JPS631889B2 - - Google Patents

Info

Publication number
JPS631889B2
JPS631889B2 JP57044204A JP4420482A JPS631889B2 JP S631889 B2 JPS631889 B2 JP S631889B2 JP 57044204 A JP57044204 A JP 57044204A JP 4420482 A JP4420482 A JP 4420482A JP S631889 B2 JPS631889 B2 JP S631889B2
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorbent
gas
desulfurization
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044204A
Other languages
Japanese (ja)
Other versions
JPS58159832A (en
Inventor
Shinichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57044204A priority Critical patent/JPS58159832A/en
Publication of JPS58159832A publication Critical patent/JPS58159832A/en
Publication of JPS631889B2 publication Critical patent/JPS631889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は、ボイラー等の燃焼排ガス、製鉄所等
の焼結炉排ガス中の硫黄酸化物を除去する排ガス
の脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas desulfurization method for removing sulfur oxides from combustion exhaust gas from boilers and the like and from sintering furnace exhaust gas from steel plants and the like.

排ガス中の硫黄酸化物(以下SOxと記す。)を
除去する方法としては、湿式法と乾式法があり、
湿式法では石灰石−石膏法が主流となつている
が、湿式法は、用水確保、廃液処理、副生石膏の
処理及び処理ガスの昇温等の問題があり、最近乾
式法が見直されている。
There are two methods for removing sulfur oxides (hereinafter referred to as SOx) from exhaust gas: wet methods and dry methods.
The mainstream wet method is the limestone-gypsum method, but the wet method has problems such as securing water, treating waste liquid, treating by-product gypsum, and increasing the temperature of the process gas, so the dry method has recently been reconsidered.

この乾式法は、排ガスを脱硫剤である活性炭等
の炭素質吸着剤によつて脱硫処理し、ついで集塵
機により脱塵して浄化をはかるものである。
In this dry method, exhaust gas is desulfurized using a carbonaceous adsorbent such as activated carbon, which is a desulfurizing agent, and is then purified by removing dust using a dust collector.

炭素質吸着剤を用いて脱硫運転を行つた際、吸
着剤の加熱再生の繰り返しによつて、脱硫能力が
しだいに低下する。
When desulfurization is performed using a carbonaceous adsorbent, the desulfurization ability gradually decreases due to repeated heating and regeneration of the adsorbent.

従つて、吸着剤の所望の脱硫能力をできるだけ
長時間維持することが望まれる。
Therefore, it is desirable to maintain the desired desulfurization ability of the adsorbent for as long as possible.

乾式の脱硫法では安価な炭素質吸着剤が使われ
るため、吸着剤の初期吸着能が劣り所望の吸着能
が得られるまで活性化する必要がある。これに
は、相当の時間がかかるため、装置の運転開始よ
りできるだけ早い時期に吸着剤の活性化が行われ
ることが望まれる。
Since an inexpensive carbonaceous adsorbent is used in the dry desulfurization method, the initial adsorption capacity of the adsorbent is poor and it is necessary to activate it until the desired adsorption capacity is obtained. Since this takes a considerable amount of time, it is desirable to activate the adsorbent as early as possible before the start of operation of the apparatus.

このため、従来では移動層方式の場合には吸着
剤移送量を速くして運転する方法がとられている
が吸着剤の消耗が大きくなる欠点を有するもので
あつた。一方、NH3ガスをあらかじめ排ガスに
注入した後、炭素質吸着剤層に通過させ脱硫する
方法が提案されている。この方法によれば、炭素
質吸着剤の触媒作用により脱硝も行なえるという
利点の他に脱硫能力を長時間維持でき、吸着剤の
加熱再生における化学的消耗が低減され、吸着、
再生の繰り返し使用により活性が向上する利点が
ある。
For this reason, conventionally, in the case of a moving bed system, a method has been adopted in which the amount of adsorbent transferred is increased, but this method has the drawback of increasing consumption of the adsorbent. On the other hand, a method has been proposed in which NH 3 gas is injected into the exhaust gas in advance and then passed through a carbonaceous adsorbent layer for desulfurization. According to this method, in addition to the advantage that denitrification can be performed by the catalytic action of the carbonaceous adsorbent, the desulfurization ability can be maintained for a long time, chemical consumption during heating regeneration of the adsorbent is reduced, and adsorption,
There is an advantage that activity is improved by repeated reuse.

