
The present invention will be described below based on the steps shown in FIG. SOx emitted from combustion equipment such as boilers,
The exhaust gas containing NOx at 130 to 150 ° C. is heat-exchanged with the exhaust gas after flue gas desulfurization in the gas-gas heat exchanger 2 through the conduit 1, and then introduced into the exhaust gas cooling tower 4 through the conduit 3. Cooling tower 4
The exhaust gas cooled by the spray of the aqueous solution supplied from the conduit 5 is introduced into the lower part of the desulfurization tower 7 by the conduit 6. On the other hand, in the upper part of the desulfurization tower 7, the pH containing limestone
The absorption liquid of 5 to 5.5 is supplied by the conduit 8 and is sprayed by means such as a spray, and comes into countercurrent contact with the cooled exhaust gas rising in the desulfurization tower 7 to remove most of SOx in the exhaust gas. ..

【0009】脱硫塔上部より排出され、NOx と少量のSO
x を含有する排ガスは導管9を経てガスガス熱交換器2
で80〜110℃に加熱された後、導管10を通って排ガス温
度調節器11に入り、ここで必要に応じ排ガスの温度は周
知の適当な方法、たとえばアフタバーナー等によってNO
x が炭素質材料上で還元されやすい温度、80〜200℃に
調節される。
NOx and a small amount of SO are discharged from the upper part of the desulfurization tower.
The exhaust gas containing x passes through the conduit 9 and the gas-gas heat exchanger 2
After being heated to 80-110 ° C. at 100 ° C., it enters the exhaust gas temperature controller 11 through the conduit 10, where the temperature of the exhaust gas is adjusted to NO if necessary by a well-known suitable method such as an afterburner.
The temperature at which x is easily reduced on the carbonaceous material is adjusted to 80 to 200 ° C.

【0010】温度調節器11から出た排ガスは導管12の途
中でアンモニア供給導管13よりアンモニアガスと混合さ
れ、炭素質材料を内蔵する反応層、たとえば固定層充填
塔に導かれる。ここで充填塔としては、図示のように複
数の固定層充填塔、たとえば図示のように17、18、19お
よび24の四本の固定層充填塔が用いられ、この中、まず
充填塔17、18および19においてNOx の還元が行なわれ、
一方、充填塔24では後述のように炭素質材料の再生が行
なわれる。すなわちアンモニアガスと混合された排ガス
は導管12から導管14、15、16に分岐して炭素質材料が充
填された固定層充填塔17、18、19にそれぞれ導入され
る。
The exhaust gas from the temperature controller 11 is mixed with the ammonia gas from the ammonia supply conduit 13 in the middle of the conduit 12 and introduced into a reaction bed containing a carbonaceous material, for example, a fixed bed packed tower. Here, as the packed tower, a plurality of fixed bed packed towers as shown in the figure, for example, four fixed bed packed towers of 17, 18, 19 and 24 as shown in the figure are used. NOx reduction is performed at 18 and 19,
On the other hand, in the packed tower 24, the carbonaceous material is regenerated as described later. That is, the exhaust gas mixed with the ammonia gas is branched from the conduit 12 into the conduits 14, 15, 16 and introduced into the fixed bed packed towers 17, 18, 19 respectively filled with the carbonaceous material.

【0011】ここでアンモニアガスの供給量Q(kgmol/h
r)は排ガス中のNOx、SOx の量によって決められ、通常
次式の範囲で用いられる。 0.7× (a+2b) <Q<1.2× (a+2b) aは排ガス中のNOx 量(kgmol/hr)、bはSOx 量(kgmol/h
r)である。充填塔17、18、19…24に導入された排ガスは
塔内に充填された炭素質材料と接触し、排ガス中のNOx
は炭素質材料の触媒作用によってアンモニアと次式の如
く反応し、無害な窒素と水に変換される。
Here, the supply amount of ammonia gas Q (kgmol / h
r) is determined by the amount of NOx and SOx in the exhaust gas, and is usually used in the range of the following formula. 0.7 × (a + 2b) <Q <1.2 × (a + 2b) a is the amount of NOx in the exhaust gas (kgmol / hr), b is the amount of SOx (kgmol / h)
r). The exhaust gas introduced into the packed towers 17, 18, 19 ... 24 comes into contact with the carbonaceous material packed in the towers, and NOx in the exhaust gas
Is reacted with ammonia by the catalytic action of carbonaceous material as shown in the following formula, and is converted into harmless nitrogen and water.

【0012】4NO+4NH3 + O2 →4N2 +6H2O 6NO2 +8NH3 →7N2 + 12H2O また、排ガス中のSOx は炭素質材料に吸着、酸化された
後、アンモニアと反応して硫酸アンモニウムを生成し、
排ガスより除去される。こうして清浄化された排ガスは
導管20、21、22を通って導管23に合流して系外に排出さ
れる。本発明で使用される炭素質材料としては例えば比
表面積は50〜1500m2/gで通常、活性炭あるいは活性コー
クスと呼ばれている炭素質材料、あるいはこれらにTi,
Cr, Mn, Fe, Co, Ni, Cu, V, Mo, W等から選ばれた1種
以上が担持されたもの等が挙げられる。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O SOx in the exhaust gas is adsorbed and oxidized by the carbonaceous material, and then reacts with ammonia to form ammonium sulfate. Generate,
Removed from exhaust gas. The exhaust gas thus cleaned passes through the conduits 20, 21, 22 and merges with the conduit 23 to be discharged to the outside of the system. As the carbonaceous material used in the present invention, for example, a specific surface area of 50 to 1500 m 2 / g is usually a carbonaceous material called activated carbon or activated coke, or Ti,
Examples thereof include those carrying one or more selected from Cr, Mn, Fe, Co, Ni, Cu, V, Mo, W and the like.

