JP3360854B2 - Exhaust gas treatment method using carbon material - Google Patents

Exhaust gas treatment method using carbon material

Info

Publication number
JP3360854B2
JP3360854B2 JP30162492A JP30162492A JP3360854B2 JP 3360854 B2 JP3360854 B2 JP 3360854B2 JP 30162492 A JP30162492 A JP 30162492A JP 30162492 A JP30162492 A JP 30162492A JP 3360854 B2 JP3360854 B2 JP 3360854B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
carbon material
nox
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30162492A
Other languages
Japanese (ja)
Other versions
JPH06126132A (en
Inventor
和比古 辻
康彦 蜷川
孝平 村山
光博 高田
Original Assignee
三井鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井鉱山株式会社 filed Critical 三井鉱山株式会社
Priority to JP30162492A priority Critical patent/JP3360854B2/en
Publication of JPH06126132A publication Critical patent/JPH06126132A/en
Application granted granted Critical
Publication of JP3360854B2 publication Critical patent/JP3360854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、SOx及びNOxを含
有する排ガス、特にSOxの含有量は多いが、その割に
除去すべきNOxの量が少ない排ガスの処理に適した排
ガスの処理方法に関する。 【0002】 【従来の技術】各種化石燃料の燃焼排ガスあるいは製鉄
所の焼結炉排ガス等のSOx及びNOxを含有する排ガ
スの処理方法として、これらの排ガスにアンモニアを添
加し、炭素材の移動層を直交流で通過させて接触させ、
SOxを吸着させるとともにNOxを分解除去する方法
がある。この方法において、SOxは主として硫酸の形
で炭素材上に吸着される。そのため、排ガス中に含まれ
るSOxの量が多いと、添加したアンモニアはアンモニ
ウム塩の形で消費されてしまうので脱硝反応に寄与する
アンモニアの量が少なくなり、脱硝反応を進行させるた
めには多量のアンモニアを添加する必要があり、経済的
ではない。また、移動層内の、特に排ガス入口側にアン
モニウム塩が析出し、炭素材をブロック化させ、移動層
内での円滑な移動を阻害する、炭素材の再生時に多量の
アンモニアが発生し、装置の腐食や回収される硫黄等の
副産物を汚染するという問題がある。 【0003】このような問題を解決する方法として、S
Oxの含有量の多い、SOx及びNOxを含有する排ガ
スを処理する場合に、2個の移動層反応器を設置し、排
ガスにアンモニアを添加するか又は不添加のまま第1の
移動層に供給して主として脱硫を行い、SOxの量を1
00ppm程度以下に減少させ、次いでアンモニアを添
加したのち第2層へ供給して主として脱硝を行うととも
に残りのSOxを除去する方法がある。この方法は、多
量のSOxを含み、しかも除去すべきNOxの含有量の
多い排ガスを処理する場合には極めて有効な方法であ
る。ところが、実際の排ガスの中には、SOxの含有量
が多い割にはNOxの含有量が少ない場合が多く、ま
た、排ガスの処理に当たってNOxの全量を除去する必
要はない場合も多い。このような場合には、2個の移動
層反応器を設置するのは非効率的であり、1個の反応器
で処理できる方法が望まれていた。また、これらの方法
においては、いずれも遊離のアンモニアの存在下で脱硝
反応を行わせるため、処理済みの排ガス中にアンモニア
が混入してくるという、いわゆるリークアンモニアの問
題がある。 【0004】さらに、このような脱硫脱硝方法において
生ずる問題点を解決するため、アンモニアの添加方法を
工夫する試みもなされている。例えば、SOx及びNO
xを含有する排ガスにアンモニアを添加し炭素質吸着材
の移動層に供給すると、特に温度の低い場合などには、
排ガスの入口近くで多量のアンモニウム塩が生成し、そ
れによって吸着材の粉化が促進されるという問題を解決
する方法として、アンモニアは排ガス中に直接添加する
のではなく、予めアンモニアを吸着させた吸着材を移動
層に供給する方法が提案されている(特開平2−266
18号公報など)。この方法によれば、アンモニアは層
内に均一に供給されるので、部分的にアンモニウム塩が
過剰に生成することはなく吸着材の粉化は少なくなり、
また、ガス後流側のアンモニアはSOxに消費されるこ
となく脱硝に使用されるという利点がある。しかしなが
らこの場合も、SOxに見合った量のアンモニアがSO
xとの反応により消費される、リークアンモニアがある
などの問題は排ガス中に直接アンモニアを入れる場合と
大差はない。 【0005】また、2個の移動層反応器を使用する方法
において、不活化した炭素質触媒を加熱再生したのち
アンモニア処理して触媒活性を高めるという方法もある
(特開昭60−220129号公報など)。しかしなが
らこの方法も、本質的には、前出の2個の移動層反応器
を設置し、排ガスにアンモニアを添加するか又は不添加
のまま第1の移動層に供給して主として脱硫を行い、S
Oxの量を100ppm程度以下に減少させ、次いでア
ンモニアを添加したのち第2層へ供給して主として脱硝
