JPS60129127A - Desulfurization and denitration process for waste gas - Google Patents

Desulfurization and denitration process for waste gas

Info

Publication number
JPS60129127A
JPS60129127A JP58237213A JP23721383A JPS60129127A JP S60129127 A JPS60129127 A JP S60129127A JP 58237213 A JP58237213 A JP 58237213A JP 23721383 A JP23721383 A JP 23721383A JP S60129127 A JPS60129127 A JP S60129127A
Authority
JP
Japan
Prior art keywords
desulfurization
denitration
active carbon
denitrification
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237213A
Other languages
Japanese (ja)
Inventor
Shinji Nishizaki
西崎 進治
Akimitsu Tsuji
顕光 辻
Takeo Kobayashi
小林 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58237213A priority Critical patent/JPS60129127A/en
Publication of JPS60129127A publication Critical patent/JPS60129127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To perform desulfurization and denitration of waste gas simultaneously by improving the activity of catalyst and to improve rate of desulfurization and denitration remarkably by using active carbon incorporated with a metal component such as V as desulfurizing and denitrating agent. CONSTITUTION:Gaseous ammonia is admixed with waste gas contg. NOx and SOx and the mixture is guided to a desulfurization and denitration stage 1 from an inlet 3 of the gas. The waste gas moves in the horizontal direction to cross with a moving bed 4 of packed active carbon incorporated with a metal component such as V, W, etc. moving vertically from above to below, and SOx is converted to SO3 to deposit on the active carbon in the moving bed, and NOx is reduceed to innoxious material simultaneously. Purified gas is discharged from an outlet 5. On one hand, the active carbon contg. deposited SO3 moves downward through the moving bed and is discharged from an outlet 6 and is guided to a regeneration stage 2 where it is regenerated by heating at 300-400 deg.C, and transported again to the desulfurization and denitration stage. Replenishing active carbon is fed to compensate discharged pulverized active carbon.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は、排ガスの脱硫脱硝方法に係り、特に、脱硫脱
硝剤としてバナジウム等の金属成分の添加された活性炭
を用いることにより、活性を向上きせ、もって鋭硫率、
脱硝率ともに大幅に向上させることができる脱tril
l脱硝方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for desulfurization and denitration of exhaust gas, and in particular, a method for improving the activity by using activated carbon to which a metal component such as vanadium is added as a desulfurization and denitration agent. , with sharp sulfur content,
Detril that can significantly improve both the denitrification rate
lRelating to a denitrification method.

[発明の技術的背景とその問題点] 一般に、ボイラー等の燃焼器から排出される排ガス中に
はSOx (硫化物)やNOx (窒素酸化物)などが
含まれていることから、排ガスを脱硫脱硝処理した後、
大気中へ排出されている。
[Technical background of the invention and its problems] Generally, exhaust gas discharged from a combustor such as a boiler contains SOx (sulfides) and NOx (nitrogen oxides), so it is necessary to desulfurize the exhaust gas. After denitration treatment,
Emitted into the atmosphere.

従来、この脱硫法としては、脱硫効率が比較的良好なこ
とから石灰石を吸収剤として使用する湿式脱硫法(石灰
石膏法)が主として行なわれているが、この方法にあっ
ては石灰石をスラリ化する水を必要とするばかりか、排
水による二次公害の危険性もある。更には、この脱硫法
にあっては、SOiをほとんど除去できないので、人気
汚染防止の観点より充分でない場合があるばかりか、排
ガス温度が低い為、人気拡散がよくないという問 ゛題
乙あった。
Conventionally, this desulfurization method has mainly been carried out using a wet desulfurization method (lime plaster method) that uses limestone as an absorbent because of its relatively good desulfurization efficiency. Not only does this require water, but there is also the risk of secondary pollution caused by wastewater. Furthermore, this desulfurization method can hardly remove SOi, so it may not be sufficient from the viewpoint of preventing pollution, and there is also the problem that diffusion is not good because the exhaust gas temperature is low. .

