JPH0249122B2 - HAIGASUDATSURYUHOHO - Google Patents

HAIGASUDATSURYUHOHO

Info

Publication number
JPH0249122B2
JPH0249122B2 JP58048005A JP4800583A JPH0249122B2 JP H0249122 B2 JPH0249122 B2 JP H0249122B2 JP 58048005 A JP58048005 A JP 58048005A JP 4800583 A JP4800583 A JP 4800583A JP H0249122 B2 JPH0249122 B2 JP H0249122B2
Authority
JP
Japan
Prior art keywords
exhaust gas
performance
adsorbent
water
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58048005A
Other languages
Japanese (ja)
Other versions
JPS59173117A (en
Inventor
Shinichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58048005A priority Critical patent/JPH0249122B2/en
Publication of JPS59173117A publication Critical patent/JPS59173117A/en
Publication of JPH0249122B2 publication Critical patent/JPH0249122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種排ガスに伴つて大気中に放出され
る硫黄酸化物(以下SOXという)は、大気汚染等
の公害を惹き起す有害物質であるため、除去する
ことが望まれている。 この乾式方法として、活性炭等の炭素質吸着剤
の移動量に排ガスを接触させる方法がしられてい
る。又この方法に於て、炭素質吸着剤の脱硫性能
を改善する目的又は脱硝も同時に行う目的で、予
め排ガス中にNH3を注入後、炭素質吸着剤層に
通過させる方法がある。しかし乍ら、この方法で
はSOXの除去率に限界があり、脱硫性能が不十分
であるという問題がある。そのため、所望の脱硫
性能を維持するためには、吸着剤移送量を速くし
て運転する方法がとられるが、吸着剤の消耗が大
きくなるという問題がある。 排ガス中に含まれるSOXを除去する方法として
は、湿式法である石灰石−石膏法が主流となつて
いる。しかし湿式法は用水確保の問題、廃液処理
の問題、副生石膏の処理、処理ガスの昇温などの
問題があり、最近乾式法が見直されている。 本発明はSOXを含む排ガスをそのまま、あるい
はアンモニヤガス(以下NH3という)を注入し
た後、この排ガスを活性炭等の炭素質吸着層に導
入してSOXを除去する方法を改良し、その除去性
能の向上を図ろうとするものである。 特にSOXの吸着除去に於て、排ガス中に水分、
酸素の共存が必要であるが、本発明は排ガス中の
水平、酸素濃度を調整することにより、直・交流
式移動層脱硫装置の性能の向上を図ろうとするも
のである。 直交流式移動層内の炭素系吸着剤の性能低下
は、吸着剤の反応器内滞留時間および排ガスの性
状や導入量によつて変化があるが、一般的には第
2図に示したような傾向を示す。即ち、反応器内
の滞留時間(排ガスとの接触時間)を50Hとした
場合当初の20Hは殆ど性能低下がみられず、性能
低下が著しいのは30〜50Hである。換言すれば、
当初の2/5(反応器内の上部2/5)は性能低下がな
く後半2/5(反応器内の下部2/5)において性能低
下が著しい。 本発明は、この性能低下の著しい部分において
のみ排ガス中の水分又は/及び酸素濃度を高め吸
着性能の改善を図るものである。 以下図を参照して実施例について説明する。排
ガスは直接又は図の如く途中でNH3を注入して
流量分配器又はダンパー4にて2つに分割して活
性炭等の炭素質吸着剤を収容する直交流式移動層
反応器1に導入される。この場合反応器1の下部
入口から導入される排ガスに水と空気あるいはこ
れらの何れか1つを注入して反応器1内に導かれ
る。 処理されたガスは集塵器2をへて大気中に放出
される。又反応器1を出て不活性化した吸着剤は
再生器3で加熱再生されて再使用される。再生器
3で発生した高濃度のSO2ガスは硫酸・硫安又は
硫黄回収系へ送られる。 さて、前記反応器1の下部入口から導入される
排ガスの量は最大で全量の4/5好ましくは2/5以下
なかんづく実施例に示すように1/3程度が適当で
ある。又注入する水はスチーム、工業用水、廃
水、プラントの冷却水等何れでもよく、又水分、
酸素濃度の高い排ガスを添加してもよい。さらに
使用される炭素質吸着剤として、従来から使用さ
れている活性炭及び石炭等を熱処理又は水蒸気賦
活等をして得られる炭素質吸着剤に限定されるも
のではなく、遊離炭素を含有する固体の吸着剤で
も勿論さしつかえない。又必要に応じこれらにバ
ナジウム等の金属酸化物を含む炭素質吸着剤でも
よい。 さて、従来から排ガスを直接又は予めNH3
注入したのち炭素質吸着剤の移動量に通すことに
よつて脱硫する方法は知られている。しかし、排
ガス中のSOXが硫酸及びアンモニウム塩として吸
着されるので、炭素質吸着剤の性能は排ガスとの
接触により第2図の曲線aに示す如く、次第に低
下する。 また炭素質吸着剤による脱硫において、排ガス
中の水分及び酸素濃度が高い程SOXの吸着剤に対
する吸着効果即ち脱硫効果を改善できることは知
られていた。しかし多量の排ガスに水、空気を添
加してそれらの濃度を高めるには、多量の水及
び/又は空気を必要とし、かつ排ガス量の増加に
つながり好ましくなかつた。 本発明はこの問題を改善するもので、第2図の
曲線bに示す如く、吸着剤の性能低下の著しい部
分で排ガス中の水分又は/及び酸素濃度を高める
ようにした点に特徴を有している。すなわち、本
発明は排ガスを2分割し、下から導入される排ガ
ス中にのみ水又は/及び空気を加えるようにし
た。これにより炭素質吸着剤を有する直交流式移
動層の吸着剤の性能低下の著しい部分のみに水分
又は/及び酸素の濃度を高めることができるの
で、多量の水又は空気を必要としないで脱硫効果
を上げることができる。 以下に本発明の実験例を3例示し、その効率向
上の優れていることを明らかにする。 −実験例1− 微粉石炭にピツチ、水を加えて混練後、直径約
4mm×長さ約5mmの柱状体に加圧成型し、これを
燃焼排ガスで850℃の温度で炭化して得られた吸
着剤16.7m3を充填した直交流式移動層反応器にガ
ス量10000Nm3/h、ガス温度145℃,
SO21050ppmdry NOX300ppmdry,H2O7.0%,
O24.0%,CO212.0%を含有する石炭だきボイラー
排ガスにNH3を525ppmdryに成るよう注入した
後、該ガスを反応器の下部より1/3分割し、この
部分の排ガス中に水蒸気を入れてH2Oを12%に
調質して通過させた。 この場合、吸着剤の反応器内の滞留時間は、
48hに設定されている。又、反応器により排出さ
れた吸着剤は、加熱再生され再使用される。この
条件において、脱硫性能及び脱硝性能は下表のよ
うな結果が得られた。
