JPH0226618A - Improved flue gas desulfurization and denitrification process - Google Patents

Improved flue gas desulfurization and denitrification process

Info

Publication number
JPH0226618A
JPH0226618A JP63173791A JP17379188A JPH0226618A JP H0226618 A JPH0226618 A JP H0226618A JP 63173791 A JP63173791 A JP 63173791A JP 17379188 A JP17379188 A JP 17379188A JP H0226618 A JPH0226618 A JP H0226618A
Authority
JP
Japan
Prior art keywords
adsorbents
activated carbon
ammonia
flue gas
moving bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173791A
Other languages
Japanese (ja)
Inventor
Takeo Tanaka
田中 建夫
Kazuhiko Yamamoto
一彦 山本
Teruo Watabe
渡部 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63173791A priority Critical patent/JPH0226618A/en
Publication of JPH0226618A publication Critical patent/JPH0226618A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To outstandingly decrease powdering of carbon base adsorbents by causing, in advance, NH3 to be adsorbed to carbon base adsorbents before the adsorbents are brought into contact with combustion gases and passing the combustion gases through a moving bed of the adsorbents in a direction at right angles to the moving bed. CONSTITUTION:Combustion gases containing NoX and SOX are fed to a desulfurization-denitrification tower 1 to be brought into contact with carbon base adsorbents to which NH3 has been adsorbed by means of a NH3 adsorption device 4, wherein SOX is adsorbed in the form of sulfuric acid, ammonium sultate, and acid ammonium sulfate, while NOX is reduced to N2 by the action of NH3. On the other hand, the carbon base adsorbents move through the tower 1 and sent to a desorption tower 2, where sulfur compounds are desorbed from the adsorbents, thereby the adsorbents are regenerated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は硫黄酸化物及び窒素酸化物を含有する燃焼排ガ
スを乾式脱硫脱硝する方法の改良に関するものであって
、さらに詳しくは燃焼排ガスの乾式脱硫脱硝で使用され
る活性炭等の炭素質吸着剤の消耗を軽減することができ
る方法に係る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an improvement in a method for dry desulfurization and denitrification of combustion exhaust gas containing sulfur oxides and nitrogen oxides, and more specifically relates to a method for dry desulfurization and denitration of combustion exhaust gas containing sulfur oxides and nitrogen oxides. The present invention relates to a method that can reduce the consumption of carbonaceous adsorbents such as activated carbon used in desulfurization and denitrification.

[従来の技術] 硫黄酸化物及び窒素酸化物を含有する燃焼排ガスを乾式
脱硫脱硝するに際しては、アンモニアガスを注入した燃
焼排ガスを、活性炭等の炭素質吸着剤で形成される一つ
又は二つ以上の移動床に直交流で接触させる方法が一般
に採用されている。そして、炭素質吸着剤の移動床を二
つ以上使用する場合には、各移動床に燃焼排ガスを直列
に流して1段目の移動床を通過したガスに、改めてアン
モニアガスを注入して2段目の移動床に供給するのが通
例であって、こうした′2段処理法では1段目で主とし
て脱硫が行われ、2段目では主として脱硝が行われる。
[Prior Art] When performing dry desulfurization and denitration of combustion exhaust gas containing sulfur oxides and nitrogen oxides, the combustion exhaust gas into which ammonia gas has been injected is treated with one or two carbonaceous adsorbents such as activated carbon. A method of contacting the moving bed with a cross flow is generally employed. When using two or more moving beds of carbonaceous adsorbent, the flue gas is passed through each moving bed in series, and ammonia gas is again injected into the gas that has passed through the first moving bed. It is customary to feed it to a moving bed in the second stage, and in such a two-stage treatment method, desulfurization is mainly performed in the first stage, and denitrification is mainly performed in the second stage.

[発明が解決しようとする課題] 燃焼排ガスの脱硫脱硝法では、活性炭等の炭素質吸着剤
が移動床の形で使用されている関係で、炭素質吸着剤は
粒子同志の接触により多少なりとも粉化するのが通常で
ある。しかし、実際の乾式脱硫脱硝装置では、装置に導
入される燃焼排ガスの温度が比較的高温であれば、格別
問題はないものの、ガス温度が低い場合には、炭素質吸
着剤の粉化が上記した物理的要因だけでは説明できない
程過剰に起こり、その過剰粉化は燃焼排ガスの温度が低
い程増大する。
[Problems to be Solved by the Invention] In the desulfurization and denitrification method of combustion exhaust gas, carbonaceous adsorbents such as activated carbon are used in the form of a moving bed. It is usually powdered. However, in actual dry desulfurization and denitrification equipment, if the temperature of the flue gas introduced into the equipment is relatively high, there is no particular problem, but if the gas temperature is low, the carbonaceous adsorbent may be pulverized as described above. Excessive powdering occurs to an extent that cannot be explained by physical factors alone, and the lower the temperature of the combustion exhaust gas, the more the excessive powdering increases.