を行うとともに残りのSOxを除去する方法と変わりは
ない。 【0006】 【発明が解決しようとする課題】本発明の目的は、前記
従来技術における、SOxとの反応によるアンモニアの
浪費、アンモニウム塩の析出による炭素材の移動層の流
れの阻害、処理済み排ガス中へのアンモニアの混入等の
問題がない、1個の移動層反応器を用いた簡明な排ガス
処理方法を提供することにある。 【0007】 【課題を解決するための手段】本発明は上記の目的を達
成するため、脱硫脱硝塔と、再生部、アンモニア処理
部、及び冷却部を有する再生塔とを用いる、SOxを1
00ppm以上とNOxとを含有する排ガスの処理方法
であって、排ガス中にアンモニアを添加することなく、
脱硫脱硝塔内を流下するアンモニア処理した炭素材から
なる移動層に直交流で排ガスを通過させてSOxを前記
炭素材に吸着させると共に、NOxを分解除去し、次い
で前記脱硫脱硝塔を出た炭素材を再生塔の再生部で40
0〜600℃に加熱してSO 2 を排出させた後、アンモ
ニア処理部において除去すべきNOx1モルに対して1
〜1.5モルのアンモニアを供給しながら400〜60
0℃に加熱して炭素材をアンモニア処理し、その後冷却
部を通って前記脱硫脱硝塔に循環させる手段を採用した
ものである。 【0008】本発明の方法で処理対象とする排ガスは、
SOxの含有量が100ppm以上であり、かつ除去す
べきNOxの量が比較的少ない排ガスである。この方法
で処理できる排ガス中のNOx含有量の許容範囲は、炭
素材の供給量や反応温度などの運転条件及び処理済みの
排ガス中に許容されるNOxの含有率によって定まるも
のであって一概にはいえないが、除去すべきNOxの量
が移動層中の炭素材1gに対し3mg以下であれば、本
発明の方法により十分処理が可能である。 【0009】また、本発明で使用する炭素材としては、
移動層反応器内で使用できる強度を有する活性炭素材で
あれば特に制限なく使用できるが、石炭を予備乾留して
得られる半成コークスを主原料とし、これに副原料とし
て粘結性を有する石炭及び結合剤を添加して混合、混練
したのち成形、乾留、賦活して得られる成形活性コーク
スが特に好適である。 【0010】以下、本発明の方法について、図1の本発
明の排ガス処理方法によるフローの1例を示す概略図に
従い、詳細に説明する。SOxの含有量が100ppm
以上であるSOx及びNOx含有排ガスを、アンモニア
を添加することなく、排ガスライン3から脱硫脱硝塔1
に供給し、塔内を上方から下方へ移動する炭素材の移動
層中を炭素材の流れに対し直交流で通過させる。炭素材
と接触する間に排ガス中のSOx及びNOxは吸着ある
いは分解除去され、処理済みの排ガスは系外へ排出され
る。 【0011】脱硫脱硝塔1内を流下し、SOxを吸着し
て不活性化した炭素材は脱硫脱硝塔の下部から排出さ
れ、不活性化炭素材ライン4を経て再生塔2へ導かれ
る。そして再生塔上部の再生部2aにて400〜600
℃に加熱、再生される。ここで発生したSO2 を高濃度
で含有するガスは、SO2 含有ガスライン7より排出さ
れ、副生物回収工程へ送られ高純度のSO2 ガス、硫黄
あるいは硫酸等の副生物が回収される。再生温度が40
0℃未満では再生に長時間を要したり、再生が不十分と
なるがあり、また、600℃を超えると活性炭素材料
の表面性状が変化し、脱硝率が低下するので好ましくな
い。 【0012】加熱再生された炭素材は、再生塔の後流側
のアンモニア処理部2b内でアンモニア供給ライン6か
ら供給されるアンモニアの存在下に、400〜600℃
の温度で加熱してアンモニア処理されたのち、冷却部2
cを経て再生塔から排出され、活性炭素材ライン5を通
って脱硫脱硝塔へ送られ、循環使用される。循環中に消
耗した活性炭素材は、系外から適宜新しい炭素材を供給
することによって補充すればよい。ここで使用するアン
モニアの量は、脱硫脱硝塔内において除去すべきNOx
1モルに対し1〜1.5モルが実用的な範囲である。ア
ンモニア使用量が1モル未満あるいは加熱温度が400
℃未満では、アンモニア処理の効果が十分ではない。ア
ンモニアの使用量が1.5モルを超えても、超えた分の
アンモニアが脱硝率の向上に寄与する効果は小さい。ま
た、アンモニア処理時の加熱温度が600℃を超える
と、再生処理時と同様に活性炭素材料の表面性状が変化
し、脱硝率が低下するので好ましくない。 【0013】アンモニア処理は、熱効率の点から再生塔
内で行うのが好都合であるが、再生塔の後にアンモニア
処理装置を設け、そこで行うようにしてもよい。また、
活性炭素材料の再生及びアンモニア処理は、移動層形式
の処理装置を用いて、連続的に行うのが好ましいが、バ
ッチ式の処理装置を用いて行うこともできる。 【0014】このようにしてアンモニア処理した炭素材
は、通常ほとんど遊離アンモニアを含まないが、アンモ
ニアの使用量が多い場合など、炭素材中に含まれる遊離
アンモニアの量が比較的多く、不都合な場合には、不活
性ガスでパージするなどの方法により、遊離アンモニア
の量をさらに減少させることもできる。 【0015】このようにして得られたアンモニア処理炭
素材は、表面が脱硝触媒として十分に活性化されてお
り、これを用いて、SOxの含有量が100ppm以上
であるSOx及びNOx含有排ガスを処理した場合、ア
ンモニアを添加することなく十分な脱硫能力と、炭素材
1g当たり3mg程度のNOxを分解できる脱硝性能を
有している。 【0016】本発明におけるアンモニア処理は、単にア
ンモニアを炭素材上に吸着させるものではなく、NOx
分解に有効な活性窒素基を炭素材表面に生成させて、
硝触媒としての活性を付与するものである。従って、処
理剤の種類はアンモニアに限定されず、尿素等の還元性
のある窒素化合物を使用することもできるが、アンモニ
アが最適である。本発明の方法は、SOxの含有量が1
00ppm以上と多いが、除去すべきNOxの含有量が
比較的少ないSOx及びNOx含有排ガスの処理に適し
た方法であるが、SOxの含有量が100ppm未満の
ガスについても有効であることはもちろんである。 【0017】 【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。 (実施例1)脱硫脱硝反応に繰り返し使用し性能の安定