一方、従来の脱硝法としては、例えば排ガス中にアンモ
ニアを注入してチタン−バナジウム系触媒のもとにNO
xを還元して脱硝づる乾式脱硝法(処理温度約350℃
)が主に行なわれているが、この方法にあっては脱硝の
際のリークアンモニアとSoxとの化合物である酸性硫
酸アンモニウムが後続のエアヒータなどに凝縮し、排ガ
ス通路の閉塞や装置の腐食等の問題を生ぜしめていた。
On the other hand, in conventional denitrification methods, for example, ammonia is injected into the exhaust gas and NOx is removed under the titanium-vanadium catalyst.
Dry denitrification method in which x is reduced and denitrified (processing temperature approximately 350℃)
), but in this method, acidic ammonium sulfate, which is a compound of leaked ammonia and Sox during denitrification, condenses on the subsequent air heater, causing blockage of the exhaust gas passage and corrosion of the equipment. It was causing problems.

そこで、最近これらの従来問題を一挙に解決すべく活性
炭を用いて脱硫と脱硝とを同時に行なう方法が創案され
てはいるが、しかしながら、脱硫脱硝活性、特に脱硝活
性が著しく低いことがら、十分な脱硫脱硝率が得られな
いばかりか軽演的にも成り立たず、実用化されていない
のが現状である。
Recently, a method has been devised to simultaneously perform desulfurization and denitrification using activated carbon in order to solve these conventional problems all at once. At present, it has not been put to practical use because not only is it not possible to obtain a high desulfurization and denitrification rate, but it is also not practical.

本発明は、以上のような問題点に着目し、これを有効に
解決すべく創案されたものである。
The present invention has focused on the above-mentioned problems and has been devised to effectively solve them.

[発明の目的] 本発明の目的は、脱硫脱硝剤としてバナジウム等の金属
成分の添加された活性炭を用いることにより、活性を向
上させて服′硫と脱硝とを同時に行なうようにし、もっ
て説硫率、脱硝率ともに大幅に向上させることができる
排ガス脱硫脱硝方法を提供するにある。
[Objective of the Invention] The object of the present invention is to use activated carbon to which a metal component such as vanadium is added as a desulfurization and denitrification agent to improve the activity and perform sulfurization and denitration at the same time. It is an object of the present invention to provide an exhaust gas desulfurization and denitrification method that can significantly improve both the denitrification rate and the denitrification rate.

[発明の概要] 本発明は、排ガスにアンモニアを混入させた接、これを
バナジウム、タングステン等のうち少なくとも1以上の
金属成分を添加して高活性化した活性炭と接触させて脱
硫と脱硝とを同時にtうなうようにし、もって上記目的
を達成するものである。
[Summary of the Invention] The present invention involves mixing exhaust gas with ammonia and bringing it into contact with activated carbon that has been highly activated by adding at least one metal component of vanadium, tungsten, etc. to achieve desulfurization and denitrification. At the same time, the above purpose is achieved.

すなわら、本発明者らは、石炭等を乾留して製造する乾
留チャー(活性炭)にバナジウム等の金属酸化物を添加
させることにより、脱硫、脱硝活性を大幅に向上させる
ことができるという知見を得ることにより本発明を完成
するに至ったものである。
In other words, the present inventors have found that desulfurization and denitrification activities can be significantly improved by adding metal oxides such as vanadium to carbonized char (activated carbon) produced by carbonizing coal etc. By obtaining the following, we have completed the present invention.

[発明の実施例] 以下に、本発明方法を添イ」図面に基づいて詳述する。[Embodiments of the invention] The method of the present invention will be explained in detail below with reference to the accompanying drawings.

第1図は本発明方法を説明覆るための工程図を示ず。FIG. 1 does not show a process diagram for explaining the method of the present invention.

図示する如く、本発明方法は、バナジウム、タングステ
ン等の金属成分の添加された活性炭とアンモニアの混入
された含SOX 、NOX排ガスとを接触させて脱硫脱
硝する脱硫脱硝工程1と、この工程を経て排出されるS
OX吸着炭を加熱してH1SO4(硫酸)脱離し、活性
炭を再生ずる再生工程2とにより主に構成されている。
As shown in the figure, the method of the present invention includes a desulfurization and denitration step 1 in which activated carbon to which metal components such as vanadium and tungsten are added is brought into contact with SOX and NOX-containing exhaust gas mixed with ammonia to desulfurize and denitrate; S discharged
It mainly consists of a regeneration step 2 in which OX adsorbing carbon is heated to remove H1SO4 (sulfuric acid) and regenerate activated carbon.