The present invention is desired to remove sulfur oxides (hereinafter referred to as SOx ) released into the atmosphere along with various exhaust gases because they are harmful substances that cause air pollution and other pollution. As this dry method, a method is known in which exhaust gas is brought into contact with the amount of movement of a carbonaceous adsorbent such as activated carbon. In addition, in this method, for the purpose of improving the desulfurization performance of the carbonaceous adsorbent or for the purpose of simultaneously denitrating, there is a method in which NH 3 is injected into the exhaust gas in advance and then passed through the carbonaceous adsorbent layer. However, this method has a problem in that the removal rate of SOx is limited and the desulfurization performance is insufficient. Therefore, in order to maintain the desired desulfurization performance, a method is adopted in which the amount of adsorbent transferred is increased during operation, but there is a problem in that the amount of adsorbent is increased. The limestone-gypsum method, which is a wet method, is the mainstream method for removing SOx contained in exhaust gas. However, the wet method has problems such as securing water, processing waste liquid, processing by-product gypsum, and raising the temperature of the process gas, so the dry method has recently been reconsidered. The present invention improves the method of removing SOx by introducing the exhaust gas containing SOx as it is or by injecting ammonia gas (hereinafter referred to as NH3 ) into a carbonaceous adsorption layer such as activated carbon. This is an attempt to improve removal performance. Particularly in the adsorption and removal of SO
Although the coexistence of oxygen is necessary, the present invention aims to improve the performance of a direct/alternating current moving bed desulfurization apparatus by adjusting the horizontal oxygen concentration in the exhaust gas. The performance deterioration of the carbon-based adsorbent in the cross-flow moving bed varies depending on the residence time of the adsorbent in the reactor and the properties and amount of exhaust gas introduced, but in general, it is as shown in Figure 2. It shows a certain tendency. That is, when the residence time in the reactor (contact time with exhaust gas) is set to 50 hours, there is almost no performance deterioration for the initial 20 hours, and it is from 30 to 50 hours that the performance decreases significantly. In other words,
There was no performance deterioration in the initial 2/5 (upper 2/5 in the reactor), but there was a significant performance deterioration in the latter 2/5 (lower 2/5 in the reactor). The present invention aims to improve the adsorption performance by increasing the moisture and/or oxygen concentration in the exhaust gas only in areas where the performance is significantly degraded. Examples will be described below with reference to the drawings. The exhaust gas is introduced into a cross-flow type moving bed reactor 1 containing a carbonaceous adsorbent such as activated carbon, either directly or by injecting NH 3 in the middle as shown in the figure, and dividing it into two parts by a flow rate distributor or damper 4. Ru. In this case, water and/or air are injected into the exhaust gas introduced from the lower inlet of the reactor 1, and the exhaust gas is introduced into the reactor 1. The treated gas passes through the dust collector 2 and is released into the atmosphere. Further, the adsorbent that has been inactivated after leaving the reactor 1 is regenerated by heating in the regenerator 3 and reused. The highly concentrated SO 2 gas generated in the regenerator 3 is sent to the sulfuric acid/ammonium sulfate or sulfur recovery system. Now, the amount of exhaust gas introduced from the lower inlet of the reactor 1 is at most 4/5 of the total amount, preferably 2/5 or less, and especially about 1/3 as shown in the embodiments. The water to be injected may be steam, industrial water, waste water, plant cooling water, etc.