した活性コークスを用いて試験を行った。この活性コー
クスを用いて脱硫脱硝反応を行い、不活性化した活性コ
ークス300mlを反応管に充填し、N2 雰囲気下に5
00℃で1時間加熱して再生した。次いでアンモニア1
68mgをN2 で希釈したガスを導入し500℃で1時
間加熱しアンモニア処理を行った。このアンモニア処理
活性コークスをN2 をパージしながら140℃まで冷却
し、SO2 500ppm、NO 40ppm、O2
%、H2 O 7%、残りN2 の組成の混合ガスを導入
し、SV 400 Hr-1、温度140℃の固定床で脱硫
脱硝試験を行った。 【0018】この試験において、20時間経過後の積分
脱硝率は90%(この間に除去されたNOx量は活性コ
ークス1gあたり、NO2 換算で0.92mg)であ
り、また、70時間経過後の積分脱硝率は70%(この
間に除去されたNOx量は活性コークス1gあたり、N
2 換算で2.50mg)であった。また、活性コーク
スの処理に使用したアンモニアの量と、除去されたNO
xの量との比率はモル比で、20時間経過時で2.75
であり、70時間経過時では1.01であった。 【0019】(実施例2) 再生温度及びアンモニア処理温度を400℃としたほか
は実施例1と同様に操作し、脱硫脱硝試験を行った。こ
の試験において、20時間経過後の積分脱硝率は71%
(この間に除去されたNOx量は活性コークス1gあた
り、NO2 換算で0.72mg)であり、また、70時
間経過後の積分脱硝率は50%(この間に除去されたN
Ox量は活性コークス1gあたり、NO2 換算で1.7
8mg)であった。また、活性コークスの処理に使用し
たアンモニアの量と、除去されたNOxの量との比率は
モル比で、20時間経過時で3.49であり、70時間
経過時では1.42であった。 【0020】(比較例1) 再生後のアンモニア処理を行わず、混合ガス中に150
ppmのアンモニアを添加したほかは実施例1と同様に
操作し、脱硫脱硝試験を行った。この試験において、2
0時間経過後の積分脱硝率は84%(この間に供給した
アンモニア量は254mgであり、除去されたNOx量
は活性コークス1gあたり、NO2 換算で0.86m
g)であった。また、70時間経過後の積分脱硝率は5
4%(この間に供給したアンモニア量は889mgであ
り、除去されたNOx量は活性コークス1gあたり、N
2 換算で1.93mg)であった。また、脱硫脱硝反
応時に供給したアンモニアの量と、除去されたNOxの
量の比率はモル比で、20時間経過時で4.46であ
り、70時間経過時では6.94であった。この結果か
ら、実施例1の場合よりもアンモニアの供給量が多いに
もかかわらず脱硝率は低くなっていることが分かる。 【0021】(比較例2) 再生後のアンモニア処理を行わず、混合ガス中に150
ppmのアンモニアを添加したほかは実施例2と同様に
操作し、脱硫脱硝試験を行った。この試験において、2
0時間経過後の積分脱硝率は55%(この間に供給した
アンモニア量は254mgであり、除去されたNOx量
は活性コークス1gあたり、NO2 換算で0.56m
g)であった。また、70時間経過後の積分脱硝率は2
5%(この間に供給したアンモニア量は889mgであ
り、除去されたNOx量は活性コークス1gあたり、N
2 換算で0.89mg)であった。また、脱硫脱硝反
応時に供給したアンモニアの量と、除去されたNOxの
量の比率はモル比で、20時間経過時で6.82であ
り、70時間経過時では14.99であった。この結果
から、実施例2の場合よりもアンモニアの供給量が多い
にもかかわらず脱硝率は低くなっていることが分かる。
この試験における、20時間及び70時間経過時点にお
ける積分脱硝率及びこの間に除去されたNOxの量、及
び活性コークスの処理に使用したアンモニアの量と、除
去されたNOxの量の比率を表1に示す。 【0022】 【表1】【0023】 【発明の効果】本発明の方法によれば、SOxの含有量
が100ppm以上と多いが、除去すべきNOxの含有
量が比較的少ないSOx及びNOx含有排ガスを、脱硫
脱硝反応器内にアンモニアを共存させることなく、1個
の反応器により効率よく脱硫脱硝処理することができ
る。また、アンモニアがSOxによって消費されること
は全くないので、従来の方法に比較してアンモニアの使
用量は大幅に減少でき、さらに、脱硫脱硝反応器内に入
る遊離アンモニアの量が極めて少ないので、アンモニウ
ム塩の析出等により炭素材がブロック化するもなく、
リークアンモニアの問題も生じないという利点もある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas containing SOx and NOx, particularly an exhaust gas containing a large amount of SOx but having a small amount of NOx to be removed. The present invention relates to an exhaust gas treatment method suitable for treating wastewater. 2. Description of the Related Art As a method for treating SOx and NOx-containing exhaust gas such as combustion exhaust gas of various fossil fuels or exhaust gas from a sintering furnace of an ironworks, ammonia is added to these exhaust gases, and a moving bed of carbon material is treated. Through a cross flow and contact