上記脱硫脱硝工程1にて使用される金属成分添加活性炭
は、排ガス中のSOxを吸着してガスからこれを分離す
る脱硫作用を発揮すると同時に、排ガス中のNOxを混
入されたアンモニア(Nl−1s>と反応させて無公害
化する触媒作用を発揮し、2つの作用を生ずる。
The metal component-added activated carbon used in the desulfurization and denitrification process 1 exhibits a desulfurization effect that adsorbs SOx in the exhaust gas and separates it from the gas, and at the same time, ammonia (Nl-1s) mixed with NOx in the exhaust gas >It exhibits a catalytic effect that makes it non-polluting by reacting with other substances, producing two effects.

具体的には、上記脱硫作用は、活性炭による単なる吸着
でなは無(下記式(1) 、 (21、(3)に示す如
くSoyが酸化されてSOiとなり、更に水蒸気と反応
してHx SOi (硫酸)となって吸着される。
Specifically, the desulfurization effect described above is not simply adsorption by activated carbon (as shown in the following formulas (1), (21, and (3), Soy is oxidized to SOi, and further reacts with water vapor to form HxSOi). (sulfuric acid) and is adsorbed.

ここでバナジウム等の金属成分はSO+を酸化する為の
触媒として作用するもので、脱硫性能上重要な因子とな
る。
Here, the metal component such as vanadium acts as a catalyst for oxidizing SO+, and is an important factor in desulfurization performance.

So2→SOS’ ・・・ (1) SOx +1/2 Qy →SQi” −・−ri>1
SO3+l−h O→H2$oa” −(31には吸着
状態を示ず。
So2 → SOS' ... (1) SOx +1/2 Qy →SQi"-・-ri>1
SO3+l-h O→H2$oa" - (No adsorption state is shown in 31.

また、Noは下記式(4)に示ずごどく還元反応され、
無害なN2どなる。
In addition, No is subjected to a severe reduction reaction as shown in the following formula (4),
Harmless N2 roars.

4 N O+ 4 N H!+ Or −)4N+ +61−120 −(41ここで使用する
活性炭の炭材としては、木材、石炭等を乾留してできる
乾留チト一の他に石油残渣をもとにしてできる石油系の
チャーでもよく、特に、活性および経済炸の点を考慮す
ると亜炭、褐炭等の低石炭化度の石炭が好ましい。
4 N O+ 4 N H! + Or -) 4N+ +61-120 - (41 The activated carbon used here can be carbonized carbonized carbon material made by carbonizing wood, coal, etc., or petroleum-based char made from petroleum residue. In particular, coal with a low degree of coalification, such as lignite and brown coal, is preferable from the viewpoint of activity and economic explosiveness.

また、金属成分の添加方法については、例えばバナジウ
ムを例にとるならば酸化物であるメタバナジン酸アンモ
ニウム水溶8!i(約80℃)に活性炭を含浸(スプレ
ーでもよい)させ、乾燥して調整する。そして、バナジ
ウム添加率を1100pp以上とするのが望ましい。
Regarding the method of adding metal components, for example, taking vanadium as an example, ammonium metavanadate, which is an oxide, can be dissolved in water. i (approximately 80°C) with activated carbon (spray may be used) and dried. Further, it is desirable that the vanadium addition rate be 1100 pp or more.

尚、添加方法として上記含浸に限るものでなく、また、
添加元素としてはバナジウムの他、タングステン、ゲル
マニウム、チタン、ニオブ、銅又は鉄でもよく、又はこ
れらの混合物でもよい。
Note that the addition method is not limited to the above-mentioned impregnation;
In addition to vanadium, the additive element may be tungsten, germanium, titanium, niobium, copper, or iron, or a mixture thereof.

