JPH06126132A - Method for treating exhaust gas with carbon material - Google Patents

Method for treating exhaust gas with carbon material

Info

Publication number
JPH06126132A
JPH06126132A JP4301624A JP30162492A JPH06126132A JP H06126132 A JPH06126132 A JP H06126132A JP 4301624 A JP4301624 A JP 4301624A JP 30162492 A JP30162492 A JP 30162492A JP H06126132 A JPH06126132 A JP H06126132A
Authority
JP
Japan
Prior art keywords
ammonia
carbon material
exhaust gas
desulfurization
sox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4301624A
Other languages
Japanese (ja)
Other versions
JP3360854B2 (en
Inventor
Kazuhiko Tsuji
和比古 辻
Yasuhiko Ninagawa
康彦 蜷川
Kohei Murayama
孝平 村山
Mitsuhiro Takada
光博 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP30162492A priority Critical patent/JP3360854B2/en
Publication of JPH06126132A publication Critical patent/JPH06126132A/en
Application granted granted Critical
Publication of JP3360854B2 publication Critical patent/JP3360854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To provide a simple and clear method for treating efficiently an SOx and NOx-contg. gas by using a moving bed reactor. CONSTITUTION:A method for treating an exhaust gas wherein an SOx and SOx-contg. gas is brought into contact with a carbon material in a desulfurization and denitrification tower consisting of a carbon material moving bed and the carbon material with lowered activity is regenerated by heating in a regeneration reactor and is treated with ammonia in the temp. range of 400-600 deg.C and this ammonia-treated carbon material is fed into the desulfurization and denitrification tower, is provided. Therefore, there is no possibility that ammonia trouble caused by deposition of an ammonium salt occurs and an efficient desulfurization and denitrification can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SOx及びNOxを含
有する排ガス、特にSOxの含有量は多いが、その割り
に除去すべきNOxの量が少ない排ガスの処理に適した
排ガスの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment method suitable for treating exhaust gas containing SOx and NOx, particularly exhaust gas containing a large amount of SOx but a small amount of NOx to be removed. .

【0002】[0002]

【従来の技術】各種化石燃料の燃焼排ガスあるいは製鉄
所の焼結炉排ガス等のSOx及びNOxを含有する排ガ
スの処理方法として、これらの排ガスにアンモニアを添
加し、炭素材の移動層を直交流で通過させて接触させ、
SOxを吸着させるとともにNOxを分解除去する方法
がある。この方法において、SOxは主として硫酸の形
で炭素材上に吸着される。そのため、排ガス中に含まれ
るSOxの量が多いと、添加したアンモニアはアンモニ
ウム塩の形で消費されてしまうので脱硝反応に寄与する
アンモニアの量が少なくなり、脱硝反応を進行させるた
めには多量のアンモニアを添加する必要があり、経済的
ではない。また、移動層内の、特に排ガス入口側にアン
モニウム塩が析出し、炭素材をブロック化させ、移動層
内での円滑な移動を阻害する、炭素材の再生時に多量の
アンモニアが発生し、装置の腐食や回収される硫黄等の
副産物を汚染するという問題がある。
2. Description of the Related Art As a method for treating exhaust gas containing SOx and NOx, such as exhaust gas from combustion of various fossil fuels or exhaust gas from a sintering furnace of a steel mill, ammonia is added to these exhaust gas and a moving bed of carbon material is cross-flowed. And let it come in contact with
There is a method of adsorbing SOx and decomposing and removing NOx. In this method, SOx is adsorbed on the carbonaceous material mainly in the form of sulfuric acid. Therefore, if the amount of SOx contained in the exhaust gas is large, the added ammonia will be consumed in the form of ammonium salt, and the amount of ammonia that contributes to the denitration reaction will be small. Ammonia needs to be added, which is not economical. In addition, ammonium salts are deposited in the moving bed, especially on the exhaust gas inlet side, and block the carbon material, which hinders smooth movement in the moving bed. However, there is a problem that it corrodes the by-products and the by-products such as recovered sulfur.