There is a method of adsorbing SOx and decomposing and removing NOx. In this method, SOx is adsorbed on the carbon material mainly in the form of sulfuric acid. Therefore, when the amount of SOx contained in the exhaust gas is large, the added ammonia is consumed in the form of ammonium salt, so that the amount of ammonia contributing to the denitration reaction is reduced, and a large amount of ammonia is required to advance the denitration reaction. Ammonia needs to be added and is not economical. In addition, ammonium salts precipitate in the moving bed, especially on the exhaust gas inlet side, block the carbon material, hinder smooth movement in the moving bed, and generate a large amount of ammonia during the regeneration of the carbon material. There is a problem in that it contaminates by-products such as corrosion and recovered sulfur. As a method for solving such a problem, S
When treating an exhaust gas containing a large amount of Ox and containing SOx and NOx, two moving bed reactors are installed, and ammonia is added to the exhaust gas or supplied to the first moving bed without adding ammonia. Mainly to desulfurize and reduce the amount of SOx to 1
There is a method of reducing the concentration to about 00 ppm or less, then adding ammonia, and then supplying the second layer to mainly perform denitration and remove the remaining SOx. This method is an extremely effective method when treating exhaust gas containing a large amount of SOx and having a high content of NOx to be removed. However, in actual exhaust gas, the content of NOx is often small in spite of the large content of SOx, and it is often not necessary to remove the entire amount of NOx when treating the exhaust gas. In such a case, it is inefficient to install two moving bed reactors, and a method capable of treating with one reactor has been desired. In addition, in any of these methods, since the denitration reaction is performed in the presence of free ammonia, there is a problem of so-called leak ammonia, in which ammonia is mixed into the treated exhaust gas. [0004] Further, in order to solve the problems occurring in such a desulfurization and denitration method, attempts have been made to devise a method of adding ammonia. For example, SOx and NO
When ammonia is added to the exhaust gas containing x and supplied to the moving bed of the carbonaceous adsorbent, especially when the temperature is low,
As a method to solve the problem that a large amount of ammonium salt is generated near the exhaust gas inlet and thereby promotes powdering of the adsorbent, ammonia is not directly added to the exhaust gas but ammonia is previously adsorbed. A method of supplying an adsorbent to a moving bed has been proposed (JP-A-2-266).