このように、1152硫脱硝剤として金属酸化物を添加
(含有)した活性炭を用いることにより1112硫およ
び脱硝性能を著しく向上させることができる。
As described above, by using activated carbon to which a metal oxide is added (contained) as a 1152 sulfur denitrification agent, the 1112 sulfur and denitrification performance can be significantly improved.

すなわち、脱硫特性に関しては、solの酸化触媒活性
と吸着面積(比表面積)とが重要な因子となるが、前者
の酸化触媒活性については添加した金属酸化物と活性炭
との相乗効果によりその効果は著しくなり、また後者の
吸着面積に関しては活性炭が有効に作用し、特に低石炭
化度の石炭の乾留チャーがよい。
In other words, the oxidation catalytic activity and adsorption area (specific surface area) of sol are important factors for desulfurization properties, but the former oxidation catalytic activity is affected by the synergistic effect of the added metal oxide and activated carbon. Activated carbon has an effective effect on the latter adsorption area, and carbonized char of coal with a low degree of coalification is particularly good.

また、脱硝特性すなわちNoのアンモニア還元性につい
ては、従来技術で述べた如く高温(約350℃程度〉に
おいてはチタン−バナジウム触媒が実用化されてはいる
ものの、低温においては活性が極めて低いため使用され
ておらず、まIc 、活性炭も前述の如く活性が低いた
め実用化されていないが、しかし、本発明に係る脱硝剤
は活性炭と添加した金属酸化物との相乗効果によって著
しく脱硝特性が向上する。
Regarding the denitrification property, that is, the ability of No to reduce ammonia, although titanium-vanadium catalysts have been put into practical use at high temperatures (approximately 350°C) as described in the prior art, their activity is extremely low at low temperatures, so they are not used. However, the denitrification agent according to the present invention has significantly improved denitrification properties due to the synergistic effect of activated carbon and the added metal oxide. do.

次に、I]52硫脱硝工程1にて使用された活性炭は、
吸着した1−hsO4’(硫酸)の為に脱硫、脱硝性能
が低下するので再生工程2へ移送されて、その後300
〜400℃に加熱してt−hsO4を下記式(5)に示
す如く脱離し、再生される。
Next, the activated carbon used in I]52 sulfur denitrification step 1 is
Since the desulfurization and denitrification performance deteriorates due to the adsorbed 1-hsO4' (sulfuric acid), it is transferred to regeneration process 2, and then
By heating to ~400°C, th-hsO4 is desorbed and regenerated as shown in the following formula (5).

1−h 804 +1/2 C →SO+ +I−h O+ 1/2 CO+ ・−(b
)木は吸着状態を示す。
1-h 804 +1/2 C →SO+ +I-h O+ 1/2 CO+ ・-(b
) The tree shows an adsorption state.

そして、再生の結果、発生する80’yはイオウ回収工
程へ移送される一方、再生活性炭は脱硫脱硝工程1に向
けて移送され、再度脱硫脱硝剤として使用される。
As a result of the regeneration, the generated 80'y is transferred to the sulfur recovery process, while the recycled activated carbon is transferred to the desulfurization and denitrification process 1 and used again as a desulfurization and denitration agent.

実施例 1 本発明の実施例として移動床十字流式脱硫脱硝方法を工
程図に従って説明づる。
Example 1 As an example of the present invention, a moving bed cross-flow desulfurization and denitrification method will be explained according to a process diagram.

燃焼器から排出される約130℃の排ガス(S 0 +
 : 200+1DII1. N 0 : 7001)
l)m)中に、Noの1.2倍(モル比)のアンモニア
ガスを添加混入し、その後ガス導入口3から麗硫脱硝工
程1へ導く、この排ガスは、バナジウム添加活性炭(褐
炭チャー粒子)が充填されて上方から下方へ移動する移
動床4に対して水平に交叉し、ここで脱硫脱硝を行なう
。すなわち、SO2及びSOxを硫酸として活性炭に吸
着させると同時に、NOをアンモニア等により還元反応
さlて無害化する。
Exhaust gas (S 0 +
: 200+1DII1. N0: 7001)
l) Add and mix 1.2 times (molar ratio) of ammonia gas to No in m), and then lead it to the resulfur denitrification process 1 from the gas inlet 3. ) is filled and moves horizontally across the moving bed 4 moving from above to below, where desulfurization and denitrification are performed. That is, SO2 and SOx are adsorbed on activated carbon as sulfuric acid, and at the same time, NO is subjected to a reduction reaction with ammonia or the like to be rendered harmless.