【0013】炭素質材料に付着、沈積した硫酸アンモニ
ウムは時間とともに増加し、NOx の還元反応活性を徐々
に低下させる。従ってNOx の還元反応活性が所定値以下
になる前に炭素質材料の再生操作を行うことが必要であ
る。NOx の還元反応活性が所定値以下になるまでの時間
については、処理する排ガスの諸条件、使用する炭素質
材料の性状、排ガスの処理条件等により予め設定され
る。
Ammonium sulfate deposited and deposited on the carbonaceous material increases with time and gradually reduces NOx reduction reaction activity. Therefore, it is necessary to regenerate the carbonaceous material before the NOx reduction reaction activity falls below a predetermined value. The time until the NOx reduction reaction activity falls below a predetermined value is set in advance according to various conditions of the exhaust gas to be treated, properties of the carbonaceous material used, exhaust gas treatment conditions, and the like.

【0014】充填塔17、18、19で排ガスの処理が行われ
ている間、上記のように充填塔24では炭素質材料の再生
操作が行われる。再生操作は洗浄水によって行ない、洗
浄水としては排煙脱硫吸収液及び/または水を使用す
る。導管25より石膏を分離した排煙脱硫吸収液及び/ま
たは導管26より水を充填塔24の上部に供給し、塔内の炭
素質材料を洗浄する。洗浄方法としては充填塔上部より
スプレーする方法や下部バルブ31を閉鎖して浸漬する方
法等により行う。この洗浄により炭素質材料に付着、沈
積していた硫酸アンモニウムは洗浄水中に溶出し、洗浄
水は充填塔下部の導管27より洗浄水タンク28へ導入され
る。この洗浄操作によって炭素質材料は再生される。
While the exhaust gas is being treated in the packed towers 17, 18, and 19, the carbonaceous material is regenerated in the packed tower 24 as described above. The regeneration operation is carried out with washing water, and the flue gas desulfurization absorbent and / or water is used as the washing water. The flue gas desulfurization absorption liquid in which gypsum is separated from the conduit 25 and / or water is supplied to the upper part of the packed tower 24 from the conduit 26 to wash the carbonaceous material in the tower. As a cleaning method, a method of spraying from the upper part of the packed tower, a method of closing the lower valve 31 and immersing, etc. are used. By this washing, ammonium sulfate attached to and deposited on the carbonaceous material is eluted into the washing water, and the washing water is introduced into the washing water tank 28 through the conduit 27 at the lower part of the packed tower. The carbonaceous material is regenerated by this washing operation.

【0015】洗浄操作を終了した充填塔24の炭素質材料
の乾燥はダンパー29及び30を開放し、バルブ31及び32を
閉鎖して、排ガス塔内に通過させることによって行うこ
とができる。再生を終了した充填塔24は排ガスの処理工
程に復帰し、同時にダンパー33及び34を閉鎖し、バルブ
35及び36を開放することによって次に充填塔19が再生工
程に入る。
Drying of the carbonaceous material in the packed tower 24 which has completed the washing operation can be carried out by opening the dampers 29 and 30 and closing the valves 31 and 32 to allow the carbonaceous material to pass through the exhaust gas tower. After the regeneration, the packed tower 24 returns to the exhaust gas treatment process, and at the same time, the dampers 33 and 34 are closed and the valve is closed.
The packed column 19 then enters the regeneration process by opening 35 and 36.

【0016】このように各充填塔に設置したダンパー及
びバルブの切り替えを行いながら順次、排ガス処理工程
と再生工程を繰り返すことによって排ガスを連続的に処
理することができる。また上述したように固定層充填層
では、炭素質材料の移動がなく、かつ炭素質材料を水洗
によって再生しているため、炭素質材料の損耗がほとん
どないという利点がある。
Thus, exhaust gas can be continuously treated by sequentially repeating the exhaust gas treatment step and the regeneration step while switching the damper and valve installed in each packed column. Further, as described above, in the fixed bed packed bed, the carbonaceous material does not move and the carbonaceous material is regenerated by washing with water, so that there is an advantage that the carbonaceous material is hardly worn.

【0017】一方、タンク28に貯えられた硫酸アンモニ
ウムを含有する洗浄水は、導管29によって脱硫塔7の下
部の脱硫吸収液に混合される。これにより導管8によっ
て脱硫塔上部にSOx 吸収のために供給される吸収液は硫
酸アンモニウムを含有し、硫酸アンモニウムのもつpH緩
衝作用によりSOx の吸収が促進される。本発明により吸
収液中に蓄積する硫酸アンモニウム濃度は、排煙脱硫プ
ロセスからの排水量によって異なるが、0.1〜1.0mol/l
通常は0.2〜0.7mol/lの範囲となる。図2は硫酸アンモ
ニウム水溶液のもつpH緩衝作用を示したもので、硫酸ア
ンモニウムを含まない石膏スラリー溶液に比べSO2 吸収
に対し大きな緩衝作用を示すことがわかる。従って硫酸
アンモニウムを含有しない場合に比べてSOx の吸収によ
るpHの低下が少ないため、低いpHの吸収液を使用しても
効率のよいSOx 除去が可能となる。これにより脱硫塔の
液/ガス比 (L/G) を小さくすることが可能となり、
ポンプ動力の低減を計ることが出来る。
On the other hand, the washing water containing ammonium sulfate stored in the tank 28 is mixed with the desulfurization absorption liquid in the lower part of the desulfurization tower 7 through the conduit 29. As a result, the absorption liquid supplied to the upper part of the desulfurization tower for absorbing SOx by the conduit 8 contains ammonium sulfate, and the absorption of SOx is promoted by the pH buffering function of ammonium sulfate. The concentration of ammonium sulfate accumulated in the absorbing solution according to the present invention varies depending on the amount of waste water from the flue gas desulfurization process, but is 0.1 to 1.0 mol / l.
Usually, it will be in the range of 0.2 to 0.7 mol / l. FIG. 2 shows the pH buffering effect of the ammonium sulfate aqueous solution, and it can be seen that it exhibits a greater buffering effect on SO 2 absorption than the gypsum slurry solution containing no ammonium sulfate. Therefore, compared to the case where ammonium sulfate is not contained, the decrease in pH due to the absorption of SOx is less, and SOx can be removed efficiently even if an absorbing solution having a low pH is used. This makes it possible to reduce the liquid / gas ratio (L / G) in the desulfurization tower,
The pump power can be reduced.