ちなみに、第2図は燃焼排ガスにアンモニアガスを注入
した場合及び注入しない場合の2例について、各燃焼排
ガスをそれぞれ単一の活性炭移動床に供給した際に、ガ
スの温度が活性炭の粉化量に如何なる影響を及ぼすかを
示すグラフであって、活性炭の粉化量はガス温度150
℃に於ける粉化量を基準値1.0とした場合の相対値で
示されている0図示の通り、アンモニアを注入していな
い燃焼排ガスにあっては、活性炭の粉化量がほぼ一定で
あるのに対し、アンモニアを注入した燃焼排ガスを供給
した場合は、ガス温度の低下に伴って活性炭の粉化量が
増加し、特にガス温度が120℃以下になると、粉化が
際立って著しくなる。そして、このような活性炭の粉化
は燃焼排ガスを二つの移動床にて2段処理する排煙プロ
セスでは、主として脱硫が起こる1段目の移動床に於い
て観察される。
By the way, Figure 2 shows two cases in which ammonia gas is injected into the flue gas and when it is not injected. When each flue gas is supplied to a single moving bed of activated carbon, the temperature of the gas changes to the amount of powdered activated carbon. This is a graph showing how the amount of powdered activated carbon is affected by the gas temperature of 150°C.
As shown in the figure, the amount of powdered activated carbon is almost constant for combustion exhaust gas without ammonia injection. On the other hand, when ammonia-injected combustion exhaust gas is supplied, the amount of activated carbon powdered increases as the gas temperature decreases, and especially when the gas temperature falls below 120℃, the powderization becomes extremely noticeable. Become. In a flue gas process in which combustion exhaust gas is treated in two stages in two moving beds, such pulverization of activated carbon is mainly observed in the first moving bed where desulfurization occurs.

ところで、硫黄酸化物及び窒素酸化物を含有する燃焼排
ガスの温度が150℃以下であるのは、決して珍しいこ
とではなく、例えば排ガス発生源の温度が低ければ、自
ずと燃焼排ガスの温度も低くなり、また高温燃焼排ガス
にあっても。
By the way, it is not uncommon for the temperature of combustion exhaust gas containing sulfur oxides and nitrogen oxides to be below 150°C. For example, if the temperature of the exhaust gas generation source is low, the temperature of the combustion exhaust gas will naturally be low. Also, even in high temperature combustion exhaust gas.

これから熱回収を図った場合には、燃焼排ガスの温度は
簡単に150℃以下に低下する。従って、温度が比較的
低い燃焼排ガスを脱硫脱硝する場合に、炭素質吸着剤の
過剰粉化を防止することは、炭素質吸着剤の消費量を軽
減する意味で極めて望ましいことであると言える。
If heat recovery is attempted, the temperature of the combustion exhaust gas will easily drop to below 150°C. Therefore, when desulfurizing and denitrating combustion exhaust gas at a relatively low temperature, it can be said that it is extremely desirable to prevent excessive pulverization of the carbonaceous adsorbent in terms of reducing the consumption amount of the carbonaceous adsorbent.

[課題を解決するための手段] 本発明者らは、第2図に示すような炭素質吸着剤の粉化
増大は、吸着剤表面に硫酸アンモニウムや酸性硫酸アン
モニウム等のアンモニウム塩が過剰に生成されることに
起因することを解明し、その過剰生成がアンモニアガス
を燃焼排ガスに注入することなく、炭素質吸着剤に事前
吸着させて置くことで回避できることを見出した。
[Means for Solving the Problems] The present inventors believe that the increased powdering of carbonaceous adsorbents as shown in FIG. The researchers found that the excessive production of ammonia gas can be avoided by adsorbing it onto a carbonaceous adsorbent in advance, without injecting it into the combustion exhaust gas.

