JPS63214323A - Desulfurizing and denitrating method for combustion exhaust gas - Google Patents

Desulfurizing and denitrating method for combustion exhaust gas

Info

Publication number
JPS63214323A
JPS63214323A JP62048608A JP4860887A JPS63214323A JP S63214323 A JPS63214323 A JP S63214323A JP 62048608 A JP62048608 A JP 62048608A JP 4860887 A JP4860887 A JP 4860887A JP S63214323 A JPS63214323 A JP S63214323A
Authority
JP
Japan
Prior art keywords
activated carbon
exhaust gas
column
desulfurization
exhausted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62048608A
Other languages
Japanese (ja)
Inventor
Koichi Shimazaki
島崎 行一
Seiichi Takeuchi
竹内 成一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Sumitomo Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP62048608A priority Critical patent/JPS63214323A/en
Publication of JPS63214323A publication Critical patent/JPS63214323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To increase desulfurizing and denitrating efficiency of exhaust gas containing a small volume of sulfur oxide by allowing additionally sulfur oxide be adsorbed into active carbon prior to regenerating activated carbon exhausted by being contacted with combustion exhaust gas. CONSTITUTION:Exhausted activated carbon discharged from the bottom of a desulfurizing and denitrating column 5 is fed to the top of an activation column 7 and flowed down inside the column by means of gravity, and sulfur oxide is adsorbed additionally to the activated carbon by contacting gas composed of gas containing sulfur oxide from a regenerating column 8 and a proper volume of air with activated carbon moving bed in the activation column 7. Then, said activated carbon is drawn out of the bed of the activation column 7, and fed to the top of the regenerating column 8, and the activated carbon is regenerated by heating up the moving bed for the exhausted activated carbon flowing down inside the column by means of gravity in the inactive gas atmosphere. After regeneration, the activated carbon is fed to the top of desulfurizing and denitrating column 5 to be used for the treatment of exhaust gas again.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃焼排ガスの脱硫脱硝法に関するものであって
、特にイオウ酸化物と窒素酸化物を含有しながらも、イ
オウ酸化物濃度が比較的低い燃焼排ガスを対象とした脱
硫脱硝法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for desulfurization and denitration of combustion exhaust gas, and in particular, although it contains sulfur oxides and nitrogen oxides, the sulfur oxide concentration is relatively low. This relates to desulfurization and denitrification methods that target low combustion exhaust gas.

[従来の技術] 石油資源の枯渇が叫ばれ、代替エネルギー源として石炭
が見直されて以来、石炭焚ボイラーにも改良が加えられ
ているが、その一つに流動燃焼ボイラーがある。流動燃
焼ボイラーは燃料に使用する石炭の種類が比較的自由に
選択でき、また脱硫剤として機能する適当なアルカリ土
類金属の炭酸塩等を1石炭粒と共に流動させれば、炉内
脱硫を行なうことができる利点を備えている。しかしな
がら、ボイラー内で脱硫剤を流動させても1石炭の燃焼
によって生ずるイオウ酸化物のすべてを炉内脱硫するこ
とは極めて難しい、しかも、石炭の燃焼では当然のこと
ながら、窒素酸化物も発生するので1石炭焚流動燃焼ボ
イラーからの排ガスにも、公害防止上、脱硫脱硝処理を
施さなければならない。
[Prior Art] Since the depletion of petroleum resources has been called out and coal has been reconsidered as an alternative energy source, improvements have been made to coal-fired boilers, one of which is the fluidized combustion boiler. In a fluidized combustion boiler, the type of coal used as fuel can be selected relatively freely, and desulfurization can be carried out in the furnace by flowing a suitable alkaline earth metal carbonate, etc., which functions as a desulfurizing agent, together with one coal grain. It has the advantage of being able to. However, even if a desulfurizing agent is flowed in the boiler, it is extremely difficult to desulfurize all the sulfur oxides produced by the combustion of one coal in the furnace.Moreover, as a matter of course, nitrogen oxides are also produced when coal is burned. Therefore, the exhaust gas from coal-fired fluidized combustion boilers must also be subjected to desulfurization and denitrification treatment to prevent pollution.