【0018】SOx を吸収した吸収液は脱硫塔下部で導管
37より供給される空気と接触し、吸収液中の亜硫酸は硫
酸に酸化される。さらに生成した硫酸は導管38より供給
されるアルカリ源である石灰石と反応し、石膏を生成す
る。この脱硫塔下部においても硫酸アンモニウムのpH緩
衝作用により石灰石の表面近傍はpH上昇が少なくて済
み、高い石灰石の溶解速度を達成することができる。こ
れにより未反応石灰石が少なくなり、石灰石の利用率を
高めることができる。
The absorption liquid that has absorbed SOx is piped at the bottom of the desulfurization tower.
Upon contact with the air supplied from 37, the sulfurous acid in the absorbing solution is oxidized to sulfuric acid. Further, the produced sulfuric acid reacts with limestone which is an alkali source supplied from the conduit 38 to produce gypsum. Even in the lower part of the desulfurization tower, the pH buffering effect of ammonium sulfate causes only a small increase in pH in the vicinity of the surface of limestone, and a high dissolution rate of limestone can be achieved. As a result, unreacted limestone is reduced, and the utilization rate of limestone can be increased.

【0019】図1の脱硫塔7にはスプレー等を使用した
ガス連続、液分散型の吸収操作を示したが、吸収液中に
バブリング等により排ガスを分散させてSOx の吸収を行
う液連続、ガス分散型すなわち、一槽内に収容した石膏
を懸濁する液相連続の酸性水溶液中で、排ガス中のSOx
の吸収と、生成する亜硫酸の硫酸への酸化と、石灰石に
よる硫酸の中和と、生成した石膏の晶折とを行うプロセ
スの場合、吸収液のpHは通常3.5〜4.5で排ガスと接触
する。一方、前記したガス連続、液分散型では吸収液の
pHは通常5.0〜5.5であり、液連続、ガス分散型におけ
るような低いpHでは図2に示すように硫酸アンモニウム
のpH緩衝作用はいっそう顕著であり、SOx の吸収が促進
される。これにより、脱硫塔での排ガスの圧力損失を小
さくすることができ、排ガスファン動力の低減を計るこ
とができる。さらに、石灰石の中和反応も硫酸アンモニ
ウムの緩衝作用により円滑に進行するため石灰石の利用
率をいっそう高めることができる。
The desulfurization tower 7 of FIG. 1 shows a gas continuous, liquid dispersion type absorption operation using a spray or the like. A liquid continuous for absorbing SOx by dispersing exhaust gas by bubbling in the absorption liquid, Gas-dispersed type, that is, SOx in exhaust gas in a liquid-phase continuous acidic aqueous solution that suspends gypsum stored in one tank
In the case of the process of absorbing water, oxidizing the generated sulfurous acid to sulfuric acid, neutralizing the sulfuric acid with limestone, and crystallizing the generated gypsum, the pH of the absorbing solution is usually 3.5 to 4.5 and the exhaust gas is Contact with. On the other hand, in the gas continuous and liquid dispersion type described above,
The pH is usually 5.0 to 5.5, and at a low pH such as in a liquid continuous or gas dispersion type, the pH buffering effect of ammonium sulfate is more remarkable, as shown in FIG. 2, and SOx absorption is promoted. As a result, the pressure loss of the exhaust gas in the desulfurization tower can be reduced, and the exhaust gas fan power can be reduced. Furthermore, since the neutralization reaction of limestone proceeds smoothly due to the buffering action of ammonium sulfate, the utilization rate of limestone can be further increased.

【0020】石膏を含有した吸収液は導管39によって石
膏分離機40に送られ、ここで石膏が分離される。石膏を
分離した吸収液は導管41によって濾液タンク42に貯えら
れ、さらに導管43によってシックナー44及び石灰石スラ
リータンク45へ送られる。シックナー44では吸収液中に
残存する微細石膏が除去され、清澄吸収液は導管46によ
って吸収液タンク47に貯えられ、微細石膏はシックナー
44下部より導管48によって脱硫塔へ返送される。吸収液
タンクに貯えられた清澄吸収液は導管49によって再生用
洗浄水として充填塔24に送られ、塔内の炭素質材料の洗
浄に使用される。
The absorption liquid containing gypsum is sent by a conduit 39 to a gypsum separator 40, where gypsum is separated. The absorption liquid from which the gypsum has been separated is stored in the filtrate tank 42 by the conduit 41, and is further sent to the thickener 44 and the limestone slurry tank 45 by the conduit 43. In the thickener 44, the fine gypsum remaining in the absorbing liquid is removed, and the clear absorbing liquid is stored in the absorbing liquid tank 47 by the conduit 46.
It is returned to the desulfurization tower by a conduit 48 from the lower part of 44. The clarified absorption liquid stored in the absorption liquid tank is sent to the packed tower 24 as the cleaning water for regeneration by the conduit 49, and is used for cleaning the carbonaceous material in the tower.

【0021】一方、吸収液タンク47における清澄吸収液
の一部は導管50によって排ガス冷却塔4に送られ、排ガ
スの冷却に使用された後、導管51によって排水処理工程
52に送られる。排水処理工程52で有害物質が除去された
排水は導管53によって複分解タンク54へ送られ、排水中
の硫酸アンモニウムは導管55より供給されるアルカリと
反応し、アンモニアと硫酸アルカリに分解する。分解の
pHは9〜12を使用するのが望ましい。分解したアンモニ
アは複分解タンク54の下部より導管56より供給される空
気により排水中より放散され、導管57によってアンモニ
ア供給導管13へ送入され、再び炭素質材料充填塔での脱
硝、脱硫反応に使用される。
On the other hand, a part of the clarified absorbing solution in the absorbing solution tank 47 is sent to the exhaust gas cooling tower 4 by the conduit 50 and used for cooling the exhaust gas.
Sent to 52. The wastewater from which harmful substances have been removed in the wastewater treatment step 52 is sent to the metathesis tank 54 by the conduit 53, and ammonium sulfate in the wastewater reacts with the alkali supplied from the conduit 55 to decompose into ammonia and alkali sulfate. Disassembly
It is desirable to use a pH of 9-12. The decomposed ammonia is dissipated from the wastewater by the air supplied from the lower part of the metathesis tank 54 from the conduit 56, is sent to the ammonia supply conduit 13 by the conduit 57, and is again used for the denitration and desulfurization reaction in the carbonaceous material packed tower. To be done.