従って、本発明に係る燃焼排ガスの脱硫脱硝法は、炭素
質吸着剤の移動床に、燃焼排ガスを直交流で通過させて
当該排ガスを脱硫脱硝する方法に於いて、燃焼排ガスと
の接触に先立ち予め炭素質吸着剤にアンモニアを吸着さ
せ、その炭素質吸着剤の移動床に、アンモニアガスが注
入されていない燃焼排ガスを通過させることを特徴とす
る。
Therefore, in the desulfurization and denitration method for flue gas according to the present invention, in the method of desulfurizing and denitrating the flue gas by passing the flue gas through a moving bed of carbonaceous adsorbent in a cross flow, The method is characterized in that ammonia is adsorbed on a carbonaceous adsorbent in advance, and combustion exhaust gas to which no ammonia gas has been injected is passed through a moving bed of the carbonaceous adsorbent.

[作   用] 炭素質吸着剤、典型的には活性炭の移動床に燃焼排ガス
を通過させた場合、排ガス中の硫黄酸化物はこれと共存
する水及び酸素と反応し、硫酸の形で活性炭に吸着除去
されると考えられているが、窒素酸化物はこれを活性炭
で安定して吸着除去することはできない、このため、窒
素酸化物の還元剤として作用するアンモニアガスを予め
燃焼排ガスに注入しておき、これを活性炭の移動床にで
供給することで、硫黄酸化物と窒素酸化物を同時に除去
する方法が採用されている。
[Function] When combustion exhaust gas is passed through a moving bed of carbonaceous adsorbent, typically activated carbon, sulfur oxides in the exhaust gas react with the water and oxygen that coexist with it, and are absorbed into the activated carbon in the form of sulfuric acid. However, activated carbon cannot stably adsorb and remove nitrogen oxides. Therefore, ammonia gas, which acts as a reducing agent for nitrogen oxides, is injected into the combustion exhaust gas in advance. A method has been adopted in which sulfur oxides and nitrogen oxides are removed simultaneously by supplying this to a moving bed of activated carbon.

しかしながら、活性炭上に生成された硫酸はアンモニア
が共存すると、容易に硫酸アンモニウムや酸性硫酸アン
モニウムに転化し、系内の温度が比較的低い場合、その
転化速度は窒素酸化物がアンモニアによって窒素に還元
される反応速度よりも速い、このため、燃焼排ガスに注
入されたアンモニアガスは、活性炭上に生成された硫酸
と優先的に反応して上記したアンモニウム塩を生成する
ため、系内に導入されるアンモニアを遮断しない限り、
活性炭の粉化量増大に繋がるアンモニウム塩の過剰生成
を防止することができない、つまり、燃焼排ガスにアン
モニアガスを注入する従来の方式では、たとえアンモニ
ア注入量を減少させても、アンモニウム塩の過剰生成を
完全には防止することができない、そして、極端にアン
モニア注入量を減少させた場合には、アンモニア不足か
ら脱硝率の低下を心配しなければならない。
However, when the sulfuric acid produced on activated carbon is coexisted with ammonia, it is easily converted to ammonium sulfate or acidic ammonium sulfate, and when the temperature in the system is relatively low, the conversion rate is lower than that of nitrogen oxides reduced to nitrogen by ammonia. For this reason, the ammonia gas injected into the combustion exhaust gas preferentially reacts with the sulfuric acid formed on the activated carbon to produce the above-mentioned ammonium salt, so the ammonia introduced into the system is Unless you block it,
It is not possible to prevent the excessive production of ammonium salts, which leads to an increase in the amount of powdered activated carbon.In other words, with the conventional method of injecting ammonia gas into the combustion exhaust gas, even if the amount of ammonia injection is reduced, the excessive production of ammonium salts cannot be prevented. cannot be completely prevented, and if the amount of ammonia injection is drastically reduced, there is concern that the denitrification rate will decrease due to the lack of ammonia.

然るに、本発明の方法では予めアンモニアを吸着させた
活性炭の移動床に、燃焼排ガスを直交流で通過させる方
式を採用しているため、燃焼排ガスの硫黄酸化物は、活
性炭に硫酸の形で吸着除去されるものの、活性炭が保有
しているアンモニア量には限度があるため、その活性炭
上に生成されている硫酸が如何に多量であっても、アン
モニウム塩が過剰生成されることがない。
However, the method of the present invention employs a method in which the flue gas is passed in a cross flow through a moving bed of activated carbon that has adsorbed ammonia in advance, so the sulfur oxides in the flue gas are adsorbed on the activated carbon in the form of sulfuric acid. Although it is removed, there is a limit to the amount of ammonia retained by the activated carbon, so no matter how much sulfuric acid is produced on the activated carbon, ammonium salts will not be produced in excess.