石炭焚流動燃焼ボイラーからの排ガスを対象とした脱硫
脱硝方法の従来技術は、特開昭58−150705号公
報に見ることができる。この方法は1石炭焚流動燃焼ボ
イラー内で少量の脱硫剤を石炭粒と共に流動させること
により、石炭の燃焼によって生ずるイオウ酸化物の一部
を脱硫剤で固定し、ボイラーから出る排ガスをアンモニ
アと共に活性炭吸着法式脱硫脱硝装置に供給して処理す
るものであって、この方法によれば、炉内脱硫に要する
脱硫剤の使用量を節減できるばかりでなく、排ガスのイ
オウ酸化物濃度も炉内脱硫で減少しているから、脱硫装
置での脱硝率を高水準に維持できる旨が、前記の公開公
報に記載されている。
A prior art method for desulfurization and denitration for exhaust gas from a coal-fired fluidized combustion boiler can be found in Japanese Patent Application Laid-Open No. 150705/1983. In this method, a small amount of desulfurizing agent is made to flow together with coal grains in a coal-fired fluidized combustion boiler, so that some of the sulfur oxides produced by the combustion of coal are fixed with the desulfurizing agent, and the exhaust gas from the boiler is used with activated carbon along with ammonia. This method is supplied to an adsorption-type desulfurization and denitrification equipment for treatment.This method not only reduces the amount of desulfurization agent required for in-furnace desulfurization, but also reduces the sulfur oxide concentration of exhaust gas by in-furnace desulfurization. It is stated in the above-mentioned publication that the denitrification rate in the desulfurization equipment can be maintained at a high level because of the decrease in the amount of nitrogen.

[発明が解決しようとする問題点コ イオウ酸化物と窒素酸化物を含有する排ガスにアンモニ
アを混合し、この排ガスを活性炭と接触させる脱硫脱硝
方法では、排ガスとの接触によって疲弊した活性炭を再
生し、再生活性炭を再度排ガスとの接触に使用する操作
を繰り返すのが通例であるが、本発明者は再生に付され
る活性炭のイオウ酸化物吸着状況が、再生後の活性炭の
性能、特に脱硝性能に重大な影響を及ぼすことを見出し
た。
[Problems to be Solved by the Invention] In the desulfurization and denitration method in which ammonia is mixed with exhaust gas containing carpite oxides and nitrogen oxides, and this exhaust gas is brought into contact with activated carbon, activated carbon that has been exhausted by contact with the exhaust gas is regenerated, It is customary to repeat the operation of bringing the recycled activated carbon into contact with exhaust gas again, but the inventor has determined that the sulfur oxide adsorption status of the activated carbon subjected to regeneration will affect the performance of the activated carbon after regeneration, especially its denitrification performance. We found that this had a significant effect.

すなわち、排ガスとの接触によって疲弊した活性炭を再
生する場合、その活性炭が比較的多量のイオウ酸化物を
吸着していれば、再生された活性炭は、次回の排ガスと
の接触に際して高い脱硝性能を発揮するのに対し、少量
のイオウ酸化物しか吸着していない活性炭を再生した場
合には、充分な脱硝性能は得られず、脱硝性能はイオウ
酸化物の濃度に大きく影響されるとの知見を得た。
In other words, when activated carbon that has been exhausted by contact with exhaust gas is regenerated, if the activated carbon adsorbs a relatively large amount of sulfur oxides, the regenerated activated carbon will exhibit high denitrification performance the next time it comes into contact with exhaust gas. On the other hand, we found that when activated carbon that has adsorbed only a small amount of sulfur oxide is regenerated, sufficient denitrification performance cannot be obtained, and that denitrification performance is greatly affected by the concentration of sulfur oxide. Ta.