【0003】このような問題を解決する方法として、S
Oxの含有量の多い、SOx及びNOxを含有する排ガ
スを処理する場合に、2個の移動層反応器を設置し、排
ガスにアンモニアを添加するか又は不添加のまま第1の
移動層に供給して主として脱硫を行い、SOxの量を1
00ppm程度以下に減少させ、次いでアンモニアを添
加したのち第2層へ供給して主として脱硝を行うととも
に残りのSOxを除去する方法がある。この方法は、多
量のSOxを含み、しかも除去すべきNOxの含有量の
多い排ガスを処理する場合には極めて有効な方法であ
る。ところが、実際の排ガスの中には、SOxの含有量
が多い割りにはNOxの含有量が少ない場合が多く、ま
た、排ガスの処理に当たってNOxの全量を除去する必
要はない場合も多い。このような場合には、2個の移動
層反応器を設置するのは非効率的であり、1個の反応器
で処理できる方法が望まれていた。また、これらの方法
においては、いずれも遊離のアンモニアの存在下で脱硝
反応を行わせるため、処理済みの排ガス中にアンモニア
が混入してくるという、いわゆるリークアンモニアの問
題がある。
As a method for solving such a problem, S
When treating exhaust gas containing a large amount of Ox and containing SOx and NOx, two moving bed reactors are installed, and ammonia is added to the exhaust gas or supplied to the first moving bed without adding ammonia. And desulfurization is mainly performed, and the amount of SOx is reduced to 1
There is a method of reducing the amount to about 00 ppm or less, then adding ammonia, and then supplying it to the second layer to mainly perform denitration and remove the remaining SOx. This method is an extremely effective method when treating an exhaust gas containing a large amount of SOx and having a large NOx content to be removed. However, in actual exhaust gas, the SOx content is large, but the NOx content is often low, and in many cases, it is not necessary to remove all the NOx in treating the exhaust gas. In such a case, it is inefficient to install two moving bed reactors, and a method capable of treating with one reactor has been desired. Further, in all of these methods, the denitration reaction is carried out in the presence of free ammonia, so that there is a problem of so-called leak ammonia in which ammonia is mixed into the treated exhaust gas.

【0004】さらに、このような脱硫脱硝方法において
生ずる問題点を解決するため、アンモニアの添加方法を
工夫する試みもなされている。例えば、SOx及びNO
xを含有する排ガスにアンモニアを添加し炭素質吸着材
の移動層に供給すると、特に温度の低い場合などには、
排ガスの入口近くで多量のアンモニウム塩が生成し、そ
れによって吸着材の粉化が促進されるという問題を解決
する方法として、アンモニアは排ガス中に直接添加する
のではなく、予めアンモニアを吸着させた吸着材を移動
層に供給する方法が提案されている(特開平2−266
18号公報など)。この方法によれば、アンモニアは層
内に均一に供給されるので、部分的にアンモニウム塩が
過剰に生成することはなく吸着材の粉化は少なくなり、
また、ガス後流側のアンモニアはSOxに消費されるこ
となく脱硝に使用されるという利点がある。しかしなが
らこの場合も、SOxに見合った量のアンモニアがSO
xとの反応により消費される、リークアンモニアがある
などの問題は排ガス中に直接アンモニアを入れる場合と
大差はない。
Further, in order to solve the problems that occur in such a desulfurization and denitration method, attempts have been made to devise a method for adding ammonia. For example, SOx and NO
When ammonia is added to the exhaust gas containing x and supplied to the moving bed of the carbonaceous adsorbent, especially when the temperature is low,
As a method of solving the problem that a large amount of ammonium salt is generated near the exhaust gas inlet, which promotes the pulverization of the adsorbent, ammonia is not directly added to the exhaust gas, but ammonia is adsorbed in advance. A method of supplying the adsorbent to the moving bed has been proposed (Japanese Patent Laid-Open No. 2-266).
No. 18, etc.). According to this method, ammonia is uniformly supplied in the layer, so that the ammonium salt is not partially excessively produced and the pulverization of the adsorbent is reduced,
Further, there is an advantage that ammonia on the gas downstream side is used for denitration without being consumed by SOx. However, also in this case, the amount of ammonia commensurate with SOx is SO
Problems such as consumption by the reaction with x and the presence of leaked ammonia are not so different from the case where ammonia is directly introduced into the exhaust gas.