しかしながら、この方法は、あらかじめ注入さ
れたNH3ガスのために炭素質吸着剤の炭素のガ
ス化が緩和され、細孔等の発達が押さえられるた
め、高活性化され所望の脱硫能力が得られるまで
1000〜2000時間もの時間を要しなければならなか
つた。
However, in this method, the gasification of carbon in the carbonaceous adsorbent is relaxed due to the NH 3 gas injected in advance, and the development of pores etc. is suppressed, resulting in high activation and the desired desulfurization ability. to
It had to take between 1,000 and 2,000 hours.

本発明者は、以上のような現状にはぐくみ、所
望の脱硫能力が長時間維持され、かつ迅速に吸着
剤が高活性化される排ガスの脱硫方法を提供する
ことを目的として、鋭意検討を重ねた結果、脱硫
装置の運転開始当初、排ガス中へアンモニアガス
の添加を行うことなく排ガスを脱硫装置に導いて
炭素質吸着剤と接触させて排ガス中の硫黄酸化物
を除去し、不活性化した該炭素質吸着剤を加熱再
生して反復使用を繰り返して活性化した後に、排
ガス中にアンモニアガスを添加して吸着・再生を
繰り返すことを特徴とする。
The inventors of the present invention have made extensive studies in order to provide an exhaust gas desulfurization method that maintains the desired desulfurization ability for a long time and quickly activates the adsorbent to a high degree. As a result, when the desulfurization equipment first started operating, the flue gas was guided to the desulfurization equipment and brought into contact with a carbonaceous adsorbent to remove and inactivate the sulfur oxides in the flue gas without adding ammonia gas to the flue gas. The method is characterized in that after the carbonaceous adsorbent is heated and regenerated and activated by repeated use, ammonia gas is added to the exhaust gas and adsorption and regeneration are repeated.

本発明の実施に際し、装置の型式は移動層方
式、固定層方式のいずれも利用できるが、移動層
方式を例に第1図によつて本発明を説明すれば以
下の通りである。
In carrying out the present invention, either a moving layer type or a fixed layer type of device can be used, but the present invention will be explained below with reference to FIG. 1 using a moving layer type as an example.

脱硫装置の運転初期には、NH3ガスを注入し
ていない排ガスを活性炭等の炭素質吸着層を有す
る直交式移動層脱硫反応器2に通過させて脱硫処
理され、集塵機3を経て大気中に放出される。
In the initial stage of operation of the desulfurization equipment, the exhaust gas to which NH 3 gas has not been injected is passed through the orthogonal moving bed desulfurization reactor 2 having a carbonaceous adsorption layer such as activated carbon, where it is desulfurized, and then released into the atmosphere through the dust collector 3. released.

本発明では、運転初期排ガス中にNH3ガスを
注入しないため、SOxは、排ガス中のO2やH2O
の存在により吸着剤に硫酸として吸着される。
SOxを吸着して不活性化した吸着剤は、反応器2
の底部より抜出し移動層方式の吸着剤再生器4へ
供給され、300〜600℃の高温不活性ガスで加熱す
ると次式により硫酸がSO2として脱離し、同時に
炭素質吸着剤の炭素の一部がガス化する。
In the present invention, since NH 3 gas is not injected into the exhaust gas at the initial stage of operation, SOx is replaced by O 2 and H 2 O in the exhaust gas.
Due to the presence of sulfuric acid, it is adsorbed on the adsorbent as sulfuric acid.
The adsorbent that adsorbed SOx and became inactive is transferred to reactor 2.
When the sulfuric acid is extracted from the bottom of the carbonaceous adsorbent and supplied to the moving bed type adsorbent regenerator 4, and heated with high-temperature inert gas at 300 to 600°C, sulfuric acid is desorbed as SO 2 according to the following equation, and at the same time, some of the carbon in the carbonaceous adsorbent is becomes gas.