【0022】複分解用アルカリとしては水酸化ナトリウ
ム、水酸化カリウム、消石灰などが使用できるが、消石
灰を使用する場合は複分解に伴い石膏が生成するため、
石膏スラリーは複分解タンク54の下部より導管58によっ
て脱硫塔7へ送られる。複分解タンク54で複分解を終了
した排水は導管59より排水シックナー60に送られ、ここ
で微細石膏等を分離した後、導管61でpH調整槽62に送ら
れ、導管63より添加される酸によってpHを6〜8に調整
後放流される。
As the alkali for metathesis, sodium hydroxide, potassium hydroxide, slaked lime and the like can be used. However, when slaked lime is used, gypsum is produced due to the metathesis.
The gypsum slurry is sent from the lower part of the metathesis tank 54 to the desulfurization tower 7 by a conduit 58. The wastewater that has been subjected to the double decomposition in the metathesis tank 54 is sent to the drainage thickener 60 from the conduit 59, after separating the fine gypsum etc., is sent to the pH adjusting tank 62 in the conduit 61, the pH by the acid added from the conduit 63. Is adjusted to 6 to 8 and then discharged.

【0023】なお図1においては、炭素質充填塔を4塔
使用した場合を示したが、塔数には特に制限はなく、排
ガスの処理条件や処理に際しての経済性等を考慮して選
定することが望ましい。また図1には、排煙脱硝部分に
炭素質材料の固定層充填塔を使用した場合を例示した
が、図3に示すように、炭素材料を移動層で使用するこ
ともできる。すなわち、適量のアンモニアが混合された
排ガスは移動層反応塔90に導入され、反応塔内で塔頂か
ら塔底に向かって移動する炭素質材料と接触し、脱硝さ
れる。塔底より抜き出された炭素質材料は移送装置92に
よって水洗再生装置91下部に導入され、水洗再生装置上
部よりスプレー等の手段によって供給される排煙脱硫吸
収液及び/または水と接触し、炭素質材料に付着、沈積
した硫酸アンモニウムが除去される。
Although FIG. 1 shows the case where four carbonaceous packed towers are used, the number of towers is not particularly limited, and it is selected in consideration of the exhaust gas treatment conditions and economic efficiency in the treatment. Is desirable. Further, FIG. 1 exemplifies a case where a fixed bed packed tower of carbonaceous material is used for the flue gas denitration part, but as shown in FIG. 3, a carbon material can be used for the moving bed. That is, the exhaust gas mixed with an appropriate amount of ammonia is introduced into the moving bed reaction column 90, comes into contact with the carbonaceous material moving from the top to the bottom of the reaction column, and is denitrated. The carbonaceous material extracted from the bottom of the tower is introduced into the lower part of the water washing regenerator 91 by the transfer device 92, and comes into contact with the flue gas desulfurization absorbent and / or water supplied by means such as a spray from the upper part of the water washing regenerator, Ammonium sulfate deposited and deposited on the carbonaceous material is removed.

【0024】硫酸アンモニウムが除去された炭素質材料
は、水洗再生装置91の塔頂より移送装置92によって反応
塔90塔頂に導入され、再び排ガス処理に供される。硫酸
アンモニウムを溶出した洗浄水は、洗浄水タンク93を経
て脱硫塔へ導入される。この移動層の場合には固定層に
比べ、炭素質材料の移動に伴う若干の炭素質材料の損耗
が生じるが、反応塔が少なくて済み、設置面積が小さい
という利点がある。
The carbonaceous material from which ammonium sulfate has been removed is introduced from the top of the water washing / regenerating apparatus 91 to the top of the reaction tower 90 by the transfer device 92 and is again used for exhaust gas treatment. The wash water from which ammonium sulfate is eluted is introduced into the desulfurization tower through the wash water tank 93. Compared with the fixed bed, this moving bed causes some wear of the carbonaceous material due to the movement of the carbonaceous material, but has the advantage that the number of reaction towers is small and the installation area is small.