【0005】また、2個の移動層反応器を使用する方法
において、不活化した炭素質触媒を加熱再生したのちア
ンモニア処理して触媒活性を高めるという方法もある
(特開昭60−220129号公報など)。しかしなが
らこの方法も、本質的には、前出の2個の移動層反応器
を設置し、排ガスにアンモニアを添加するか又は不添加
のまま第1の移動層に供給して主として脱硫を行い、S
Oxの量を100ppm程度以下に減少させ、次いでア
ンモニアを添加したのち第2層へ供給して主として脱硝
を行うとともに残りのSOxを除去する方法と変わりは
ない。
Further, in a method using two moving bed reactors, there is also a method in which an inactivated carbonaceous catalyst is heated and regenerated, and then treated with ammonia to enhance the catalytic activity (Japanese Patent Laid-Open No. 60-220129). Such). However, also in this method, essentially, the above-mentioned two moving bed reactors are installed, and ammonia is added to the exhaust gas or is fed to the first moving bed without adding ammonia to mainly perform desulfurization, S
There is no difference from the method in which the amount of Ox is reduced to about 100 ppm or less, and then ammonia is added and then supplied to the second layer to mainly perform denitration and remove the remaining SOx.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術における、SOxとの反応によるアンモニアの
浪費、アンモニウム塩の析出による炭素材の移動層の流
れの阻害、処理済み排ガス中へのアンモニアの混入等の
問題がない、1個の移動層反応器を用いた簡明な排ガス
処理方法を提供することにある。
DISCLOSURE OF THE INVENTION It is an object of the present invention to waste ammonia by reaction with SOx, obstruct the flow of a carbonaceous material moving bed due to precipitation of ammonium salt, and to dispose into treated exhaust gas in the above-mentioned prior art. An object of the present invention is to provide a simple exhaust gas treatment method using one moving bed reactor, which does not have a problem such as the mixing of ammonia.

【0007】[0007]

【課題を解決するための手段】本発明は、SOx及びN
Ox含有排ガスを炭素材と接触させて脱硫及び脱硝を同
時に行う排ガスの処理方法において、SOxの含有量が
100ppm以上であるSOx及びNOx含有排ガス
を、アンモニアを添加することなく、除去すべきNOx
をNO2 に換算しその3mgに対し1g以上の炭素材が
流下する炭素材の移動層よりなる脱硫脱硝塔内を直交流
で通過させて脱硫、脱硝を行い、脱硫脱硝塔を出た炭素
材は、再生反応器中で加熱再生したのち400〜600
℃の温度範囲でアンモニアと接触させて処理し、このア
ンモニア処理した炭素材を前記脱硫脱硝塔に供給するこ
とを特徴とする排ガス処理方法である。
The present invention relates to SOx and N
In a method of treating an exhaust gas in which an Ox-containing exhaust gas is brought into contact with a carbon material to perform desulfurization and denitration at the same time, SOx and NOx-containing exhaust gas having a SOx content of 100 ppm or more should be removed without adding ammonia.
Is converted into NO 2 and 3 g of the carbon material is desulfurized and denitrated by passing through a desulfurization and denitration tower composed of a moving bed of carbon materials in which 1 g or more of the carbon material flows down in a cross flow, and the carbon material exits the desulfurization and denitration tower Is 400 to 600 after being heated and regenerated in the regeneration reactor.
In the exhaust gas treatment method, the treatment is carried out by contacting with ammonia in a temperature range of ° C, and the ammonia-treated carbon material is supplied to the desulfurization and denitration tower.

【0008】本発明の方法で処理対象とする排ガスは、
SOxの含有量が100ppm以上であり、かつ除去す
べきNOxの量が比較的少ない排ガスである。この方法
で処理できる排ガス中のNOx含有量の許容範囲は、炭
素材の供給量や反応温度などの運転条件及び処理済みの
排ガス中に許容されるNOxの含有率によって定まるも
のであって一概にはいえないが、除去すべきNOxの量
が移動層中の炭素材1gに対し3mg以下であれば、本
発明の方法により十分処理が可能である。
The exhaust gas to be treated by the method of the present invention is
The exhaust gas has a SOx content of 100 ppm or more and a relatively small amount of NOx to be removed. The permissible range of NOx content in exhaust gas that can be treated by this method is determined by operating conditions such as the supply amount of carbonaceous material and reaction temperature, and the NOx content percentage allowed in treated exhaust gas. However, if the amount of NOx to be removed is 3 mg or less with respect to 1 g of the carbonaceous material in the moving bed, sufficient treatment can be performed by the method of the present invention.

【0009】また、本発明で使用する炭素材としては、
移動層反応器内で使用できる強度を有する活性炭素材で
あれば特に制限なく使用できるが、石炭を予備乾留して
得られる半成コークスを主原料とし、これに副原料とし
て粘結性を有する石炭及び結合剤を添加して混合、混練
したのち成形、乾留、賦活して得られる成形活性コーク
スが特に好適である。
Further, as the carbon material used in the present invention,
Any activated carbon material having strength that can be used in a moving bed reactor can be used without particular limitation, but semi-coke obtained by preliminary carbonization of coal is used as a main raw material, and coal having a caking property as an auxiliary raw material. Further, a molding activated coke obtained by adding a binder, mixing, kneading, molding, dry distillation and activation is particularly preferable.