従って、炉内脱硫を行なわせた石炭焚流動燃焼ボイラー
からの排ガスのように、イオウ酸化物量が少ない燃焼排
ガスを、活性炭で処理する脱硫脱硝方法では、排ガス中
のイオウ酸化物濃度が低いので、期待した程の脱硝率を
得ることができない。このように再生された活性炭が排
ガスと接触した場合の脱硝率はイオウ酸化物の濃度によ
って変動するが、流動床ボイラーでは多様な種類の石炭
を焚くので、発生するイオウ酸化物の濃度が変動し、脱
硝率も炭種によって変化する。このため、脱硫脱硝装置
も脱硝率の低下に対応し得る大きな装置を要していた。
Therefore, in the desulfurization and denitration method in which combustion exhaust gas with a small amount of sulfur oxides, such as exhaust gas from a coal-fired fluidized combustion boiler that has undergone in-furnace desulfurization, is treated with activated carbon, the concentration of sulfur oxides in the exhaust gas is low. It is not possible to obtain the expected denitrification rate. The denitrification rate when activated carbon that has been regenerated in this way comes into contact with exhaust gas varies depending on the concentration of sulfur oxides, but since fluidized bed boilers burn various types of coal, the concentration of sulfur oxides generated varies. , the denitrification rate also changes depending on the type of coal. For this reason, the desulfurization and denitrification equipment also required a large device that could cope with the decrease in the denitrification rate.

C問題点を解決するための手段] 本発明は、炉内脱硫を行なわせた石炭焚流動燃焼ボイラ
ーからの排ガスの如く、イオウ酸化物の含量が低い燃焼
排ガスでも、高い脱硫脱硝率で処理可能な排ガス処理方
法を提供するものであって、その方法の特徴は、イオウ
酸化物と窒素酸化物を含有し、イオウ酸化物濃度が比較
的低い燃焼排ガスを、アンモニアガスの存在下に活性炭
と接触させて脱硫脱硝する工程と、燃焼排ガスとの接触
によって疲弊した活性炭を、不活性ガスと接触させて再
生する工程と、再生された活性炭を前記の脱硫脱硝工程
に循環する工程とを組合せて燃焼排ガスを脱硫脱硝する
に際し、燃焼排ガスとの接触によって疲弊した活性炭を
、その再生前にイオウ酸化物含有ガスと接触させてこれ
ににイオウ酸化物を付加的に吸着させ、しかる後これを
常法通り再生して前記の脱硫脱硝工程に繰り返し使用す
ることにある。
Means for Solving Problem C] The present invention can treat even combustion exhaust gas with a low content of sulfur oxides, such as exhaust gas from a coal-fired fluidized combustion boiler that has undergone in-furnace desulfurization, with a high desulfurization and denitrification rate. This method provides a method for treating exhaust gas, which is characterized by contacting combustion exhaust gas containing sulfur oxides and nitrogen oxides with a relatively low concentration of sulfur oxides with activated carbon in the presence of ammonia gas. Combustion is performed by combining a process of desulfurizing and denitrating the activated carbon, a process of regenerating activated carbon exhausted by contact with combustion exhaust gas by contacting it with an inert gas, and a process of circulating the regenerated activated carbon to the desulfurization and denitrification process. When desulfurizing and denitrating exhaust gas, activated carbon that has been exhausted by contact with combustion exhaust gas is brought into contact with a sulfur oxide-containing gas to adsorb additional sulfur oxides on the activated carbon before its regeneration. The objective is to regenerate it and use it repeatedly in the desulfurization and denitrification process.