【0025】さらに、炭素質材料の固定層充填塔と移動
層反応塔とを組み合わせて使用することも効果的であ
る。図4は炭素質材料の固定層充填塔の前段と後段に移
動層反応塔を設けた例である。適量のアンモニアが混合
された排ガスは移動層反応塔94に導入され、塔頂から塔
底に向かって移動する炭素質材料と接触し、排ガス中の
SOx の大部分はここで硫酸アンモニウムの形で除去され
る。SOx が除去された排ガスは固定層充填塔95に導入さ
れ、脱硝される。固定層充填塔95で脱硝された排ガスは
移動層反応塔96に導入され、ここで排ガス中に残存する
微量のアンモニアが除去される。一方、移動層反応塔94
の塔底より抜き出された炭素質材料は移送装置97によっ
て水洗再生装置98下部に導入され、既述の方法で洗浄再
生された後、水洗再生装置98上部より移送装置97によっ
て移動層反応塔96塔頂へ導入される。反応塔96へ導入さ
れた炭素質材料は塔頂から塔底へ移動する間に排ガス中
のアンモニアを除去すると共に乾燥される。反応塔96の
塔底より抜き出された炭素質材料は、反応塔94の塔頂に
導入され、再び排ガス処理に供される。固定層充填塔95
に導入される排ガスには極微量のSOx しか残存しない
が、長期的には硫酸アンモニウムの生成により、活性低
下が招じるので、その時には固定層充填塔上部よりスプ
レー等の手段によって水を供給し、炭素質材料を洗浄再
生する。硫酸アンモニウムを溶出した洗浄水は、洗浄水
タンク99を経て脱硫塔へ導入される。この移動層と固定
層の組み合わせの場合、固定層ではSOx の影響を殆ど受
けず高い脱硝活性を得ることができ、さらに移動層はNO
x に比べ除去し易いSOx 及び微量のスリップアンモニア
が対象であるため反応塔の容積は小さくてすみ、全体と
してコンパクトとなる利点がある。
Further, it is also effective to use a fixed bed packed tower of carbonaceous material and a moving bed reaction tower in combination. FIG. 4 shows an example in which moving bed reaction towers are provided at the front and rear of a fixed bed packed bed of carbonaceous material. The exhaust gas mixed with an appropriate amount of ammonia is introduced into the moving bed reaction column 94, contacts the carbonaceous material moving from the tower top to the tower bottom, and
Most of the SOx is removed here in the form of ammonium sulfate. The exhaust gas from which SOx has been removed is introduced into the fixed bed packed tower 95 and denitrated. The exhaust gas denitrated in the fixed bed packed tower 95 is introduced into the moving bed reaction tower 96, where a trace amount of ammonia remaining in the exhaust gas is removed. On the other hand, moving bed reaction tower 94
The carbonaceous material extracted from the bottom of the column is introduced into the lower part of the water washing regenerator 98 by the transfer device 97, is washed and regenerated by the method described above, and is then moved from the upper part of the water washing regenerator 98 to the moving bed reaction tower by the transfer device 97. Introduced to the top of 96 towers. The carbonaceous material introduced into the reaction column 96 is dried while removing ammonia in the exhaust gas while moving from the top to the bottom of the column. The carbonaceous material extracted from the bottom of the reaction tower 96 is introduced to the top of the reaction tower 94, and is again subjected to exhaust gas treatment. Fixed bed packed tower 95
Although only a trace amount of SOx remains in the exhaust gas introduced into the reactor, the activity decreases due to the formation of ammonium sulfate over the long term.At that time, water is supplied from the top of the fixed bed packed tower by means such as spraying. , Wash and regenerate carbonaceous material. The wash water from which ammonium sulfate is eluted is introduced into the desulfurization tower through the wash water tank 99. In the case of this combination of the moving bed and the fixed bed, the fixed bed is not affected by SOx and high denitrification activity can be obtained.
Since SOx and a small amount of slip ammonia, which are easier to remove than x, are targeted, the volume of the reaction tower can be small, and there is an advantage of being compact as a whole.

【0026】本発明では排煙脱硫工程の吸収液中に硫酸
アンモニウムが導入されるため、排煙脱硫性能が大幅に
向上するが、脱硫率を上げ後段の脱硝用炭素質材料の水
洗頻度を少なくするか、あるいは排煙脱硫工程の吸収塔
循環液量または排ガスファンΔPを低下させ排煙脱硫工
程の脱硫率を硫酸アンモニウムが導入される前のレベル
に保つかについても、排ガスの処理条件や処理に際して
の経済性等を考慮して選定すれば良い。
In the present invention, since ammonium sulfate is introduced into the absorption liquid in the flue gas desulfurization process, the flue gas desulfurization performance is significantly improved, but the desulfurization rate is increased and the frequency of washing the carbonaceous material for denitration in the subsequent stage is reduced. Whether or not to reduce the absorption tower circulating liquid amount in the flue gas desulfurization process or the exhaust gas fan ΔP to maintain the desulfurization rate in the flue gas desulfurization process at the level before the introduction of ammonium sulfate, It may be selected in consideration of economical efficiency.

【0027】さらに本発明では脱硝用炭素質材料の充填
層で脱硫反応も生じるため、全工程を通した脱硫率は10
0%に近い値となるが、例えば95%の脱硫率で良いなら
排煙脱硫工程を大幅に簡素化することも可能であり、こ
れも後段の脱硝用炭素質材料の水洗頻度の増加の影響と
を考慮し、最適な方法を選定すれば良い。以下、本発明
の実施例を述べる。
Further, in the present invention, a desulfurization reaction also occurs in the packed bed of the carbonaceous material for denitration, so that the desulfurization rate through all steps is 10
Although the value is close to 0%, it is possible to greatly simplify the flue gas desulfurization process if, for example, a desulfurization rate of 95% is sufficient, and this is also affected by the increase in the frequency of washing carbonaceous material for denitration in the subsequent stage. In consideration of the above, the optimum method may be selected. Examples of the present invention will be described below.

【0028】[0028]

【実施例】図5に示した工程に従って、下記組成の模擬
排ガスの処理を行った。 温度50℃の模擬排ガスを塔径40mmφ、塔高2,000mmの脱
硫塔70の上部に導入した。脱硫塔70は液連続、ガス分散
型の吸収装置であり、導入された排ガスをガス分散管71
より吸収液中に分散させた。この時のガス分散口までの
液深は静止液深として200mm、ガス分散口から脱硫塔底
部までの液深は1,000mmであった。同時に酸化空気12Nl
/hr を脱硫塔下部より導入し、さらにガス分散口の直下
のpHが4.0を維持するように炭酸カルシウムを含有する
スラリー溶液を導入した。
EXAMPLE A simulated exhaust gas having the following composition was treated according to the process shown in FIG. Simulated exhaust gas at a temperature of 50 ° C. was introduced into the upper part of the desulfurization tower 70 having a tower diameter of 40 mmφ and a tower height of 2,000 mm. The desulfurization tower 70 is a liquid continuous, gas dispersion type absorption device, and introduces the introduced exhaust gas into a gas dispersion pipe 71.
More dispersed in the absorbent. The liquid depth to the gas dispersion port at this time was 200 mm as a static liquid depth, and the liquid depth from the gas dispersion port to the bottom of the desulfurization tower was 1,000 mm. Simultaneously oxidizing air 12Nl
/ hr was introduced from the lower part of the desulfurization tower, and further, a slurry solution containing calcium carbonate was introduced so that the pH immediately below the gas dispersion port was maintained at 4.0.