Exhaust gas with a high oxygen concentration may be added. Furthermore, the carbonaceous adsorbent used is not limited to the conventionally used carbonaceous adsorbents obtained by heat treatment or steam activation of activated carbon and coal, etc. Of course, adsorbents can also be used. Further, if necessary, a carbonaceous adsorbent containing a metal oxide such as vanadium may be used. Now, conventionally, there has been known a method of desulfurizing exhaust gas by directly or injecting NH 3 in advance and then passing it through a moving amount of carbonaceous adsorbent. However, since SOx in the exhaust gas is adsorbed as sulfuric acid and ammonium salt, the performance of the carbonaceous adsorbent gradually decreases as shown by curve a in FIG. 2 due to contact with the exhaust gas. Furthermore, in desulfurization using a carbonaceous adsorbent, it has been known that the higher the moisture and oxygen concentrations in the exhaust gas, the better the adsorption effect of SOx on the adsorbent, that is, the desulfurization effect can be improved. However, adding water and air to a large amount of exhaust gas to increase their concentration requires a large amount of water and/or air, which is undesirable as it leads to an increase in the amount of exhaust gas. The present invention aims to improve this problem, and is characterized by increasing the moisture and/or oxygen concentration in the exhaust gas at the portion where the performance of the adsorbent is significantly degraded, as shown by curve b in Figure 2. ing. That is, in the present invention, the exhaust gas is divided into two parts, and water and/or air are added only to the exhaust gas introduced from below. This makes it possible to increase the concentration of moisture and/or oxygen only in areas where the performance of the adsorbent in a cross-flow moving bed containing a carbonaceous adsorbent is significantly reduced, so that the desulfurization effect is achieved without the need for large amounts of water or air. can be raised. Three experimental examples of the present invention will be shown below, and the superiority of the efficiency improvement will be clarified. - Experimental Example 1 - After adding pitch and water to pulverized coal and kneading it, it was press-molded into a columnar body with a diameter of about 4 mm and a length of about 5 mm, and this was carbonized at a temperature of 850°C using combustion exhaust gas. A cross-flow moving bed reactor filled with 16.7 m 3 of adsorbent had a gas flow rate of 10,000 Nm 3 /h, a gas temperature of 145°C,
SO 2 1050ppmdry NO X 300ppmdry, H 2 O7.0%,
After injecting NH 3 to the coal-fired boiler exhaust gas containing 4.0% O 2 and 12.0% CO 2 to a concentration of 525 ppmdry, the gas is divided into 1/3 from the bottom of the reactor, and water vapor is added to this portion of the exhaust gas. The solution was heated to 12% H 2 O and passed through. In this case, the residence time of the adsorbent in the reactor is
It is set to 48h. Further, the adsorbent discharged from the reactor is regenerated by heating and reused. Under these conditions, the results shown in the table below were obtained for desulfurization performance and denitrification performance.