【0010】以下、本発明の方法について、図1の本発
明の排ガス処理方法によるフローの1例を示す概略図に
従い、詳細に説明する。SOxの含有量が100ppm
以上であるSOx及びNOx含有排ガスを、アンモニア
を添加することなく、排ガスライン3から脱硫脱硝塔1
に供給し、塔内を上方から下方へ移動する炭素材の移動
層中を炭素材の流れに対し直交流で通過させる。炭素材
と接触する間に排ガス中のSOx及びNOxは吸着ある
いは分解除去され、処理済みの排ガスは系外へ排出され
る。
Hereinafter, the method of the present invention will be described in detail with reference to the schematic diagram of FIG. 1 showing an example of the flow of the exhaust gas treatment method of the present invention. SOx content is 100ppm
The above SOx and NOx-containing exhaust gas is desulfurized and denitrated from the exhaust gas line 3 without adding ammonia.
And is passed through the moving bed of the carbonaceous material moving in the tower from the upper side to the lower side in a flow orthogonal to the flow of the carbonaceous material. During contact with the carbon material, SOx and NOx in the exhaust gas are adsorbed or decomposed and removed, and the treated exhaust gas is discharged to the outside of the system.

【0011】脱硫脱硝塔1内を流下し、SOxを吸着し
て不活性化した炭素材は脱硫脱硝塔の下部から排出さ
れ、不活性化炭素材ライン4を経て再生塔2へ導かれ
る。そして再生塔上部の再生部2aにて400〜600
℃に加熱、再生される。ここで発生したSO2 を高濃度
で含有するガスは、SO2 含有ガスライン7より排出さ
れ、副生物回収工程へ送られ高純度のSO2 ガス、硫黄
あるいは硫酸等の副生物が回収される。再生温度が40
0℃未満では再生に長時間を要したり、再生が不十分と
なる恐れがあり、また、600℃を超えると活性炭素材
料の表面性状が変化し、脱硝率が低下するので好ましく
ない。
The carbon material flowing down in the desulfurization denitration tower 1 and adsorbing SOx and inactivated is discharged from the lower part of the desulfurization denitration tower 1 and is guided to the regeneration tower 2 through the deactivated carbon material line 4. And 400-600 in the regeneration section 2a above the regeneration tower
Heated to ℃ and regenerated. The gas containing SO 2 at a high concentration generated here is discharged from the SO 2 containing gas line 7 and sent to the by-product recovery step to recover high-purity SO 2 gas and by-products such as sulfur and sulfuric acid. . Regeneration temperature is 40
If the temperature is lower than 0 ° C, the regeneration may take a long time or the regeneration may be insufficient, and if the temperature exceeds 600 ° C, the surface property of the activated carbon material is changed and the denitration rate is lowered, which is not preferable.

【0012】加熱再生された炭素材は、再生塔の後流側
のアンモニア処理部2b内でアンモニア供給ライン6か
ら供給されるアンモニアの存在下に、400〜600℃
の温度で加熱してアンモニア処理されたのち、冷却部2
cを経て再生塔から排出され、活性炭素材ライン5を通
って脱硫脱硝塔へ送られ、循環使用される。循環中に消
耗した活性炭素材は、系外から適宜新しい炭素材を供給
することによって補充すればよい。ここで使用するアン
モニアの量は、脱硫脱硝塔内において除去すべきNOx
1モルに対し1〜1.5モルが実用的な範囲である。ア
ンモニア使用量が1モル未満あるいは加熱温度が400
℃未満では、アンモニア処理の効果が十分ではない。ア
ンモニアの使用量が1.5モルを超えても、超えた分の
アンモニアが脱硝率の向上に寄与する効果は小さい。ま
た、アンモニア処理時の加熱温度が600℃を超える
と、再生処理時と同様に活性炭素材料の表面性状が変化
し、脱硝率が低下するので好ましくない。
The carbon material regenerated by heating is heated to 400 to 600 ° C. in the presence of ammonia supplied from the ammonia supply line 6 in the ammonia treatment section 2b on the downstream side of the regeneration tower.
After being heated at the temperature of 1, and treated with ammonia, the cooling unit 2
It is discharged from the regeneration tower via c, is sent to the desulfurization denitration tower through the activated carbon material line 5, and is used for circulation. The activated carbon material consumed during the circulation may be replenished by appropriately supplying a new carbon material from outside the system. The amount of ammonia used here is NOx to be removed in the desulfurization and denitration tower.
A practical range is 1 to 1.5 mol per mol. Ammonia consumption is less than 1 mol or heating temperature is 400
If the temperature is lower than ° C, the effect of ammonia treatment is not sufficient. Even if the amount of ammonia used exceeds 1.5 mol, the effect of the excess ammonia contributing to the improvement of the denitration rate is small. Further, if the heating temperature during the ammonia treatment exceeds 600 ° C., the surface texture of the activated carbon material changes as in the case of the regeneration treatment, and the denitrification rate decreases, which is not preferable.