【0029】この時の脱硫率は90%であった。生成した
石膏を含有するスラリー溶液は脱硫塔下部よりポンプで
石膏分離器75に送り、石膏を分離された溶液から、さら
にシックナー76で微細石膏を分離した後、吸収液タンク
77へ導入し、一部は炭酸カルシウムスラリータンク78へ
供給し、炭酸カルシウムをスラリー状態に分散させた
後、脱硫塔へ導入した。
At this time, the desulfurization rate was 90%. The slurry solution containing the generated gypsum is sent from the lower part of the desulfurization tower to a gypsum separator 75 by a pump, and the gypsum is separated from the separated solution by a thickener 76, and then the absorption tank
Introduced into 77, part of which was supplied to a calcium carbonate slurry tank 78 to disperse calcium carbonate in a slurry state, and then introduced into a desulfurization tower.

【0030】脱硫塔上部より排出した排ガスは排ガスヒ
ーター85で110℃に昇温し、濃度1%のアンモニアガス5
0Nl/hr と混合した後、脱硝塔72に導入した。脱硝塔7
2、73は塔径50mmφ、塔高1,000mmで4mmφ×5mmの脱
硝用活性炭触媒が層高700mm 充填されている。この時の
脱硝率は88%で、脱硫率は前段の脱硫工程も含め99%で
あった。脱硝塔で処理された排ガスは系外へ放出した。
Exhaust gas discharged from the upper part of the desulfurization tower is heated to 110 ° C. by an exhaust gas heater 85, and ammonia gas 5
After mixing with 0 Nl / hr, it was introduced into the denitration tower 72. Denitration tower 7
Nos. 2 and 73 have a tower diameter of 50 mmφ and a tower height of 1,000 mm, and are filled with 4 mmφ × 5 mm denitration activated carbon catalyst with a bed height of 700 mm. At this time, the denitrification rate was 88%, and the desulfurization rate was 99% including the desulfurization step of the previous stage. The exhaust gas treated in the denitration tower was discharged outside the system.

【0031】この模擬排ガスの処理を継続して行ったと
ころ、脱硝率は徐々に低下し、10日後に80%まで低下し
たので、脱硝塔を72から73に切り替えて運転を継続し
た。脱硝塔を切り替えた後、脱硝塔72の活性炭触媒を脱
硫工程の吸収液タンクからの吸収液1,000mlで洗浄し、
さらに1,000mlの水で洗浄した。洗浄後の脱硝塔72は活
性炭触媒の乾燥を行うため脱硝塔73と並列に排ガスを導
入した。一方、洗浄液は脱硫工程の吸収液中へ導入し
た。これにより吸収液中の硫酸アンモニウム濃度は0.2m
ol/lとなり、脱硫工程の脱硫率が97%に上昇したため、
ガス分散口までの液深を静止液深として85mmまで低下さ
せ、脱硫率を90%に維持した。
When this simulated exhaust gas was continuously treated, the NOx removal rate gradually decreased, and after 10 days it had decreased to 80%, so the operation was continued by switching the NOx removal tower from 72 to 73. After switching the denitration tower, the activated carbon catalyst of the denitration tower 72 is washed with 1,000 ml of the absorption liquid from the absorption liquid tank of the desulfurization process,
It was further washed with 1,000 ml of water. Exhaust gas was introduced in parallel with the denitration tower 73 in the denitration tower 72 after washing in order to dry the activated carbon catalyst. On the other hand, the cleaning liquid was introduced into the absorbing liquid in the desulfurization step. As a result, the concentration of ammonium sulfate in the absorption liquid was 0.2 m.
Since it became ol / l and the desulfurization rate in the desulfurization process increased to 97%,
The liquid depth to the gas dispersion port was reduced to 85 mm as the static liquid depth, and the desulfurization rate was maintained at 90%.

【0032】その後、脱硝率が80%となった時点で脱硝
塔73を上記と同様な方法にて水洗に供し、更に触媒の乾
燥を行った。また、洗浄液も上記と同様に脱硫工程吸収
液中へ導入し、上昇した脱硫率はガス分散口の液深の調
整により90%に維持し、更に一般の湿式石灰石−石膏法
と同程度の排水量として7ml/hr を導管82より系外へ排
出させた。この排水により減少した吸収液は石膏の洗浄
用として水を補給し、脱硝塔洗浄液の導入により周期的
な変動はあるものの、一定量を維持させた。
Then, when the denitrification rate reached 80%, the denitrification tower 73 was washed with water in the same manner as above, and the catalyst was further dried. In addition, a cleaning liquid was also introduced into the desulfurization process absorption liquid in the same manner as above, and the increased desulfurization rate was maintained at 90% by adjusting the liquid depth of the gas dispersion port. As a result, 7 ml / hr was discharged from the system through the conduit 82. The absorption liquid reduced by this drainage was replenished with water for cleaning gypsum, and a constant amount was maintained although there was a periodic fluctuation due to the introduction of the denitration tower cleaning liquid.

【0033】このような方法で脱硝塔を切り替え洗浄再
生しつつ、97日間連続で排ガスの処理を行った。その結
果、連続運転の途中より、脱硫工程の吸収液中の硫酸ア
ンモニウムの濃度は0.5〜0.6mol/l、脱硫率90%でのガ
ス分散口までの液深は静止液深として60mm、脱硝塔の切
り替え間隔は9〜10日、トータルの脱硫率は99%と、ほ
ぼ一定値を示した。
Exhaust gas was treated continuously for 97 days while switching the denitration towers and cleaning and regenerating by such a method. As a result, from the middle of continuous operation, the concentration of ammonium sulfate in the absorption liquid in the desulfurization process was 0.5 to 0.6 mol / l, the liquid depth to the gas dispersion port at the desulfurization rate of 90% was 60 mm as the stationary liquid depth, and the denitration The column switching interval was 9 to 10 days, and the total desulfurization rate was 99%, which was a substantially constant value.