[作   用] 第1図は石炭焚流動燃焼ボイラーの排ガスに、本発明の
方法を適用した態様のフローシートを示す、1は流動燃
焼ボイラーで、ここには石炭粒と脱硫剤が供給される0
石炭粒は炉内で流動燃焼してイオウ酸化物と窒素酸化物
を発生させるが、イオウ酸化物の一部は炉内で流動する
脱硫剤に固定される。従って、ボイラー1からの排ガス
は1通常のボイラー排ガスに比較して一般にイオウ酸化
物濃度が低く、ボイラー1に供給する脱硫剤の量乃至は
ボイラー1の燃焼条件を適宜調節することよって、排ガ
スのイオウ酸化物濃度及び窒素酸化物濃度を、それぞれ
50〜150 pp+a及び150〜300ppm程度
とすることができる。
[Function] Figure 1 shows a flow sheet of an embodiment in which the method of the present invention is applied to the exhaust gas of a coal-fired fluidized combustion boiler. 1 is a fluidized combustion boiler, to which coal particles and a desulfurization agent are supplied. 0
Coal grains are fluidized and burned in the furnace to generate sulfur oxides and nitrogen oxides, but some of the sulfur oxides are fixed in the desulfurization agent flowing inside the furnace. Therefore, the exhaust gas from boiler 1 generally has a lower concentration of sulfur oxides than normal boiler exhaust gas, and by appropriately adjusting the amount of desulfurizing agent supplied to boiler 1 or the combustion conditions of boiler 1, The sulfur oxide concentration and nitrogen oxide concentration can be approximately 50 to 150 pp+a and 150 to 300 ppm, respectively.

ボイラー1からの排ガスは、まずサイクロン2に送られ
、ここでガスから分離される脱硫剤及び未燃石炭粒は、
ボイラー1に戻される。一方、排ガスはサイクロン2が
らガスクーラー3に送られて冷却された後、集塵器4に
供給され、ここで除塵された排ガスは200〜300p
pH1程度のアンモニアガスと共に脱硫脱硝塔5に送ら
れて処理される。
The exhaust gas from the boiler 1 is first sent to the cyclone 2, where the desulfurization agent and unburned coal particles are separated from the gas.
Returned to Boiler 1. On the other hand, the exhaust gas is sent from the cyclone 2 to the gas cooler 3 and cooled, and then supplied to the dust collector 4.
It is sent to the desulfurization and denitrification tower 5 together with ammonia gas having a pH of about 1, and is treated therein.

脱硫脱硝塔5は、活性炭が重力で流下する移動床を擁し
、排ガスはこの移動床と直交流で接触して脱硫脱硝され
た後、煙突6から大気に放出される。脱硫脱硝塔5内で
排ガスとの接触によって疲弊した活性炭は、これを塔底
部から抜き出して再生し、しかる後その再生活性炭を脱
硫脱硝塔に戻して繰り返し使用するのが従来の慣行であ
る。しかしながら、既述した通り、再生に付される活性
炭が少量のイオウ酸化物しか吸着していない場合には、
これを再生しても充分な脱硝性能を有する活性炭を得る
ことができない。
The desulfurization and denitrification tower 5 has a moving bed in which activated carbon flows down by gravity, and the exhaust gas is desulfurized and denitrated by contacting the moving bed in a cross-flow manner, and is then released into the atmosphere from the chimney 6. The conventional practice is to extract the activated carbon exhausted by contact with exhaust gas in the desulfurization and denitration tower 5 from the bottom of the tower and regenerate it, and then return the regenerated activated carbon to the desulfurization and denitration tower for repeated use. However, as mentioned above, if the activated carbon subjected to regeneration has adsorbed only a small amount of sulfur oxide,
Even if this is recycled, activated carbon with sufficient denitrification performance cannot be obtained.

従って、本発明の方法では脱硫脱硝塔から排出される疲
弊活性炭を再生するに先立ち、その活性炭にイオウ酸化
物を付加的に吸着せしめ。
Therefore, in the method of the present invention, before regenerating the exhausted activated carbon discharged from the desulfurization and denitration tower, sulfur oxides are additionally adsorbed on the activated carbon.