【0013】アンモニア処理は、熱効率の点から再生塔
内で行うのが好都合であるが、再生塔の後にアンモニア
処理装置を設け、そこで行うようにしてもよい。また、
活性炭素材料の再生及びアンモニア処理は、移動層形式
の処理装置を用いて、連続的に行うのが好ましいが、バ
ッチ式の処理装置を用いて行うこともできる。
The ammonia treatment is conveniently performed in the regeneration tower from the viewpoint of thermal efficiency, but an ammonia treatment device may be provided after the regeneration tower and may be performed there. Also,
The regeneration of the activated carbon material and the ammonia treatment are preferably carried out continuously using a moving bed type processing apparatus, but can also be carried out using a batch type processing apparatus.

【0014】このようにしてアンモニア処理した炭素材
は、通常ほとんど遊離アンモニアを含まないが、アンモ
ニアの使用量が多い場合など、炭素材中に含まれる遊離
アンモニアの量が比較的多く、不都合な場合には、不活
性ガスでパージするなどの方法により、遊離アンモニア
の量をさらに減少させることもできる。
The carbon material treated with ammonia in this manner usually contains almost no free ammonia, but when the amount of ammonia used is large and the amount of free ammonia contained in the carbon material is relatively large, it is inconvenient. In addition, the amount of free ammonia can be further reduced by a method such as purging with an inert gas.

【0015】このようにして得られたアンモニア処理炭
素材は、表面が脱硝触媒として十分に活性化されてお
り、これを用いて、SOxの含有量が100ppm以上
であるSOx及びNOx含有排ガスを処理した場合、ア
ンモニアを添加することなく十分な脱硫能力と、炭素材
1g当たり3mg程度のNOxを分解できる脱硝性能を
有している。
The surface of the ammonia-treated carbon material thus obtained is sufficiently activated as a denitration catalyst, and this is used to treat exhaust gas containing SOx and NOx having a SOx content of 100 ppm or more. In this case, it has a sufficient desulfurization ability without adding ammonia and a denitration performance capable of decomposing about 3 mg of NOx per 1 g of carbon material.

【0016】本発明におけるアンモニア処理は、単にア
ンモニアを炭素材上に吸着させるのではなく、脱硝触媒
としての活性を付与するものである。従って、処理剤の
種類はアンモニアに限定されず、尿素等の還元性のある
窒素化合物を使用することもできるが、アンモニアが最
適である。本発明の方法は、SOxの含有量が100p
pm以上と多いが、除去すべきNOxの含有量が比較的
少ないSOx及びNOx含有排ガスの処理に適した方法
であるが、SOxの含有量が100ppm未満のガスに
ついても有効であることはもちろんである。
The ammonia treatment in the present invention is to give an activity as a denitration catalyst, not to simply adsorb ammonia on the carbon material. Therefore, the type of treating agent is not limited to ammonia, and a reducing nitrogen compound such as urea can be used, but ammonia is most suitable. The method of the present invention has a SOx content of 100 p
This method is suitable for treating SOx and NOx-containing exhaust gas, which has a large amount of pm or more, but has a relatively small amount of NOx to be removed, but is, of course, also effective for a gas having a SOx content of less than 100 ppm. is there.