そして、活性炭の移動床に燃焼排ガスを直交流で供給し
た場合にあっては、移動床の燃焼排ガス入口付近で大部
分の硫黄酸化物が活性炭に吸着除去される結果、移動床
の中央部からガス出口側に亘る領域に、硫黄酸化物が流
れ込むことが殆どない、従って、たとえガス入口側を流
下する活性炭のアンモニアがアンモニウム塩の生成で消
費され尽くされたとしても、移動床の中央部からガス出
口側の領域を流下する活性炭は、自己が保有するアンモ
ニアを失うことがなく、これを窒素酸化物の還元剤とし
て機能させることができるので、脱硝率の低下を懸念す
る必要がない。
When flue gas is supplied in a cross flow to a moving bed of activated carbon, most of the sulfur oxides are adsorbed and removed by the activated carbon near the flue gas inlet of the moving bed, and as a result, the sulfur oxides are removed from the center of the moving bed. Almost no sulfur oxides flow into the region extending to the gas outlet side, so even if the ammonia in the activated carbon flowing down the gas inlet side is consumed by the formation of ammonium salts, the flow from the center of the moving bed The activated carbon flowing down the region on the gas outlet side does not lose its own ammonia and can function as a reducing agent for nitrogen oxides, so there is no need to worry about a decrease in the denitrification rate.

第1図は本発明方法の一実施例を示すフローシートであ
って、1は活性炭の移動床を有する脱硫脱硝塔を、2は
活性炭に吸着された硫黄成分などを脱離させた活性炭を
再生する脱離塔を、3は脱離塔で再生された活性炭から
微粉炭を除去するスクリーンを、4は再生活性炭にアン
モニアを吸着させるアンモニア吸着装置をそれぞれ示す
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention, in which 1 is a desulfurization and denitrification tower having a moving bed of activated carbon, and 2 is a regeneration of activated carbon from which sulfur components etc. adsorbed on the activated carbon have been desorbed. 3 represents a screen for removing pulverized coal from the activated carbon regenerated in the desorption tower, and 4 represents an ammonia adsorption device for adsorbing ammonia onto the regenerated activated carbon.

硫黄酸化物及び窒素酸化物を含有する燃焼排ガスは、ア
ンモニアの注入を受けることなく脱硫脱硝塔1に供給さ
れ、アンモニアを吸着含有する活性炭の移動床と直交流
で接触する。この接触によりガス中の硫黄酸化物は硫酸
、酸性硫酸アンモニウム又は硫酸アンモニウムの形で活
性炭に吸着除去され、窒素酸化物は活性炭が吸着してい
るアンモニアの作用で窒素に還元される。従って、燃焼
排ガスは活性炭の移動床を横断する間に脱硫脱硝されて
ライン5に取り出され、通常は煙道に送られる。
The combustion exhaust gas containing sulfur oxides and nitrogen oxides is supplied to the desulfurization and denitrification tower 1 without being injected with ammonia, and is brought into contact in cross flow with a moving bed of activated carbon containing adsorbed ammonia. Through this contact, sulfur oxides in the gas are adsorbed and removed by the activated carbon in the form of sulfuric acid, acidic ammonium sulfate, or ammonium sulfate, and nitrogen oxides are reduced to nitrogen by the action of ammonia adsorbed on the activated carbon. The flue gas is therefore desulphurized and denitrified while traversing the moving bed of activated carbon and is taken off in line 5 and normally sent to the flue.