No. 18, etc.). According to this method, since the ammonia is uniformly supplied into the bed, the ammonium salt is not excessively generated in part and powdering of the adsorbent is reduced,
Further, there is an advantage that ammonia on the downstream side of the gas is used for denitration without being consumed by SOx. However, also in this case, the amount of ammonia corresponding to SOx
Problems such as the consumption of ammonia due to the reaction with x and the presence of leaked ammonia are not much different from the case where ammonia is directly introduced into exhaust gas. Further, a method of using two moving bed reactors, there is a method of increasing the catalytic activity ammoniated After heating reproduced inertness phased carbonaceous catalyst (JP 60-220129 Issue publication). However, also in this method, essentially, the above-mentioned two moving bed reactors are installed, and ammonia is added to the exhaust gas or supplied to the first moving bed without adding ammonia to mainly perform desulfurization. S
There is no difference from the method of reducing the amount of Ox to about 100 ppm or less, then adding ammonia, and then supplying it to the second layer to mainly perform denitration and remove the remaining SOx. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned prior art problems by wasting ammonia by reacting with SOx, obstructing the flow of a moving bed of carbon material due to precipitation of ammonium salts, and treating exhaust gas. An object of the present invention is to provide a simple exhaust gas treatment method using a single moving bed reactor which has no problem such as mixing of ammonia into the inside. [0007] In order to achieve the above object, the present invention provides a desulfurization denitration tower, a regeneration section, and an ammonia treatment.
And a regeneration tower having a cooling section and a SOx of 1
Method for treating exhaust gas containing at least 00 ppm and NOx
And without adding ammonia in the exhaust gas,
From ammonia-treated carbon material flowing down in the desulfurization and denitration tower
Exhaust gas is passed through the moving bed by cross-flow to reduce SOx
NOx is decomposed and removed while being adsorbed on carbon material.
The carbon material exiting the desulfurization and denitration tower at 40
After heating to 0 to 600 ° C. to discharge SO 2 ,
1 for 1 mole of NOx to be removed in the near processing section
400 to 60 while supplying ~ 1.5 mol of ammonia
Ammonia treatment of carbon material by heating to 0 ° C, then cooling
Means for circulating through the section to the desulfurization and denitration tower . The exhaust gas to be treated by the method of the present invention is:
The exhaust gas has an SOx content of 100 ppm or more and a relatively small amount of NOx to be removed. The allowable range of the NOx content in the exhaust gas that can be treated by this method is determined by the operating conditions such as the supply amount of the carbon material and the reaction temperature and the NOx content rate allowed in the treated exhaust gas. Although it cannot be said, if the amount of NOx to be removed is 3 mg or less per 1 g of the carbon material in the moving bed, the treatment of the present invention can be sufficiently performed. Further, the carbon material used in the present invention includes:
Any activated carbon material having a strength that can be used in a moving bed reactor can be used without any particular limitation, but semi-coke obtained by preliminarily carbonizing coal is used as a main raw material, and coal having cohesive properties is used as an auxiliary material. A molding activated coke obtained by mixing, kneading, adding, binding and kneading, followed by molding, dry distillation, and activation is particularly preferable. Hereinafter, the method of the present invention will be described in detail with reference to a schematic diagram showing an example of a flow according to the exhaust gas treatment method of the present invention in FIG. SOx content is 100ppm
The SOx and NOx-containing exhaust gas described above is discharged from the exhaust gas line 3 to the desulfurization and denitration tower 1 without adding ammonia.