浄化された排ガスは清浄ガスとして排出口5から排出さ
れる。
The purified exhaust gas is discharged from the exhaust port 5 as clean gas.

一方、SOx等を硫酸として吸着した活性炭は移動床4
を徐々に降下して吸着炭排出口6から排出され、その後
、再生■稈2に向けて移送されて導入ロアを介してこの
工程へ導出される。
On the other hand, activated carbon that adsorbs SOx etc. as sulfuric acid is used in the moving bed 4.
The adsorbed coal gradually descends and is discharged from the adsorbent discharge port 6, and is then transferred to the regenerated culm 2 and led out to this process via the introduction lower.

この活性炭は再生工程2にて300〜400℃に加熱さ
れ、この結果、硫酸が脱着されて活性炭をpJ生ずる。
This activated carbon is heated to 300 to 400° C. in regeneration step 2, and as a result, sulfuric acid is desorbed to produce pJ of activated carbon.

再生された再生活性炭は活性炭排出口8から排出された
後、脱硫脱硝工程1に向けて移送され、再度、脱硫脱硝
剤として使用される。
After being discharged from the activated carbon outlet 8, the regenerated activated carbon is transferred to the desulfurization and denitrification process 1, and is used again as a desulfurization and denitration agent.

尚、粉炭が排出されることによって活性炭が不足気味に
なるので、これを補填ずべく補給活性炭が供給される。
Incidentally, since activated carbon tends to be in short supply due to the discharge of powdered coal, supplementary activated carbon is supplied to compensate for this shortage.

一方、再生工程2にて、1−hsO4がJB2 、Wさ
れることによって発生づ−るSO+L、tsO+sol
、] 9を介して排出され、その後通常のイオウ回収工
程へ移送れさる。
On the other hand, in the regeneration process 2, SO+L and tsO+sol generated by 1-hsO4 being subjected to JB2 and W
, ] 9 and then transferred to a conventional sulfur recovery process.

以上の処理工程でS V 400h でnrガス処理し
た結果、脱硫率99.9%、脱硝率87%と高い脱硫脱
硝率を得ることができた。
As a result of the nr gas treatment at S V 400h in the above treatment steps, high desulfurization and denitrification rates could be obtained, such as a desulfurization rate of 99.9% and a denitration rate of 87%.

ここで、脱硫脱硝条件について更に考察すると、排ガス
温度については110〜1GO’Cが好ましく、高温側
では脱硫率が、低温側では脱硝率がそれぞれ低下する。
Here, further considering the desulfurization and denitration conditions, the exhaust gas temperature is preferably 110 to 1 GO'C, and the desulfurization rate decreases on the high temperature side, and the denitration rate decreases on the low temperature side.

SVは100〜1000h が好ましく、大き過ぎると
m2 FA脱硝率がそれぞれ低下し、逆に小さ過ぎると
不経済となる。また、排ガス中へのアンモニアガス添加
混入量はNOxに対して0.8〜1.2(モル比)が好
ましく、大き過ぎると脱硝率は向上するが、リークアン
モニアが多くなり、逆に小さ過ぎると脱硝率が低下する
The SV is preferably 100 to 1000 h; if it is too large, the m2 FA denitrification rate will decrease, and if it is too small, it will be uneconomical. In addition, the amount of ammonia gas added to the exhaust gas is preferably 0.8 to 1.2 (molar ratio) to NOx; if it is too large, the denitrification rate will improve, but leak ammonia will increase, and on the contrary, if it is too small. and the denitrification rate decreases.