そうした後にこれを再生するのであって、図示の例では
、活性炭再生塔から排出される比較的高濃度のイオウ酸
化物含有ガスを用いて、疲弊活性炭へのイオウ酸化物の
補給が行なわれている。
After that, it is regenerated, and in the illustrated example, sulfur oxide is replenished into exhausted activated carbon using gas containing relatively high concentration of sulfur oxide discharged from an activated carbon regeneration tower. .

すなわち、脱硫脱硝塔5の塔底部から排出される疲弊活
性炭を、活性化浴7の頂部に供給して塔内を重力流れで
流下させ、再生塔8からのイオウ酸化物含有ガスに適当
量の空気を加えたガスを、活性基7内の活性炭移動床に
接触させて活性炭にイオウ酸化物を付加的に吸着させる
That is, the exhausted activated carbon discharged from the bottom of the desulfurization and denitrification tower 5 is supplied to the top of the activation bath 7 and allowed to flow down the inside of the tower by gravity, so that an appropriate amount of the exhausted activated carbon is added to the sulfur oxide-containing gas from the regeneration tower 8. The air-plus-gas is brought into contact with the moving bed of activated carbon within the active group 7 to cause the activated carbon to adsorb additional sulfur oxides.

しかる後その活性炭を活性化浴7の底部から抜き出して
再生塔8の頂部に供給し、塔内を重力流れで流下する疲
弊活性炭の移動床を、不活性ガス雰囲気下で加熱して活
性炭を再生する。この際、再生塔8からはイオウ酸化物
を比較的高濃度で含有するガスが排出されるので、この
ガスが活性化浴7に回送され、活性炭へのイオウ酸化物
補給に利用される。
Thereafter, the activated carbon is extracted from the bottom of the activation bath 7 and supplied to the top of the regeneration tower 8, and the moving bed of exhausted activated carbon flowing down the tower by gravity is heated under an inert gas atmosphere to regenerate the activated carbon. do. At this time, gas containing a relatively high concentration of sulfur oxides is discharged from the regeneration tower 8, so this gas is sent back to the activation bath 7 and used to replenish the activated carbon with sulfur oxides.

再生塔8で再生され、塔底部から抜き出される再生活性
炭は、脱硫脱硝塔5の頂部に供給されて再度排ガスの処
理に使用されるが、本発明の方法によれば、疲弊活性炭
がかなりのイオウ酸化物を吸着した状態で再生されるの
で、脱硫脱硝塔5での脱硝率を高水準に維持することが
できる。
The regenerated activated carbon that is regenerated in the regeneration tower 8 and extracted from the bottom of the tower is supplied to the top of the desulfurization and denitrification tower 5 and used again to treat exhaust gas, but according to the method of the present invention, a considerable amount of exhausted activated carbon is removed. Since it is regenerated with sulfur oxides adsorbed, the denitrification rate in the desulfurization and denitrification tower 5 can be maintained at a high level.

疲弊活性炭の再生に際し、イオウ酸化物を付加的に吸着
させてから再生すると、脱硝性能に優れた再生活性炭が
得られる理由は、現在のところ必ずしも明らかでない。
At present, it is not entirely clear why recycled activated carbon with excellent denitrification performance can be obtained by additionally adsorbing sulfur oxides before regenerating exhausted activated carbon.

しかし、比較的多量のイオウ酸化物を吸着した活性炭は
、比較的多量の硫酸乃至硫酸アンモニウムを含有するこ
とになるから、再生時にこれらの物質が活性炭を侵食し
て活性炭表面の細孔を発達させ、触媒活性の増加を伴う
表面積の増加をもたらし、併せてNOxを分解する触媒
作用を有する酸性酸化物の生成を助長するために、再生
活性炭は優れた脱硝性能を発揮するものと思われる。
However, activated carbon that has adsorbed a relatively large amount of sulfur oxides contains a relatively large amount of sulfuric acid or ammonium sulfate, so during regeneration, these substances erode the activated carbon and develop pores on the surface of the activated carbon. It is believed that regenerated activated carbon exhibits excellent denitrification performance because it provides an increase in surface area with increased catalytic activity and also promotes the production of acidic oxides that have catalytic action to decompose NOx.