And passed through the moving bed of the carbon material moving from the upper side to the lower side in the column in a cross flow with respect to the flow of the carbon material. During contact with the carbon material, SOx and NOx in the exhaust gas are adsorbed or decomposed and removed, and the treated exhaust gas is discharged out of the system. The carbon material that flows down in the desulfurization and denitration tower 1 and adsorbs and inactivates SOx is discharged from the lower part of the desulfurization and denitration tower, and is guided to the regeneration tower 2 through the inactivation carbon material line 4. Then, 400 to 600 in the regeneration section 2a at the top of the regeneration tower
Heated to ℃ and regenerated. The gas containing SO 2 at a high concentration generated here is discharged from the SO 2 -containing gas line 7 and sent to a by-product recovery step, where by-products such as high-purity SO 2 gas and sulfur or sulfuric acid are recovered. . Regeneration temperature is 40
0 it takes a long time for reproduction is less than ° C., playback there may become insufficient, also, undesirably exceeds 600 ° C. surface properties of the activated carbon material charge is changed when denitration ratio is decreased. The heat-regenerated carbon material is heated to 400 ° C. to 600 ° C. in the presence of ammonia supplied from the ammonia supply line 6 in the ammonia treatment section 2 b downstream of the regeneration tower.
After being heated at the temperature of 3 and subjected to ammonia treatment, the cooling unit 2
After passing through the activated carbon material line 5, the waste gas is discharged from the regeneration tower via c and sent to the desulfurization and denitration tower, where it is recycled. The activated carbon material consumed during circulation may be supplemented by appropriately supplying a new carbon material from outside the system. The amount of ammonia used here depends on the amount of NOx to be removed in the desulfurization and denitration tower.
A practical range is 1 to 1.5 moles per mole. The amount of ammonia used is less than 1 mol or the heating temperature is 400
If the temperature is lower than ℃, the effect of the ammonia treatment is not sufficient. Even if the amount of ammonia used exceeds 1.5 mol, the effect that the excess ammonia contributes to the improvement of the denitration rate is small. On the other hand, if the heating temperature during the ammonia treatment exceeds 600 ° C., the surface properties of the activated carbon material change as in the regeneration treatment, and the denitration rate is undesirably reduced. The ammonia treatment is conveniently carried out in the regeneration tower from the viewpoint of thermal efficiency, but an ammonia treatment device may be provided after the regeneration tower and carried out there. Also,
The regeneration of the activated carbon material and the ammonia treatment are preferably performed continuously using a moving bed type processing apparatus, but can also be performed using a batch type processing apparatus. The carbon material thus treated with ammonia usually contains almost no free ammonia. However, when the amount of free ammonia contained in the carbon material is relatively large, such as when the amount of ammonia used is large, it is inconvenient. Alternatively, the amount of free ammonia can be further reduced by a method such as purging with an inert gas. [0015] The surface of the ammonia-treated carbon material thus obtained is sufficiently activated as a denitration catalyst, and the SOx and NOx-containing exhaust gas having an SOx content of 100 ppm or more is treated using this. In this case, it has a sufficient desulfurization ability without adding ammonia and a denitration performance capable of decomposing about 3 mg of NOx per 1 g of carbon material. [0016] Ammonia treatment in the present invention is not merely to adsorb ammonia on the carbon material, NOx
An active nitrogen group effective for decomposition is generated on the surface of the carbon material to impart activity as a denitration catalyst. Accordingly, the type of the treating agent is not limited to ammonia, and a reducing nitrogen compound such as urea can be used, but ammonia is most suitable. In the method of the present invention, the content of SOx is 1
This method is suitable for treating SOx and NOx-containing exhaust gas which has a large amount of 00 ppm or more but has a relatively small content of NOx to be removed. However, it is needless to say that the method is effective for a gas having a SOx content of less than 100 ppm. is there. EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Example 1) A test was performed using activated coke which was repeatedly used in a desulfurization and denitration reaction and had stable performance. A desulfurization and denitration reaction was carried out using this activated coke, and 300 ml of inactivated activated coke was filled in a reaction tube, and the activated coke was placed under a N 2 atmosphere.
Regeneration was performed by heating at 00 ° C. for 1 hour. Then ammonia 1
A gas diluted with 68 mg of N 2 was introduced and heated at 500 ° C. for 1 hour to carry out an ammonia treatment. The ammoniated activated coke was cooled N 2 until purged while 140 ℃, SO 2 500ppm, NO 40ppm, O 2 5
%, H 2 O 7%, and the remaining N 2 , a mixed gas was introduced, and a desulfurization and denitration test was performed on a fixed bed at SV 400 Hr −1 and a temperature of 140 ° C. In this test, the integrated denitration rate after 20 hours was 90% (the amount of NOx removed during this period was 0.92 mg in terms of NO 2 per 1 g of activated coke), and after 70 hours. The integrated denitration rate was 70% (the amount of NOx removed during this period was 1 g of activated coke, N
2.50 mg in terms of O 2 ). Also, the amount of ammonia used for the treatment of activated coke and the amount of NO removed
The ratio with the amount of x is a molar ratio, and is 2.75 after 20 hours.