更に移動床におけるガス流速は0.1〜3/ sacが
好ましく、流速が多き過ぎると圧力損失が増大して経済
的に不利となり、逆に流速が小さ過ぎると排ガスの逆混
合等にJζり脱硫脱硝率が低下する。
Furthermore, the gas flow rate in the moving bed is preferably 0.1 to 3/sac; if the flow rate is too high, the pressure loss will increase and it will be economically disadvantageous, while if the flow rate is too low, it will cause back-mixing of exhaust gas, etc. Denitrification rate decreases.

また、使用する脱硫脱硝剤は、褐炭などを乾留して製造
した乾留チャーにメタバナジン酸アンモニウム水溶液(
約80℃)を含浸させて乾燥し、バナジウム添加率11
00pp以上に調整して製造した。
In addition, the desulfurization and denitrification agent used is an aqueous solution of ammonium metavanadate (
(approximately 80℃) and dried, vanadium addition rate 11
It was manufactured by adjusting the ppm to 00pp or more.

尚、本実施例にあっては、排ガスを何ら処理づることな
くこれにアンモニアガスを注入したが、排ガス中のSO
2が高濃度の場合には脱硫脱硝処理前に排ガス中にアン
モニアを注入すると酸性硫酸アンモニウム等が生成し、
脱硝率が低下するのみならず、種々問題が置きる場合も
あるので、これを防止するためにアンモニア注入前にあ
らかじめ予備脱硫を行ない、その後、同時脱硫脱硝処理
を行なうようにして2段処理法を採用ずφのがよく、ま
た脱塵効果も大きい。
In this example, ammonia gas was injected into the exhaust gas without any treatment; however, the SO in the exhaust gas
If the concentration of 2 is high, acidic ammonium sulfate etc. will be generated if ammonia is injected into the exhaust gas before desulfurization and denitrification treatment.
Not only does the denitrification rate decrease, but various other problems may occur, so to prevent this, a two-stage treatment method is used in which preliminary desulfurization is performed before ammonia injection, and then simultaneous desulfurization and denitrification treatment are performed. It is better to use φ instead of φ, and the dust removal effect is also great.

[発明の効果] 以上数するに、本発明方法によれば次のような優れた効
果を発揮することができる。
[Effects of the Invention] In summary, the method of the present invention can exhibit the following excellent effects.

(1) 脱硫脱硝溶剤としてバナジウム等の金属成分の
添加された活性炭を使用することにより脱硫脱硝活性を
著しく高めることができ、その結果高度な脱硫ができる
と共に、実用可能4T高い脱硝率を得ることができる。
(1) By using activated carbon to which a metal component such as vanadium is added as a desulfurization and denitrification solvent, the desulfurization and denitration activity can be significantly increased, and as a result, a high level of desulfurization can be achieved, and a practical 4T high denitration rate can be obtained. I can do it.

(2) その結果、活性炭のサイクル時間が長くなり、
時間当りの活性炭再生量が減少し、活性炭の再生用加熱
エネルギーを削減することができる。
(2) As a result, the activated carbon cycle time becomes longer;
The amount of activated carbon regenerated per hour is reduced, and the heating energy for regenerating activated carbon can be reduced.

(3) 乾式脱硫のため、SOq除去率が非常に高< 
(ioo%)、スラリ用の水及び廃水処理も不要となり
、更には廃水による2次公害の心配もなく湿式n算値法
の欠点を解消できる。
(3) Due to dry desulfurization, SOq removal rate is extremely high.
(ioo%), water for slurry and wastewater treatment are not required, and furthermore, there is no need to worry about secondary pollution due to wastewater, and the drawbacks of the wet n calculation method can be overcome.

(3) 脱硫と脱硝とを同特に行なうので、エアヒータ
ーでの酸性硫安による閉塞及び腐食の心配がない。
(3) Since desulfurization and denitration are carried out simultaneously, there is no need to worry about blockage or corrosion caused by acidic ammonium sulfate in the air heater.