【0017】[0017]

【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。 (実施例1)脱硫脱硝反応に繰り返し使用し性能の安定
した活性コークスを用いて試験を行った。この活性コー
クスを用いて脱硫脱硝反応を行い、不活性化した活性コ
ークス300mlを反応管に充填し、N2 雰囲気下に5
00℃で1時間加熱して再生した。次いでアンモニア1
68mgをN2 で希釈したガスを導入し500℃で1時
間加熱しアンモニア処理を行った。このアンモニア処理
活性コークスをN2 をパージしながら140℃まで冷却
し、SO2 500ppm、NO 40ppm、O2
%、H2 O 7%、残りN2 の組成の混合ガスを導入
し、SV 400 Hr-1、温度140℃の固定床で脱硫
脱硝試験を行った。
EXAMPLES The method of the present invention will be described in more detail below with reference to examples. (Example 1) A test was carried out using active coke which was repeatedly used for desulfurization and denitration reaction and had stable performance. A desulfurization and denitration reaction was carried out using this activated coke, and 300 ml of inactivated activated coke was charged into a reaction tube, and the reaction tube was put under an N 2 atmosphere for 5
It was regenerated by heating at 00 ° C for 1 hour. Then ammonia 1
A gas prepared by diluting 68 mg of N 2 was introduced, and the mixture was heated at 500 ° C. for 1 hour for ammonia treatment. The ammonia-treated activated coke was cooled to 140 ° C. while purging with N 2 , and SO 2 500 ppm, NO 40 ppm, O 2 5
%, H 2 O 7%, and the balance N 2 were introduced, and a desulfurization denitration test was conducted in a fixed bed at SV 400 Hr −1 and a temperature of 140 ° C.

【0018】この試験において、20時間経過後の積分
脱硝率は90%(この間に除去されたNOx量は活性コ
ークス1gあたり、NO2 換算で0.92mg)であ
り、また、70時間経過後の積分脱硝率は70%(この
間に除去されたNOx量は活性コークス1gあたり、N
2 換算で2.50mg)であった。また、活性コーク
スの処理に使用したアンモニアの量と、除去されたNO
xの量との比率はモル比で、20時間経過時で2.75
であり、70時間経過時では1.01であった。
In this test, the integrated denitration rate after 20 hours was 90% (the amount of NOx removed during this time was 0.92 mg in terms of NO 2 per 1 g of active coke), and after 70 hours had elapsed. The integrated denitration rate is 70% (the amount of NOx removed during this period is N per 1 g of activated coke).
It was 2.50 mg in terms of O 2 . Also, the amount of ammonia used to treat the activated coke and the amount of NO removed
The ratio with the amount of x is a molar ratio of 2.75 after 20 hours.
It was 1.01 after 70 hours.

【0019】(実施例2)再生温度及びアンモニア処理
温度を400℃とした他は実施例1と同様に操作し、脱
硫脱硝試験を行った。この試験において、20時間経過
後の積分脱硝率は71%(この間に除去されたNOx量
は活性コークス1gあたり、NO2 換算で0.72m
g)であり、また、70時間経過後の積分脱硝率は50
%(この間に除去されたNOx量は活性コークス1gあ
たり、NO2 換算で1.78mg)であった。また、活
性コークスの処理に使用したアンモニアの量と、除去さ
れたNOxの量との比率はモル比で、20時間経過時で
3.49であり、70時間経過時では1.42であっ
た。
(Example 2) A desulfurization and denitration test was conducted in the same manner as in Example 1 except that the regeneration temperature and the ammonia treatment temperature were 400 ° C. In this test, the integrated denitration rate after 20 hours was 71% (the amount of NOx removed during this period was 0.72 m in terms of NO 2 per 1 g of activated coke).
g), and the integrated denitration rate after 70 hours is 50
% (The amount of NOx removed during this period was 1.78 mg in terms of NO 2 per 1 g of active coke). The molar ratio of the amount of ammonia used to treat the activated coke to the amount of NOx removed was 3.49 after 20 hours and 1.42 after 70 hours. .

【0020】(比較例1)再生後のアンモニア処理を行
わず、混合ガス中に150ppmのアンモニアを添加し
た他は実施例1と同様に操作し、脱硫脱硝試験を行っ
た。この試験において、20時間経過後の積分脱硝率は
84%(この間に供給したアンモニア量は254mgで
あり、除去されたNOx量は活性コークス1gあたり、
NO2 換算で0.86mg)であった。また、70時間
経過後の積分脱硝率は54%(この間に供給したアンモ
ニア量は889mgであり、除去されたNOx量は活性
コークス1gあたり、NO2 換算で1.93mg)であ
った。また、脱硫脱硝反応時に供給したアンモニアの量
と、除去されたNOxの量の比率はモル比で、20時間
経過時で4.46であり、70時間経過時では6.94
であった。この結果から、実施例1の場合よりもアンモ
ニアの供給量が多いにもかかわらず脱硝率は低くなって
いることが分かる。
Comparative Example 1 A desulfurization and denitration test was conducted in the same manner as in Example 1 except that 150 ppm of ammonia was added to the mixed gas without performing ammonia treatment after regeneration. In this test, the integrated denitration rate after 20 hours was 84% (the amount of ammonia supplied during this period was 254 mg, and the amount of NOx removed was 1 g of activated coke,
It was 0.86 mg in terms of NO 2 . The integrated denitration rate after 70 hours was 54% (the amount of ammonia supplied during this period was 889 mg, and the amount of NOx removed was 1.93 mg in terms of NO 2 per 1 g of activated coke). The molar ratio of the amount of ammonia supplied during the desulfurization and denitration reaction to the amount of NOx removed was 4.46 after 20 hours and 6.94 after 70 hours.
Met. From this result, it can be seen that the denitration rate is lower than that in the case of Example 1, even though the supply amount of ammonia is larger.