[実 施 例] 1100ppのSOxと200ppmのNOxを含有す
る排ガスに、220ppmのNH3ガスを混入後、この
混合ガスを145℃の温度で粒状の活性炭触媒が充填さ
れた直交流式移動床反応器(脱硫脱硝塔)に空間速度g
oo h−1で通過させた。この場合、反応器内の触媒
の滞留時間は、20時間に設定した。この反応器から排
出される活性炭のイオウ酸化物吸着量は、S02換算で
活性炭1g当り9mgであった。
[Example] After 220 ppm of NH3 gas was mixed into the exhaust gas containing 1100 ppm of SOx and 200 ppm of NOx, this mixed gas was heated at a temperature of 145°C in a cross-flow type moving bed reactor filled with granular activated carbon catalyst. (Desulfurization and denitrification tower) space velocity g
Passed at oo h-1. In this case, the residence time of the catalyst in the reactor was set to 20 hours. The amount of sulfur oxides adsorbed on the activated carbon discharged from this reactor was 9 mg per gram of activated carbon in terms of S02.

この疲弊活性炭を活性化浴に導き、塔内を重力流れで流
下させ、一方、再生塔からのイオウ酸化物含有ガスに空
気を混合してこれを活性化浴に供給し、120℃で疲弊
活性炭に接触させることにより、活性炭にイオウ酸化物
を付加した。
The exhausted activated carbon is introduced into an activation bath and allowed to flow down the inside of the tower by gravity flow. Meanwhile, the sulfur oxide-containing gas from the regeneration tower is mixed with air and supplied to the activation bath, and the exhausted activated carbon is heated at 120°C. Sulfur oxides were added to the activated carbon by contacting it with the activated carbon.

活性基から排出される活性炭のイオウ酸化物吸着量は、
S−〇2換算で活性炭1g当り95mgであった。
The amount of sulfur oxide adsorbed by activated carbon discharged from active groups is
The amount was 95 mg per gram of activated carbon in terms of S-〇2.

この活性炭を移動床式再生塔に導いて400℃で加熱再
生し、再生塔底部から排出される再生活性炭を、前記の
移動床式反応器に循環して排ガスの処理に繰り返し使用
した。
This activated carbon was led to a moving bed type regeneration tower and heated and regenerated at 400° C., and the regenerated activated carbon discharged from the bottom of the regeneration tower was circulated to the above-mentioned moving bed type reactor and used repeatedly for treatment of exhaust gas.

この実施例に於いて1反応器の脱硝率は82%。In this example, the denitrification rate of one reactor was 82%.

脱硫率は100%であった。The desulfurization rate was 100%.

比較のため、活性化浴の設置を省いた以外は上記と同一
の条件で同じ排ガスを処理した。すなわち、直交流式移
動床反応器から排出される活性炭を再生塔に直接導き、
再生された活性炭を反応器に循環して排ガスの処理に再
使用した。
For comparison, the same exhaust gas was treated under the same conditions as above, except that the installation of an activation bath was omitted. That is, the activated carbon discharged from the cross-flow moving bed reactor is directly guided to the regeneration tower,
The regenerated activated carbon was recycled to the reactor and reused for exhaust gas treatment.