【0034】また、ほぼ定常状態に達したため、排水バ
ルブ83を締め、84を開けて系外への排出排水中に消石灰
を添加し、pHを11に保ちながら、下部より空気を導入
し、アンモニアをストリッピングさせた。ストリッピン
グしたアンモニアを含む空気は脱硝塔入口で排ガス中に
導入した。ストリッピングアンモニアの導入と共に1%
アンモニアガスの導入は30Nl/hr に低減した。この排水
中からのアンモニア回収操作を行いながら、10日間排ガ
ス処理を継続した。その結果、アンモニア回収を行う前
の上記した脱硫及び脱硝性能をほぼ維持することができ
た。
Further, since the almost steady state has been reached, the drain valve 83 is closed, 84 is opened, and slaked lime is added to the drainage discharged to the outside of the system. While keeping the pH at 11, air is introduced from the lower part to remove ammonia. Was stripped. The air containing stripped ammonia was introduced into the exhaust gas at the denitration tower inlet. 1% with introduction of stripping ammonia
The introduction of ammonia gas was reduced to 30 Nl / hr. Exhaust gas treatment was continued for 10 days while recovering ammonia from the wastewater. As a result, the desulfurization and denitration performances before the ammonia recovery could be almost maintained.

【0035】[0035]

【発明の効果】以上述べたように本発明の排ガスの処理
方法は、湿式石灰石−石膏排煙脱硫工程の後段に炭素質
材料の反応層によるアンモニア接触還元排煙脱硝工程を
設け、アンモニア接触還元法煙脱硝工程の反応層中の炭
素質材料上に生成する硫酸アンモニウムを水洗により除
去することで炭素質材料の消耗を防ぐと共に、得られた
硫酸アンモニウム水溶液を湿式石灰石−石膏法排煙脱硫
工程の吸収液中へ導入することで、硫酸アンモニウムの
もつSOx 吸収に対するpH緩衝作用を利用し、低いpHでも
SOx を吸収することができる優れた吸収液を提供し、排
煙脱硫性能をより向上させることができる。さらに排煙
脱硫工程より排出される排水にアルカリを添加すること
でアンモニアを回収し、再び排煙脱硝用反応層へ供給す
るという、アンモニア循環系の効果的構成を図ることが
でき、従って本発明の方法は、従来技術の問題点を解決
した排ガスの処理方法と云うことができる。
As described above, the method for treating exhaust gas according to the present invention is provided with an ammonia catalytic reduction flue gas denitration step by a reaction layer of a carbonaceous material after the wet limestone-gypsum flue gas desulfurization step, and ammonia catalytic reduction is performed. The ammonium sulfate generated on the carbonaceous material in the reaction layer of the method smoke denitration process is removed by washing with water to prevent consumption of the carbonaceous material, and the resulting ammonium sulfate solution is absorbed by the wet limestone-gypsum method flue gas desulfurization process. By introducing it into the liquid, the pH buffering effect of ammonium sulfate on SOx absorption is utilized, and even at low pH.
An excellent absorbent that can absorb SOx can be provided, and flue gas desulfurization performance can be further improved. Further, by adding alkali to the wastewater discharged from the flue gas desulfurization step, ammonia is recovered and supplied again to the reaction layer for flue gas desulfurization, which makes it possible to achieve an effective configuration of the ammonia circulation system. The method can be said to be a method for treating exhaust gas that solves the problems of the conventional techniques.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱硝工程に炭素質材料の固定層を用いた場合の
本発明の工程を示す図である。
FIG. 1 is a diagram showing a process of the present invention when a fixed layer of a carbonaceous material is used in a denitration process.

【図2】硫酸アンモニア水溶液がSO2 吸収におよぼす緩
衝作用を示す図である。
FIG. 2 is a diagram showing a buffering effect of an aqueous ammonium sulfate solution on SO 2 absorption.

【図3】脱硝工程に炭素質材料の移動層を用いた場合の
本発明の部分工程図である。
FIG. 3 is a partial process diagram of the present invention when a moving layer of carbonaceous material is used in the denitration process.

【図4】脱硝工程に炭素質材料の固定層と移動層を用い
た本発明の部分工程図である。
FIG. 4 is a partial process diagram of the present invention in which a fixed layer and a moving layer of a carbonaceous material are used in the denitration step.

【図5】本発明の実施例の工程を示す図である。FIG. 5 is a diagram showing a process of an example of the present invention.

【符号の説明】[Explanation of symbols]

7 脱硫塔 17、18、19、24、95 炭素
質材料固定層充填塔 28 洗浄水タンク 42 濾液タンク 70 脱硫塔 72、73 脱硝塔 90、94、96 炭素質材料移動層充填塔
7 Desulfurization tower 17, 18, 19, 24, 95 Carbonaceous material fixed bed packing tower 28 Wash water tank 42 Filtrate tank 70 Desulfurization tower 72, 73 Denitration tower 90, 94, 96 Carbonaceous material moving bed packed tower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅原 洋一 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 曽根原 尚紀 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoichi Umehara Yoichi Umehara 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Naoki Sonehara Chuo, Tsurumi-ku, Tsurumi-ku, Yokohama-shi, Kanagawa Chome 12-1 Chiyoda Kako Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 湿式石灰石−石膏排煙脱硫法により硫黄
酸化物の大部分を除去した後の窒素酸化物含有排ガスを
80〜200℃に加熱し、この加熱した排ガスにアンモニア
を添加した後に炭素質材料を内蔵する反応層へ導入して
前記窒素酸化物を窒素に還元して前記排ガスから該窒素
酸化物を除去すると共に、前記炭素質材料上に生成した
硫酸アンモニウムにより触媒能力の低下した炭素質材料
を水洗して炭素質材料を再生し、該再生した炭素質材料
を前記窒素酸化物の除去に供し、炭素質材料の前記水洗
により得られた硫酸アンモニウム水溶液を湿式石灰石−
石膏排煙脱硫法の吸収液中へ導入し、湿式石灰石−石膏
排煙脱硫法より排出された排水にアルカリを添加して排
水中の硫酸アンモニウムを硫酸アルカリとアンモニアに
複分解し、発生したアンモニア含有ガスを前記反応層へ
導入前の前記排ガスに添加することを特徴とする排ガス
の処理方法。
1. A nitrogen oxide-containing exhaust gas after removing most of sulfur oxides by a wet limestone-gypsum flue gas desulfurization method
The mixture is heated to 80 to 200 ° C., ammonia is added to the heated exhaust gas, and then the carbon oxide is introduced into a reaction layer containing the carbonaceous material to reduce the nitrogen oxides to nitrogen to remove the nitrogen oxides from the exhaust gas. At the same time, the carbonaceous material whose catalytic ability is lowered by ammonium sulfate formed on the carbonaceous material is washed with water to regenerate the carbonaceous material, and the regenerated carbonaceous material is subjected to the removal of the nitrogen oxides. The ammonium sulphate aqueous solution obtained by the above water washing of
Introduced into the absorption liquid of gypsum flue gas desulfurization method, by adding alkali to the wastewater discharged from the wet limestone-gypsum flue gas desulfurization method to decompose ammonium sulfate in the wastewater into alkali sulfate and ammonia, and the generated ammonia-containing gas Is added to the exhaust gas before being introduced into the reaction layer.
【請求項2】 前記反応層が炭素質材料の固定層と移動
層とから成り、該固定層の前後に該移動層が配置されて
いる請求項1記載の方法。
2. The method according to claim 1, wherein the reaction layer comprises a fixed layer of carbonaceous material and a moving layer, and the moving layer is arranged before and after the fixed layer.
【請求項3】 前記湿式石灰石−石膏排煙脱硫法が、一
槽内に収容した石膏を懸濁する液相連続の酸性水溶液中
で、排ガス中の硫黄酸化物の吸収と、生成する亜硫酸の
硫酸への酸化と、石灰石による硫酸の中和と、生成した
石膏のを晶析とを行う方法である請求項1、2記載の方
法。
3. In the wet limestone-gypsum flue gas desulfurization method, absorption of sulfur oxides in exhaust gas and formation of sulfurous acid in a liquid-phase continuous acidic aqueous solution in which gypsum contained in a tank is suspended. The method according to claim 1 or 2, which is a method of performing oxidation to sulfuric acid, neutralization of sulfuric acid with limestone, and crystallization of the produced gypsum.
JP4126458A 1992-05-19 1992-05-19 Waste gas treating method Pending JPH05317646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4126458A JPH05317646A (en) 1992-05-19 1992-05-19 Waste gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4126458A JPH05317646A (en) 1992-05-19 1992-05-19 Waste gas treating method