It was 1.01 after 70 hours. [0019] (Example 2) addition to the 400 ° C. The regeneration temperature and ammonia treatment temperature <br/> Similarly operating as in Example 1, was subjected to desulfurization and denitrification test. In this test, the integrated denitration rate after elapse of 20 hours was 71%.
(The amount of NOx removed during this period was 0.72 mg in terms of NO 2 per gram of activated coke), and the integrated denitration rate after 70 hours had passed was 50% (N removed during this period).
The amount of Ox was 1.7 in terms of NO 2 per gram of activated coke.
8 mg). The ratio of the amount of ammonia used for the treatment of the activated coke to the amount of NOx removed was 3.49 in a molar ratio after 20 hours and 1.42 in a period of 70 hours. . (Comparative Example 1) The ammonia treatment after regeneration was not performed, and 150
Besides the addition of ppm of ammonia in the same manner as in Example 1, it was subjected to desulfurization and denitrification test. In this test, 2
The integrated denitration rate after the lapse of 0 hours is 84% (the amount of ammonia supplied during this period is 254 mg, and the amount of removed NOx is 0.86 m 2 in terms of NO 2 per gram of activated coke.
g). The integrated denitration rate after 70 hours is 5
4% (the amount of ammonia supplied during this period was 889 mg, and the amount of removed NOx was N / g of activated coke.
1.93 mg in terms of O 2 ). The molar ratio of the amount of ammonia supplied during the desulfurization and denitration reaction to the amount of NOx removed was 4.46 after 20 hours, and 6.94 after 70 hours. From this result, it can be seen that the denitration ratio is lower than in the case of Example 1 even though the supply amount of ammonia is larger. (Comparative Example 2) The ammonia treatment after regeneration was not carried out, and 150
Besides the addition of ppm of ammonia by the same procedure as in Example 2, it was subjected to desulfurization and denitrification test. In this test, 2
The integrated denitration rate after 0 hours is 55% (the amount of ammonia supplied during this period is 254 mg, and the amount of removed NOx is 0.56 m 2 in terms of NO 2 per gram of activated coke.
g). The integrated denitration rate after 70 hours is 2
5% (the amount of ammonia supplied during this period was 889 mg, and the amount of NOx removed was N per 1 g of activated coke.
0.89 mg in terms of O 2 ). The molar ratio of the amount of ammonia supplied during the desulfurization and denitration reaction to the amount of NOx removed was 6.82 after 20 hours, and 14.99 after 70 hours. From this result, it can be seen that the denitration rate is lower than in the case of Example 2 even though the supply amount of ammonia is larger.
In this test, the integrated denitration rates at the lapse of 20 hours and 70 hours, the amount of NOx removed during this period, and the ratio of the amount of ammonia used for the treatment of activated coke to the amount of NOx removed are shown in Table 1. Show. [Table 1] According to the method of the present invention, the SOx and NOx-containing exhaust gas having a high SOx content of 100 ppm or more, but having a relatively small NOx content to be removed, is discharged into the desulfurization and denitration reactor. The desulfurization and denitration treatment can be efficiently performed by one reactor without coexisting ammonia in the reactor. Also, since ammonia is not consumed by SOx at all, the amount of ammonia used can be greatly reduced as compared with the conventional method, and the amount of free ammonia entering the desulfurization and denitration reactor is extremely small. There is no risk that the carbon material will be blocked due to precipitation of ammonium salt, etc.
There is also an advantage that the problem of leak ammonia does not occur.