この場合、反応器の脱硝率は61%、脱硫率は100%
であった。
In this case, the denitrification rate of the reactor is 61% and the desulfurization rate is 100%.
Met.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法のフローシートである。 1:ボイラー   2:サイクロン 3:ガスクーラー 4:集塵器 5:脱硫脱硝塔  6:煙突 7:活性化浴   8:再生塔 FIG. 1 is a flow sheet of the method of the present invention. 1: Boiler 2: Cyclone 3: Gas cooler 4: Dust collector 5: Desulfurization and denitrification tower 6: Chimney 7: Activation bath 8: Regeneration tower

Claims (1)

【特許請求の範囲】[Claims] 1、イオウ酸化物と窒素酸化物を含有し、イオウ酸化物
濃度が比較的低い燃焼排ガスを、アンモニアガスの存在
下に活性炭と接触させて脱硫脱硝する工程と、燃焼排ガ
スとの接触によって疲弊した活性炭を、不活性ガスと接
触させて加熱再生する工程と、再生された活性炭を前記
の脱硫脱硝工程に循環する工程を組合せた燃焼排ガスの
脱硫脱硝法に於いて、燃焼排ガスとの接触によって疲弊
した活性炭の再生に先立ち、その活性炭にイオウ酸化物
を付加的に吸着させることを特徴とする前記燃焼排ガス
の脱硫脱硝法。
1. A process in which combustion exhaust gas containing sulfur oxides and nitrogen oxides and with a relatively low concentration of sulfur oxides is brought into contact with activated carbon in the presence of ammonia gas to desulfurize and denitrify it, and the combustion exhaust gas is exhausted by contact with the combustion exhaust gas. In the desulfurization and denitration method for flue gas, which combines the steps of heating and regenerating activated carbon by bringing it into contact with an inert gas and circulating the regenerated activated carbon to the desulfurization and denitrification step described above, exhaustion occurs due to contact with the flue gas. The method for desulfurization and denitration of combustion exhaust gas described above is characterized in that, prior to regenerating the activated carbon, sulfur oxides are additionally adsorbed on the activated carbon.
JP62048608A 1987-03-02 1987-03-02 Desulfurizing and denitrating method for combustion exhaust gas Pending JPS63214323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048608A JPS63214323A (en) 1987-03-02 1987-03-02 Desulfurizing and denitrating method for combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048608A JPS63214323A (en) 1987-03-02 1987-03-02 Desulfurizing and denitrating method for combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPS63214323A true JPS63214323A (en) 1988-09-07

Family

ID=12808122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048608A Pending JPS63214323A (en) 1987-03-02 1987-03-02 Desulfurizing and denitrating method for combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS63214323A (en)

Similar Documents

Publication Publication Date Title
JPH0312927B2 (en)
US4469662A (en) Method of removing sulfur oxides and nitrogen oxides by dry process
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
CN107983154A (en) One kind sintering parallel double tower desulfurizing and denitrifying process of flue gas activated carbon
CN108144443A (en) A kind of powdered activated coke combined desulfurization and the system and method for denitration
CN109647158B (en) Flue gas desulfurization and denitrification system of circulating fluidized bed boiler and treatment method thereof
JP2021534960A (en) The selective catalytic reduction process and the method of regenerating the inactivating catalyst of that process.
CN110575741A (en) Flue gas desulfurization and denitrification device and method
JPH11104453A (en) Setting of ammonia injection quantity in waste gas treatment apparatus of refuse incinerator
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
JPS63214323A (en) Desulfurizing and denitrating method for combustion exhaust gas
JP2000102719A (en) Treatment of waste gas and device therefor
JPS5864117A (en) Dry stack-gas desulfurization process
JP3381973B2 (en) Exhaust gas treatment method
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS6350052B2 (en)
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JPH0226618A (en) Improved flue gas desulfurization and denitrification process
JPH026964B2 (en)
JP2002370011A (en) Exhaust gas treatment method
JPH06329A (en) Treatment of waste gas from coal fired boiler
JPS59130522A (en) Dry desulfurizing method
JPH06262038A (en) Method for treatment of exhaust gas
JPS60220129A (en) Treatment of exhaust gas
JPH0249122B2 (en) HAIGASUDATSURYUHOHO