一方、硫黄酸化物を硫酸、酸性硫酸アンモニウム、硫酸
アンモニウムなどの形で吸着することで吸着能が減少し
た活性炭は、脱硫脱硝塔1の底部から取り出されて脱離
塔2の頂部に供給され、脱離塔2内を流下する間に硫黄
化合物が脱離されることで再生される。脱離塔の底部か
ら取り出される再生活性炭は、機械的に粉化した活性戻
粉を除去するスクリーン3を経由してアンモニア吸着装
置4に供給され、ここでアンモニアを吸着した後、脱硫
脱硝塔1の頂部に循環される。
On the other hand, activated carbon whose adsorption capacity has been reduced by adsorbing sulfur oxides in the form of sulfuric acid, acidic ammonium sulfate, ammonium sulfate, etc. is taken out from the bottom of the desulfurization and denitrification tower 1 and supplied to the top of the desorption tower 2, where it is desorbed. Sulfur compounds are desorbed and regenerated while flowing down in the column 2. The regenerated activated carbon taken out from the bottom of the desorption tower is supplied to an ammonia adsorption device 4 via a screen 3 that removes mechanically powdered activated return powder, and after adsorbing ammonia there, it is sent to a desulfurization and denitrification tower 1. is circulated to the top of the

第1図に示した態様では、脱離塔がら取り出された直後
の再生活性炭にアンモニアを吸着させているが、本発明
の場合、再生活性炭へのアンモニア吸着は、その活性炭
が燃焼排ガスと接触する以前に完了していれば良いので
、アンモニア吸着装置4は、再生活性炭を脱離塔2の底
部から脱硫脱硝塔1の頂部に移送するラインの任意に位
置に設置することができる。また1図示の実施例では燃
焼排ガスを脱硫脱硝塔1で単段処理しているが、複数個
の脱硫脱硝塔を用いて燃焼排ガスを多段処理する場合に
、本発明の方法を利用することも可能である。
In the embodiment shown in FIG. 1, ammonia is adsorbed on the regenerated activated carbon immediately after being taken out of the desorption tower, but in the case of the present invention, ammonia adsorption on the regenerated activated carbon occurs when the activated carbon comes into contact with combustion exhaust gas. Since the ammonia adsorption device 4 only needs to be completed beforehand, the ammonia adsorption device 4 can be installed at any position on the line that transfers the regenerated activated carbon from the bottom of the desorption tower 2 to the top of the desulfurization and denitrification tower 1. Furthermore, in the illustrated embodiment, the flue gas is treated in a single stage by the desulfurization and denitrification tower 1, but the method of the present invention can also be used when flue gas is treated in multiple stages using a plurality of desulfurization and denitrification towers. It is possible.

[発明の効果コ 燃焼排ガスにアンモニアを注入して炭素質吸着剤の゛移
動床に直交流で通過させる従来の排煙脱硫脱硝法では、
燃焼排ガスの温度が低い場合、炭素質吸着剤の著しい粉
化を覚悟しなければならないが、燃焼排ガスとの接触に
先立ち予め炭素質吸着剤にアンモニアを吸着させておく
本発明の方法によれば、吸着剤粉化の原因となるアンモ
ニウム塩の過剰生成を抑制できるので、炭素質吸着剤の
粉化を大幅に軽減することができる。そして、本発明の
方法では脱硫率及び脱硝率が低下することもない。
[Effects of the Invention] In the conventional flue gas desulfurization and denitrification method in which ammonia is injected into the combustion flue gas and passed through a moving bed of carbonaceous adsorbent in a cross flow,
When the temperature of the combustion exhaust gas is low, it is necessary to be prepared for significant pulverization of the carbonaceous adsorbent, but according to the method of the present invention, ammonia is adsorbed on the carbonaceous adsorbent in advance before contact with the combustion exhaust gas. Since excessive production of ammonium salt, which causes adsorbent powdering, can be suppressed, powdering of the carbonaceous adsorbent can be significantly reduced. Further, in the method of the present invention, the desulfurization rate and the denitrification rate do not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローシートであり、
第2図はガス温度と活性炭の粉化量との関係を示すグラ
フである。 1:脱硫脱硝塔 2:脱離塔 3:スクリーン4:アン
モニア吸着装置
FIG. 1 is a flow sheet showing one embodiment of the present invention,
FIG. 2 is a graph showing the relationship between gas temperature and the amount of powdered activated carbon. 1: Desulfurization and denitrification tower 2: Desorption tower 3: Screen 4: Ammonia adsorption device

Claims (1)