【図面の簡単な説明】 【図1】 本発明の排ガス処理方法によるフローの1例
を示す概略図である。 【符号の説明】 1 脱硫脱硝塔 2 再生塔 2a 再生部 2b アンモニア処理部 2c 冷却部 3 排ガスライン 4 不活性化炭素材ライン 5 活性炭素材ライン 6 アンモニア供給ライン 7 SO2 含有ガスライン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a flow according to an exhaust gas treatment method of the present invention. [Description of Signs] 1 desulfurization and denitration tower 2 regeneration tower 2a regeneration section 2b ammonia treatment section 2c cooling section 3 exhaust gas line 4 inactivated carbon material line 5 activated carbon material line 6 ammonia supply line 7 SO 2 containing gas line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/94 B01D 53/36 101A B01J 8/12 ZAB ZAB 331 (72)発明者 村山 孝平 福岡県北九州市若松区響町1丁目3番地 三井鉱山株式会社 九州研究所内 (72)発明者 高田 光博 東京都中央区日本橋室町2丁目1番1号 三井鉱山株式会社内 (56)参考文献 特開 昭59−73030(JP,A) 特開 昭55−51438(JP,A) 特開 昭49−64568(JP,A)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI B01D 53/94 B01D 53/36 101A B01J 8/12 ZAB ZAB 331 (72) Inventor Kohei Murayama 1 Hibikicho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Prefecture 3-chome, Mitsui Mining Co., Ltd. Kyushu Research Laboratory (72) Mitsuhiro Takada 2-1-1, Nihonbashi Muromachi, Chuo-ku, Tokyo Mitsui Mining Co., Ltd. (56) References JP-A-59-73030 (JP, A) JP-A-55-51438 (JP, A) JP-A-49-64568 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 脱硫脱硝塔と、再生部、アンモニア処理
部、及び冷却部を有する再生塔とを用いる、SOxを1
00ppm以上とNOxとを含有する排ガスの処理方法
であって、排ガス中にアンモニアを添加することなく、
脱硫脱硝塔内を流下するアンモニア処理した遊離アンモ
ニアを含まない炭素材からなる移動層に直交流で排ガス
を通過させてSOxを前記炭素材に吸着させると共に、
NOxを分解除去し、次いで前記脱硫脱硝塔を出た炭素
材を再生塔の再生部で400〜600℃に加熱してSO
2を排出させた後、アンモニア処理部において除去すべ
きNOx1モルに対して1〜1.5モルのアンモニアを
供給しながら400〜600℃に炭素材を加熱すること
によりアンモニア処理した遊離アンモニアを含まない炭
素材を得、その後前記遊離アンモニアを含まないアンモ
ニア処理した炭素材を冷却部を通って前記脱硫脱硝塔に
循環させることを特徴とする排ガスの処理方法。
(57) [Claims 1] The use of a desulfurization denitration tower and a regeneration tower having a regeneration section, an ammonia treatment section, and a cooling section, wherein SOx is 1
A method for treating exhaust gas containing at least 00 ppm and NOx, without adding ammonia to the exhaust gas,
Ammonia-treated free ammonia flowing down in a desulfurization denitration tower
Exhaust gas is passed through a moving bed made of a carbon material not containing near gas by cross flow to adsorb SOx on the carbon material,
NOx is decomposed and removed, and then the carbon material exiting the desulfurization and denitration tower is heated to 400 to 600 ° C.
After discharging 2 , the carbon material is heated to 400 to 600 ° C. while supplying 1 to 1.5 mol of ammonia to 1 mol of NOx to be removed in the ammonia treatment section.
Free ammonia-free charcoal treated with ammonia
Raw material and then the free ammonia free ammonia
A method for treating exhaust gas, comprising circulating a near-treated carbon material through the cooling unit to the desulfurization and denitration tower.
JP30162492A 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material Expired - Lifetime JP3360854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30162492A JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30162492A JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Publications (2)

Publication Number Publication Date
JPH06126132A JPH06126132A (en) 1994-05-10
JP3360854B2 true JP3360854B2 (en) 2003-01-07

Family

ID=17899189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30162492A Expired - Lifetime JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Country Status (1)

Country Link
JP (1) JP3360854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3773189D1 (en) * 1987-03-25 1991-10-24 Sekisui Chemical Co Ltd RESIN FOR USE ON MAGNETIC RECORDING CARRIERS AND METHOD FOR THE PRODUCTION THEREOF.

Also Published As

Publication number Publication date
JPH06126132A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
JP3589529B2 (en) Method and apparatus for treating flue gas
JP3360854B2 (en) Exhaust gas treatment method using carbon material
EP0604198B1 (en) Method for treating ammonia
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
JPS61287423A (en) Treatment of exhaust gas
JPH06210139A (en) Waste gas treatment
JP2000102719A (en) Treatment of waste gas and device therefor
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPH0966222A (en) Treatment of exhaust gas
JP3704159B2 (en) Exhaust gas treatment method
JP2002370011A (en) Exhaust gas treatment method
JPH1147536A (en) Method for treating exhaust gas
JPS5817821A (en) Method for removing nox and sox from waste gas
JP3393825B2 (en) Exhaust gas treatment device and method
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JPH06246134A (en) Treatment of waste gas
JP2003290624A (en) Exhaust gas treatment method, exhaust gas treatment apparatus, gas treatment method and gas treatment apparatus
JP2000254453A (en) Process and equipment for waste gas treatment
JPS60220129A (en) Treatment of exhaust gas
JPH04286171A (en) Method and device for regenerating gas for carbon dioxide gas laser
JPS6358605B2 (en)
JPS6333893B2 (en)
JPH06262038A (en) Method for treatment of exhaust gas
JP3406333B2 (en) Rejuvenation activation method of carbon material for desulfurization and denitration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

EXPY Cancellation because of completion of term