Publications (1)

Publication Number Publication Date
JPH05317646A true JPH05317646A (en) 1993-12-03

Family

ID=14935725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4126458A Pending JPH05317646A (en) 1992-05-19 1992-05-19 Waste gas treating method

Country Status (1)

Country Link
JP (1) JPH05317646A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide
JP2009034658A (en) * 2007-08-03 2009-02-19 Chiaki Takeuchi Semi-wetting adsorbent deodorization method
JP2014124551A (en) * 2012-12-25 2014-07-07 Alpha Tekku:Kk Detoxifying tower, recovery system of detoxifying tower and recovery method of detoxifying tower
CN107126837A (en) * 2017-07-01 2017-09-05 成都国化环保科技有限公司 A kind of regenerative system for flue gas desulfurization device line
CN111003694A (en) * 2019-12-23 2020-04-14 福建永荣科技有限公司 Environment-friendly process for preparing concentrated sulfuric acid by adopting sulfur
CN114100356A (en) * 2021-12-01 2022-03-01 江苏新世纪江南环保股份有限公司 Desulfurization system reconstruction method and ammonia desulfurization system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide
JP2009034658A (en) * 2007-08-03 2009-02-19 Chiaki Takeuchi Semi-wetting adsorbent deodorization method
JP2014124551A (en) * 2012-12-25 2014-07-07 Alpha Tekku:Kk Detoxifying tower, recovery system of detoxifying tower and recovery method of detoxifying tower
CN107126837A (en) * 2017-07-01 2017-09-05 成都国化环保科技有限公司 A kind of regenerative system for flue gas desulfurization device line
CN111003694A (en) * 2019-12-23 2020-04-14 福建永荣科技有限公司 Environment-friendly process for preparing concentrated sulfuric acid by adopting sulfur
CN114100356A (en) * 2021-12-01 2022-03-01 江苏新世纪江南环保股份有限公司 Desulfurization system reconstruction method and ammonia desulfurization system

Similar Documents

Publication Publication Date Title
CN101934191B (en) Method for desulfurizing and denitrating smoke simultaneously through ammonia method
CN204502755U (en) A kind of wet method removes the device of sulfur dioxide in flue gas and nitrogen oxide
JP2016538989A (en) Semi-dry simultaneous desulfurization / denitration / demercury equipment and method using circulating fluidized bed
CN101279186B (en) Flue gas dry-type method for simultaneously desulfurizing and denitrating
CN102716648A (en) Method for automatically controlling desulphurization and denitration by flue gas based on pH value and ORP value and apparatus thereof
CN103301749A (en) Method for simultaneously performing desulfurization and denitrification on smoke gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
CN106823785A (en) A kind of desulfurizing industrial fume denitrification apparatus and method based on NACF
CN104941410A (en) Flue gas desulfurization and denitrification integrated method and device based on two-step oxidation process of active molecules O3 at low temperature
CN103100294A (en) Method for removing oxynitride from flue gas through ozone oxidation method
CN206911092U (en) A kind of high-efficiency desulfurization denitrating system using ozone oxidation
CN110064293B (en) Method for desulfurization, denitrification and demercuration of flue gas
JP3248956B2 (en) Exhaust gas treatment method
CN101785966B (en) Method of advanced oxidation for NO in flue gas and device thereof
CN102309920A (en) Method for removing NOx and SOx from fluid catalytic cracking (FCC) flue gas
CN114146549A (en) System device and method for desulfurization, denitrification and decarburization of flue gas by ammonia process
JPH05317646A (en) Waste gas treating method
CN103768919A (en) Flue gas desulfurization and denitrification process method
CN208553761U (en) A kind of the denitrating flue gas unit and device of charged spray ammonia and ammonolysis craft combination
CN212492355U (en) Ozone oxidation is SOx/NOx control system of ammonia process in coordination
CN111359398B (en) Method for denitration and whitening of flue gas
JPH0768132A (en) Desulfurizing and denitrifying method
CN212790372U (en) Low temperature fixed bed integration adsorbs SOx/NOx control system
CN113856445A (en) Flue gas desulfurization and denitrification two-phase continuous absorption system and method
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system