【0021】(比較例2)再生後のアンモニア処理を行
わず、混合ガス中に150ppmのアンモニアを添加し
た他は実施例2と同様に操作し、脱硫脱硝試験を行っ
た。この試験において、20時間経過後の積分脱硝率は
55%(この間に供給したアンモニア量は254mgで
あり、除去されたNOx量は活性コークス1gあたり、
NO2 換算で0.56mg)であった。また、70時間
経過後の積分脱硝率は25%(この間に供給したアンモ
ニア量は889mgであり、除去されたNOx量は活性
コークス1gあたり、NO2 換算で0.89mg)であ
った。また、脱硫脱硝反応時に供給したアンモニアの量
と、除去されたNOxの量の比率はモル比で、20時間
経過時で6.82であり、70時間経過時では14.9
9であった。この結果から、実施例2の場合よりもアン
モニアの供給量が多いにもかかわらず脱硝率は低くなっ
ていることが分かる。この試験における、20時間及び
70時間経過時点における積分脱硝率及びこの間に除去
されたNOxの量、及び活性コークスの処理に使用した
アンモニアの量と、除去されたNOxの量の比率を表1
に示す。
Comparative Example 2 A desulfurization and denitration test was conducted in the same manner as in Example 2 except that 150 ppm of ammonia was added to the mixed gas without performing ammonia treatment after regeneration. In this test, the integrated denitration rate after 20 hours was 55% (the amount of ammonia supplied during this period was 254 mg, and the amount of NOx removed was 1 g of activated coke,
It was 0.56 mg in terms of NO 2 . The integrated denitration rate after 70 hours was 25% (the amount of ammonia supplied during this period was 889 mg, and the amount of NOx removed was 0.89 mg in terms of NO 2 per 1 g of activated coke). The molar ratio of the amount of ammonia supplied during the desulfurization and denitration reaction to the amount of NOx removed was 6.82 after 20 hours and 14.9 after 70 hours.
It was 9. From this result, it can be seen that the denitration rate is lower than that in the case of Example 2, even though the supply amount of ammonia is larger. In this test, the integrated NOx removal rates at 20 hours and 70 hours, the amount of NOx removed during this period, and the ratio of the amount of ammonia used to treat active coke to the amount of NOx removed are shown in Table 1.
Shown in.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の方法によれば、SOxの含有量
が100ppm以上と多いが、除去すべきNOxの含有
量が比較的少ないSOx及びNOx含有排ガスを、脱硫
脱硝反応器内にアンモニアを共存させることなく、1個
の反応器により効率よく脱硫脱硝処理することができ
る。 また、アンモニアがSOxによって消費されるこ
とは全くないので、従来の方法に比較してアンモニアの
使用量は大幅に減少でき、さらに、脱硫脱硝反応器内に
入る遊離アンモニアの量が極めて少ないので、アンモニ
ウム塩の析出等により炭素材がブロック化する恐れもな
く、リークアンモニアの問題も生じないという利点もあ
る。
According to the method of the present invention, SOx and NOx-containing exhaust gas having a relatively high SOx content of 100 ppm or more but a relatively small amount of NOx to be removed, and ammonia in the desulfurization and denitration reactor. Desulfurization and denitration treatment can be efficiently carried out by one reactor without coexistence. Further, since ammonia is not consumed by SOx at all, the amount of ammonia used can be greatly reduced compared to the conventional method, and furthermore, the amount of free ammonia entering the desulfurization and denitration reactor is extremely small, There is also an advantage that the carbon material is not blocked by precipitation of ammonium salt and the problem of leaked ammonia does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の排ガス処理方法によるフローの1例
を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a flow according to an exhaust gas treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 脱硫脱硝塔 2 再生塔 2a 再生部 2b アンモニア処理部 2c 冷却部 3 排ガスライン 4 不活性化炭素材ライン 5 活性炭素材ライン 6 アンモニア供給ライン 7 SO2 含有ガスライン1 desulfurization denitration tower 2 regeneration tower 2a regeneration section 2b ammonia treatment section 2c cooling section 3 exhaust gas line 4 deactivated carbon material line 5 activated carbon material line 6 ammonia supply line 7 SO 2 containing gas line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 8/12 ZAB 9041−4G 331 9041−4G (72)発明者 高田 光博 東京都中央区日本橋室町2丁目1番1号 三井鉱山株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location B01J 8/12 ZAB 9041-4G 331 9041-4G (72) Inventor Mitsuhiro Takada Nihonbashi Muromachi, Chuo-ku, Tokyo 2-1, 1-1 Mitsui Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SOx及びNOx含有排ガスを炭素材と
接触させて脱硫及び脱硝を同時に行う排ガスの処理方法
において、SOxの含有量が100ppm以上であるS
Ox及びNOx含有排ガスを、アンモニアを添加するこ
となく、除去すべきNOxをNO2 に換算しその3mg
に対し1g以上の炭素材が流下する炭素材の移動層より
なる脱硫脱硝塔内を直交流で通過させて脱硫、脱硝を行
い、脱硫脱硝塔を出た炭素材は、再生反応器中で加熱再
生したのち400〜600℃の温度範囲でアンモニアと
接触させて処理し、このアンモニア処理した炭素材を前
記脱硫脱硝塔に供給することを特徴とする排ガス処理方
法。
1. A method for treating exhaust gas in which SOx and NOx-containing exhaust gas is brought into contact with a carbon material to simultaneously perform desulfurization and denitration, and SOx content is 100 ppm or more.
NOx to be removed from the exhaust gas containing Ox and NOx is converted to NO 2 without adding ammonia, and the amount is 3 mg.
On the other hand, 1 g or more of carbon material flows through a desulfurization denitration tower consisting of a moving bed of carbon material in a cross-flow to perform desulfurization and denitration, and the carbon material exiting the desulfurization denitration tower is heated in a regeneration reactor. A method for treating exhaust gas, which comprises regenerating and then treating by contacting with ammonia in a temperature range of 400 to 600 ° C. and supplying the ammonia-treated carbon material to the desulfurization and denitration tower.
JP30162492A 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material Expired - Lifetime JP3360854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30162492A JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30162492A JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Publications (2)