1/2C+H2SO4→SO2+1/2CO2+H2O これに伴つて、炭素質吸着剤の細孔が発達し比
表面積が大きくなつて、活性化されて吸着に再利
用に供される。
1/2C + H 2 SO 4 →SO 2 +1/2CO 2 +H 2 O Along with this, the pores of the carbonaceous adsorbent develop and the specific surface area increases, and it is activated and reused for adsorption. .

このような吸着・再生をある程度繰り返した
後、アンモニアガス貯槽1より排ガス中にNH3
ガスを注入して、上記と同様にSOxの吸着及び吸
着剤の再生を実施する。
After repeating such adsorption and regeneration to some extent, NH 3 is released into the exhaust gas from the ammonia gas storage tank 1.
Gas is injected to adsorb SOx and regenerate the adsorbent in the same manner as above.

これによつて、迅速に吸着剤が高活性化され、
かつ長期間この高活性が維持される。
This quickly activates the adsorbent and
And this high activity is maintained for a long period of time.

但し、本発明において、NH3ガスを注入する
時期は排ガス及び運転条件によつて変化するが脱
硫装置の運転開始から概略100〜1000時間後が好
ましい。特に排ガス中のSO2濃度が低い場合(約
300ppm以下)には吸着硫黄量が少ないため、活
性化に長時間を必要とするので、このような条件
では運転当初排ガス中にSO2を添加してNH3無注
入で運転して活性化を早めることが可能である。
排ガス中にSO2を添加する方法としては、炭素質
吸着剤の加熱再生時に得られる高濃度SO2ガスの
一部を、脱硫反応器入口へ供給してもよく、また
他のSO2源より供給してもよい。又、NH3ガス注
入は、注入開始時より所定量のNH3ガスを注入
するか、あるいは段階的に注入量を増加させて行
く方法でもよい。
However, in the present invention, the timing of injecting NH 3 gas varies depending on the exhaust gas and operating conditions, but is preferably about 100 to 1000 hours after the start of operation of the desulfurization equipment. Especially when the SO 2 concentration in the exhaust gas is low (approximately
300ppm or less), the amount of adsorbed sulfur is small, and activation takes a long time. Under these conditions, it is recommended to add SO 2 to the exhaust gas at the beginning of operation and activate it by operating without NH 3 injection. It is possible to accelerate it.
As a method of adding SO 2 to the exhaust gas, a part of the highly concentrated SO 2 gas obtained during heating regeneration of the carbonaceous adsorbent may be supplied to the inlet of the desulfurization reactor, or it may be possible to add SO 2 from other sources. May be supplied. Further, the NH 3 gas injection may be performed by injecting a predetermined amount of NH 3 gas from the start of the injection, or by increasing the injection amount in stages.

本発明において使用される炭素質吸着剤とは、
従来から使用されている活性炭及び石炭等を熱処
理又は水蒸気賦活等をして得られる活性化コーク
ス等に限定されるものではなく、遊離炭素を含有
する固体の吸着剤を指し、バナジウム等の金属酸
化物を含有するものでもよい。
The carbonaceous adsorbent used in the present invention is
It is not limited to activated coke, etc. obtained by heat treatment or steam activation of conventionally used activated carbon and coal, etc., but refers to solid adsorbents containing free carbon, and metal oxidation agents such as vanadium. It may also contain something.

なお、再生時回収される高濃度SOxガスは、硫
酸、石膏又は硫黄回収工程等で処理される。
Note that the highly concentrated SOx gas recovered during regeneration is treated in a sulfuric acid, gypsum, or sulfur recovery process.

以下、実験例により本発明の効果を明らかにす
る。
Hereinafter, the effects of the present invention will be clarified through experimental examples.