【表】 −実験例2− 実験例1と同一のボイラーガス条件及び運転条
件にて、該ガスを反応器の下部より1/3分割し、
この部分の排ガス中に空気を添加してO2を7%
に調質して通過させた。 この条件において、脱硫性能及び脱硝性能は下
表のような結果が得られた。
[Table] - Experimental Example 2 - Under the same boiler gas conditions and operating conditions as Experimental Example 1, the gas was divided into 1/3 from the bottom of the reactor,
Add air to the exhaust gas in this part to increase O 2 to 7%
It was tempered and passed. Under these conditions, the results shown in the table below were obtained for desulfurization performance and denitrification performance.

【表】 −実験例3− 実験例1と同一のボイラーガス条件及び運転条
件にて、該ガスの分割及びH2O,O2の調質を行
なわず通過させた。この条件において、脱硫性
能、及び脱硝性能は下表のような結果が得られ
た。
[Table] - Experimental Example 3 - Under the same boiler gas conditions and operating conditions as in Experimental Example 1, the gas was passed through without being split and H 2 O and O 2 were tempered. Under these conditions, the results shown in the table below were obtained for desulfurization performance and denitrification performance.

【表】 以上の3つの実験例から明らかなごとく、本発
明のごとく排ガスを2分割し、下側から導入され
るものを水及び/又は空気で調質することによ
り、脱硫性能が一段と向上することがわかる。
[Table] As is clear from the above three experimental examples, the desulfurization performance is further improved by dividing the exhaust gas into two and conditioning the gas introduced from the bottom with water and/or air as in the present invention. I understand that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る脱硫方法を実施する装置
の一例を示す。第2図は排ガスとの接触時間と脱
硫性能との関係グラフ。 図において;1……移動層反応器、2……集塵
器、3……再生器、4……流量分配器(又はダン
パー)。
FIG. 1 shows an example of an apparatus for carrying out the desulfurization method according to the present invention. Figure 2 is a graph of the relationship between contact time with exhaust gas and desulfurization performance. In the figure: 1... moving bed reactor, 2... dust collector, 3... regenerator, 4... flow rate distributor (or damper).

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄酸化物を含む排ガスを直接又はアンモニ
アガスを注入後活性炭等の炭素質吸着剤を充填し
た直交流式移動層反応器に導入して硫黄酸化物を
除去する方法において、排ガスを2つ以上に分割
して下部に流入する排ガスに水及び/又は空気を
注入して水及び/又は酸素濃度を高めるようにし
たことを特徴とする排ガス脱硫方法。
1. In the method of removing sulfur oxides by introducing the exhaust gas containing sulfur oxides directly or by injecting ammonia gas into a cross-flow type moving bed reactor filled with a carbonaceous adsorbent such as activated carbon, two or more exhaust gases are removed. An exhaust gas desulfurization method characterized in that water and/or air is injected into the exhaust gas flowing into the lower part of the exhaust gas to increase the water and/or oxygen concentration.
JP58048005A 1983-03-24 1983-03-24 HAIGASUDATSURYUHOHO Expired - Lifetime JPH0249122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048005A JPH0249122B2 (en) 1983-03-24 1983-03-24 HAIGASUDATSURYUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048005A JPH0249122B2 (en) 1983-03-24 1983-03-24 HAIGASUDATSURYUHOHO

Publications (2)

Publication Number Publication Date
JPS59173117A JPS59173117A (en) 1984-10-01
JPH0249122B2 true JPH0249122B2 (en) 1990-10-29

Family

ID=12791181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048005A Expired - Lifetime JPH0249122B2 (en) 1983-03-24 1983-03-24 HAIGASUDATSURYUHOHO

Country Status (1)

Country Link
JP (1) JPH0249122B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285448B2 (en) * 2009-01-23 2013-09-11 中部電力株式会社 Gas treatment system

Also Published As

Publication number Publication date
JPS59173117A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CA2193638C (en) Exhaust gas treating systems
US11577199B2 (en) Method for desulphurizating and denitrating flue gas in integrated manner based on low-temperature adsorption
JPH0312927B2 (en)
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JP2931153B2 (en) Method for removing acid gas from combustion exhaust gas
US6106791A (en) Exhaust gas treating systems
KR100264738B1 (en) A method for removing air pollutant from flue gas continuously and an apparatus therefor
CN208082173U (en) The processing system of activated coke method coke oven flue gas desulphurization denitration acid vapour is handled with system for preparing sulfuric acid
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
JPH0249122B2 (en) HAIGASUDATSURYUHOHO
JPH0154089B2 (en)
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
JPH07241441A (en) Method for desulfurizing sulfur dioxide-containing gas as gas to be treated
JPS5864117A (en) Dry stack-gas desulfurization process
CN107890755A (en) With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS6061024A (en) Process for removing sox and nox simultaneously
JPS6260132B2 (en)
JPS6211891B2 (en)
JPS6358605B2 (en)
JPH06262038A (en) Method for treatment of exhaust gas
JPS60220129A (en) Treatment of exhaust gas
JPS631889B2 (en)