Publication Number Publication Date
JPH06126132A true JPH06126132A (en) 1994-05-10
JP3360854B2 JP3360854B2 (en) 2003-01-07

Family

ID=17899189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30162492A Expired - Lifetime JP3360854B2 (en) 1992-10-15 1992-10-15 Exhaust gas treatment method using carbon material

Country Status (1)

Country Link
JP (1) JP3360854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861683A (en) * 1987-03-25 1989-08-29 Sekisui Kagaku Kogyo Kabushiki Kaisha Quaternary-containing resin used for magnetic recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861683A (en) * 1987-03-25 1989-08-29 Sekisui Kagaku Kogyo Kabushiki Kaisha Quaternary-containing resin used for magnetic recording media

Also Published As

Publication number Publication date
JP3360854B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
EP0802825B1 (en) Regeneration of catalyst/absorber
JP3589529B2 (en) Method and apparatus for treating flue gas
JPH0312927B2 (en)
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
EP0604198B1 (en) Method for treating ammonia
JPH06126132A (en) Method for treating exhaust gas with carbon material
JPS61287423A (en) Treatment of exhaust gas
JP2000102719A (en) Treatment of waste gas and device therefor
US10843132B2 (en) Method of reducing nitrogen oxide compounds
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JP3704159B2 (en) Exhaust gas treatment method
JPH06210139A (en) Waste gas treatment
JPS60220129A (en) Treatment of exhaust gas
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JPH1147536A (en) Method for treating exhaust gas
JP2002370011A (en) Exhaust gas treatment method
JPH0966222A (en) Treatment of exhaust gas
JP2003290624A (en) Exhaust gas treatment method, exhaust gas treatment apparatus, gas treatment method and gas treatment apparatus
JP2000254453A (en) Process and equipment for waste gas treatment
JPH06262038A (en) Method for treatment of exhaust gas
JPS6350052B2 (en)
JPS6358605B2 (en)
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH06246134A (en) Treatment of waste gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

EXPY Cancellation because of completion of term