実施例 1 微粉石炭にピツチ、水を加えて混練後約4mmφ
×5mmの柱状体に加圧成型し、これを燃焼排ガス
で850℃の温度で炭化して得られた吸着剤を充填
した直交流式移動層反応器にSO2970ppm、
NOx280ppm、H2O7.8%、O25.0%を含有する石
炭たきオイラー排ガスを145℃の温度で通過させ
た。この場合、ガスの空間速度は600hr-1、吸着
剤の反応器内の滞留時間は48hrに設定した。脱硫
装置運転開始より350時間までは上記の条件で運
転して吸着・再生を繰り返し、その後排ガス中に
NH3を525ppm注入して運転を行なつた。この場
合の脱硫率の変化を第2図に示した。又比較例と
して運転当初よりNH3を485ppm注入した場合
(比較例1)及びNH3を全期間にわたつて注入し
ない場合(比較例2)の結果も第2図に示した。
Example 1 After adding pitch and water to pulverized coal and kneading it, the diameter is about 4 mm.
970 ppm of SO 2 was placed in a cross-flow moving bed reactor filled with the adsorbent obtained by press-molding it into a 5 mm column and carbonizing it with combustion exhaust gas at a temperature of 850 °C.
Coal-fired oiler exhaust gas containing 280 ppm NOx, 7.8% H 2 O and 5.0% O 2 was passed through at a temperature of 145°C. In this case, the space velocity of the gas was set to 600 hr -1 and the residence time of the adsorbent in the reactor was set to 48 hr. The desulfurization equipment is operated under the above conditions for up to 350 hours after the start of operation to repeat adsorption and regeneration, and then
The operation was carried out with 525 ppm of NH 3 injected. Figure 2 shows the change in desulfurization rate in this case. As comparative examples, the results are also shown in FIG. 2 when NH 3 was injected at 485 ppm from the beginning of operation (Comparative Example 1) and when NH 3 was not injected throughout the period (Comparative Example 2).

実施例 2 実施例1と同様にSO2150ppm、NOx250ppm、
H2O9.5%、O214%を含有する製鉄所焼結排ガス
を、130℃で通過させた。この場合の空間速度は
800hr-1、吸着剤の反応器内の滞留時間を70時間
に設定した。脱硫装置運転開始より700時間まで
は上記の条件で運転して吸着、再生を繰り返し、
その後排ガス中にNH3を300ppm注入して運転を
行つた。この場合の脱硫率、脱硝率を第3図に示
した。又比較例として運転当初よりNH3
300ppm注入した場合(比較例3)の結果も第3
図に示した。
Example 2 Same as Example 1, SO 2 150ppm, NOx 250ppm,
Steelworks sintering exhaust gas containing 9.5% H 2 O and 14% O 2 was passed through at 130°C. The space velocity in this case is
800 hr −1 and the residence time of the adsorbent in the reactor was set to 70 hours. The desulfurizer is operated under the above conditions for up to 700 hours from the start of operation, repeating adsorption and regeneration.
After that, 300 ppm of NH 3 was injected into the exhaust gas and operation was carried out. The desulfurization rate and denitrification rate in this case are shown in Figure 3. As a comparative example, NH 3 was
The results when 300ppm was injected (Comparative Example 3) were also the same.
Shown in the figure.

以上より本発明によれば、脱硫装置の運転開始
当初、排ガス中へアンモニアガスの添加を行うこ
となく、排ガスの脱硫処理を行い、前記吸着剤の
反復使用を繰り返して、該吸着剤が活性化した後
に未処理排ガス中へアンモニアガスの添加を行う
ようにしたため、脱硫装置運転当初より高効率の
脱硫率を上げ得、しかも長時間一定の脱硫率を維
持できるという効果を奏する。又、本発明の他の
重要な特徴は、第3図に示したように炭素質吸着
剤の脱硝触媒としての活性化も促進されることで
ある。
As described above, according to the present invention, at the beginning of operation of the desulfurization equipment, the exhaust gas is desulfurized without adding ammonia gas to the exhaust gas, and the adsorbent is repeatedly used to activate the adsorbent. Since ammonia gas is added to the untreated exhaust gas after this process, the desulfurization rate can be increased with high efficiency from the beginning of the desulfurization equipment operation, and a constant desulfurization rate can be maintained for a long time. Another important feature of the present invention is that activation of the carbonaceous adsorbent as a denitrification catalyst is also promoted, as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は
実施例1及び比較例1、2の脱硫性能の経時変化
の結果を示すグラフ、第3図は実施例2及び比較
例3に於ける脱硫脱硝率の経時変化を示すグラフ
である。 1……アンモニアガス貯槽、2……直交式移動
層脱硫反応器、3……集塵機、4……吸着剤再生
器。
Fig. 1 is a diagram showing an example of the present invention, Fig. 2 is a graph showing the results of changes in desulfurization performance over time in Example 1 and Comparative Examples 1 and 2, and Fig. 3 is a graph showing the results of changes in desulfurization performance over time in Example 1 and Comparative Examples 1 and 2. 2 is a graph showing changes over time in desulfurization and denitrification rates in 1... Ammonia gas storage tank, 2... Orthogonal moving bed desulfurization reactor, 3... Dust collector, 4... Adsorbent regenerator.