【特許請求の範囲】[Claims] 1、炭素質吸着剤の移動床に燃焼排ガスを直交流で通過
させて当該排ガスを脱硫脱硝する方法に於いて、燃焼排
ガスとの接触に先立ち炭素質吸着剤に予めアンモニアを
吸着させ、このアンモニアを吸着した炭素質吸着剤の移
動床に、燃焼排ガスを接触させることを特徴とする排煙
脱硫脱硝法。
1. In the method of desulfurizing and denitrating the flue gas by passing the flue gas through a moving bed of carbonaceous adsorbent in a cross flow, ammonia is adsorbed in advance on the carbonaceous absorbent prior to contact with the flue gas, and this ammonia is A flue gas desulfurization and denitrification method characterized by bringing combustion exhaust gas into contact with a moving bed of carbonaceous adsorbent that has adsorbed carbonaceous adsorbent.
JP63173791A 1988-07-14 1988-07-14 Improved flue gas desulfurization and denitrification process Pending JPH0226618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173791A JPH0226618A (en) 1988-07-14 1988-07-14 Improved flue gas desulfurization and denitrification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173791A JPH0226618A (en) 1988-07-14 1988-07-14 Improved flue gas desulfurization and denitrification process

Publications (1)

Publication Number Publication Date
JPH0226618A true JPH0226618A (en) 1990-01-29

Family

ID=15967221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173791A Pending JPH0226618A (en) 1988-07-14 1988-07-14 Improved flue gas desulfurization and denitrification process

Country Status (1)

Country Link
JP (1) JPH0226618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590744A1 (en) * 1992-09-28 1994-04-06 Mitsubishi Jukogyo Kabushiki Kaisha Method for recovering ammonia adsorbent
JP2002370011A (en) * 2001-06-13 2002-12-24 Mitsui Mining Co Ltd Exhaust gas treatment method
CN114130154A (en) * 2020-09-03 2022-03-04 中国石油化工股份有限公司 Low-temperature flue gas denitration method and device, flue gas desulfurization and denitration method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562828A (en) * 1979-06-21 1981-01-13 Sumitomo Heavy Ind Ltd Simultaneous removal of sulfur oxide and nitrogen oxide contained in waste gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562828A (en) * 1979-06-21 1981-01-13 Sumitomo Heavy Ind Ltd Simultaneous removal of sulfur oxide and nitrogen oxide contained in waste gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590744A1 (en) * 1992-09-28 1994-04-06 Mitsubishi Jukogyo Kabushiki Kaisha Method for recovering ammonia adsorbent
US5679314A (en) * 1992-09-28 1997-10-21 Mitsubishi Jukogyo Kabushiki Kaisha Method for recovering ammonia adsorbent
JP2002370011A (en) * 2001-06-13 2002-12-24 Mitsui Mining Co Ltd Exhaust gas treatment method
CN114130154A (en) * 2020-09-03 2022-03-04 中国石油化工股份有限公司 Low-temperature flue gas denitration method and device, flue gas desulfurization and denitration method and device
CN114130154B (en) * 2020-09-03 2023-05-05 中国石油化工股份有限公司 Low-temperature flue gas denitration method and device and flue gas desulfurization and denitration method and device

Similar Documents

Publication Publication Date Title
US20220040634A1 (en) Method for desulphurizating and denitrating flue gas in integrated manner based on low-temperature adsorption
US4469662A (en) Method of removing sulfur oxides and nitrogen oxides by dry process
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JPH0226618A (en) Improved flue gas desulfurization and denitrification process
EP0604198B1 (en) Method for treating ammonia
JPH0691132A (en) Exhaust gas treatment
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
JPS61287423A (en) Treatment of exhaust gas
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system
JPS59207807A (en) Manufacture of sulfurous acid gas-containing gas by reactingcoal
JP5143983B2 (en) Exhaust gas treatment method
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JPH06210139A (en) Waste gas treatment
JP4266267B2 (en) Exhaust gas treatment method and apparatus
JPS5841893B2 (en) Hiengasu Shiyorihouhou
CN108144426B (en) Ozone oxidation combined desulfurization and denitration system and method
JPS60129127A (en) Desulfurization and denitration process for waste gas
JPH06262038A (en) Method for treatment of exhaust gas
JPS6358605B2 (en)
JPS6344097Y2 (en)
JPH0747228A (en) Treatment of exhaust gas
JPS6280411A (en) Operation process for fluidized bed type combustion device with low volume of discharging of sox, and nox and high efficiency of combustion
Emissions et al. Activated Carbon Systems for Controlling
JPS6034412B2 (en) Reactivation method for carbonaceous adsorbent for desulfurization
JPH0249122B2 (en) HAIGASUDATSURYUHOHO