(5) また、脱硫と脱硝とを別の装置でやる必要がな
く、1つの装置で行なうことができるので、吸着塔が小
型化できるばかりでなく、操作が簡素化されてメンテナ
ンスも容易に行なうことができる。
(5) In addition, desulfurization and denitrification do not need to be performed in separate devices, but can be performed in one device, which not only allows the adsorption tower to be downsized, but also simplifies operation and maintenance. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明り法を説明するIcめの工程図を示す。 尚、図中1は脱硫脱硝工程、2は再生1稈、4は移動床
である。 特許出願人 石川島播磨重]二業株式会社代理人弁理士
 絹 谷 信 組
FIG. 1 shows the first step diagram for explaining the method of the present invention. In the figure, 1 is a desulfurization and denitrification process, 2 is a regenerated culm, and 4 is a moving bed. Patent applicant: Ishikawajima-Harima Ju] Nigyo Co., Ltd. Representative Patent Attorney: Makoto Kinuya

Claims (1)

【特許請求の範囲】[Claims] ボイラー等の燃焼器から排出される排ガスを脱硫脱硝処
理ブーるに際して、上記排ガスにアンモニアを混入させ
た後、バナジウム、タングステン、ゲルマニウム、チタ
ン、ニオブ、銅又は鉄のうち少なくとも1以上の金属成
分を添加した活性炭と接触させて脱硫脱硝するようにし
たことを特徴とする排ガスの脱硫脱硝方法。
When desulfurizing and denitrating exhaust gas discharged from a combustor such as a boiler, ammonia is mixed into the exhaust gas, and then at least one metal component of vanadium, tungsten, germanium, titanium, niobium, copper, or iron is added to the exhaust gas. A method for desulfurizing and denitrating exhaust gas, characterized in that desulfurization and denitration are carried out by contacting with added activated carbon.
JP58237213A 1983-12-17 1983-12-17 Desulfurization and denitration process for waste gas Pending JPS60129127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237213A JPS60129127A (en) 1983-12-17 1983-12-17 Desulfurization and denitration process for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237213A JPS60129127A (en) 1983-12-17 1983-12-17 Desulfurization and denitration process for waste gas

Publications (1)

Publication Number Publication Date
JPS60129127A true JPS60129127A (en) 1985-07-10

Family

ID=17012055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237213A Pending JPS60129127A (en) 1983-12-17 1983-12-17 Desulfurization and denitration process for waste gas

Country Status (1)

Country Link
JP (1) JPS60129127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531244A (en) * 2005-02-08 2008-08-14 グロコウスキー、ホルスト Method for purifying exhaust gas produced by a sintering process of ores and / or other metal-containing substances in metal production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531244A (en) * 2005-02-08 2008-08-14 グロコウスキー、ホルスト Method for purifying exhaust gas produced by a sintering process of ores and / or other metal-containing substances in metal production

Similar Documents

Publication Publication Date Title
CA2193638C (en) Exhaust gas treating systems
JP2016538989A (en) Semi-dry simultaneous desulfurization / denitration / demercury equipment and method using circulating fluidized bed
EP4154967A1 (en) Flue gas integrated desulfurization and denitration method based on low-temperature adsorption principle
JPH0312927B2 (en)
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
CN108144443A (en) A kind of powdered activated coke combined desulfurization and the system and method for denitration
CN110124451B (en) Wet-type step-by-step SO removal in flue gas2And NO process
CN201020334Y (en) Desulfurization denitration integrative smoke purifying device
US6106791A (en) Exhaust gas treating systems
JP3248956B2 (en) Exhaust gas treatment method
US6814948B1 (en) Exhaust gas treating systems
KR101830477B1 (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
JPS60129127A (en) Desulfurization and denitration process for waste gas
CN211216166U (en) System for mercury and sulfur dioxide in desorption flue gas in coordination
KR20220144993A (en) Apparatus for treating gas from combustion installations
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system
JPH05317646A (en) Waste gas treating method
CN111974342A (en) Combined adsorbent for flue gas desulfurization and denitration and flue gas desulfurization and denitration method
CN108144426B (en) Ozone oxidation combined desulfurization and denitration system and method
CN212757979U (en) Flue gas pollutant removing device
CN109701383A (en) A kind of new catalytic method desulfuring and denitrifying apparatus and technique for coke oven flue gas
JPS5841893B2 (en) Hiengasu Shiyorihouhou
CN106984148A (en) A kind of method of low-temperature plasma synergistic catalysis oxidation various pollutants in fume