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄酸化物を含む排ガスにアンモニアガスを
添加した後に脱硫装置に導いて炭素質吸着剤と接
触させて排ガス中の硫黄酸化物を除去し、不活性
化した該吸着剤を加熱再生して反復使用する排ガ
スの脱硫方法において、前記脱硫装置の運転開始
当初、排ガス中へアンモニアガスの添加を行うこ
となく排ガスの脱硫処理を行い、該吸着剤の反復
使用を繰り返して該吸着剤が活性化した後に、未
処理排ガス中へアンモニアガスの添加を行うこと
を特徴とする排ガスの脱硫方法。
1 After adding ammonia gas to the exhaust gas containing sulfur oxides, it is guided to a desulfurization equipment and brought into contact with a carbonaceous adsorbent to remove the sulfur oxides in the exhaust gas, and the inactivated adsorbent is regenerated by heating and repeated. In the exhaust gas desulfurization method used, at the beginning of operation of the desulfurization equipment, the exhaust gas is desulfurized without adding ammonia gas to the exhaust gas, and the adsorbent is activated by repeated use. A method for desulfurizing exhaust gas, which comprises subsequently adding ammonia gas to the untreated exhaust gas.
JP57044204A 1982-03-19 1982-03-19 Flue gas desulfurization method Granted JPS58159832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044204A JPS58159832A (en) 1982-03-19 1982-03-19 Flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044204A JPS58159832A (en) 1982-03-19 1982-03-19 Flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS58159832A JPS58159832A (en) 1983-09-22
JPS631889B2 true JPS631889B2 (en) 1988-01-14

Family

ID=12685027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044204A Granted JPS58159832A (en) 1982-03-19 1982-03-19 Flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS58159832A (en)

Also Published As

Publication number Publication date
JPS58159832A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
JPS62502732A (en) Catalyst for removing nitrogen oxides from waste gas
JPS631889B2 (en)
JP2000102719A (en) Treatment of waste gas and device therefor
JPS61287423A (en) Treatment of exhaust gas
JP3381973B2 (en) Exhaust gas treatment method
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPS5864117A (en) Dry stack-gas desulfurization process
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JPH0153087B2 (en)
JPH0249122B2 (en) HAIGASUDATSURYUHOHO
JPH06262038A (en) Method for treatment of exhaust gas
JPS60220129A (en) Treatment of exhaust gas
JPS6260132B2 (en)
JPS60129127A (en) Desulfurization and denitration process for waste gas
JP3406333B2 (en) Rejuvenation activation method of carbon material for desulfurization and denitration
JPS6358605B2 (en)
JPS63214323A (en) Desulfurizing and denitrating method for combustion exhaust gas
JP2002370011A (en) Exhaust gas treatment method
JPS6268528A (en) Method of removing sulfur compound from gas by using absorbing material capable of being regenerated by reaction with element-shaped sulfur
JPS58177142A (en) Method for regenerating and reactivating carbonaceous adsorbent for dry desulfurization
JPS62129128A (en) Reduction of sulfur emission of steam power plant
JPS59130522A (en) Dry desulfurizing method
JPS621284B2 (en)