JP4574884B2 - Method and apparatus for recovering sulfuric acid in exhaust gas treatment system - Google Patents

Method and apparatus for recovering sulfuric acid in exhaust gas treatment system Download PDF

Info

Publication number
JP4574884B2
JP4574884B2 JP2001090637A JP2001090637A JP4574884B2 JP 4574884 B2 JP4574884 B2 JP 4574884B2 JP 2001090637 A JP2001090637 A JP 2001090637A JP 2001090637 A JP2001090637 A JP 2001090637A JP 4574884 B2 JP4574884 B2 JP 4574884B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
exhaust gas
activated carbon
based adsorbent
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001090637A
Other languages
Japanese (ja)
Other versions
JP2002284510A (en
Inventor
和恵 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001090637A priority Critical patent/JP4574884B2/en
Publication of JP2002284510A publication Critical patent/JP2002284510A/en
Application granted granted Critical
Publication of JP4574884B2 publication Critical patent/JP4574884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Description

【0001】
【発明の属する技術分野】
本発明は、排ガスを炭素系吸着材に通すことで排ガス中の硫黄分を当該炭素系吸着材で吸着し脱硫する脱硫装置と、この脱硫装置から取り出される炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに適用される硫酸回収方法及び硫酸回収装置に関する。
【0002】
【従来の技術】
例えば、ボイラ、廃棄物焼却炉等からの排ガスを脱硫する排ガス処理システムが知られている。この排ガス処理システムは、脱硫装置としての活性炭吸着塔と、この活性炭吸着塔の活性炭の吸着能力を回復すべく再生する再生塔と、を備え、排ガスを、活性炭吸着塔の活性炭に通すことで排ガス中の硫黄分を当該活性炭で吸着して脱硫し後段に供する一方で、活性炭吸着塔の活性炭を取り出して再生塔で加熱し再生し当該活性炭吸着塔に戻す構成とされている。
【0003】
ここで、再生塔で活性炭を加熱再生すると、活性炭からSO2が脱離するため、このSO2を主体に含む脱離ガスを処理すべく、排ガス処理システムには、脱離ガスから硫酸を副生品として回収する硫酸回収装置が付設されている。
【0004】
この硫酸回収装置は、洗浄塔、転化塔、吸収塔、硫酸回収タンクをこの順に備え、再生塔からの脱離ガスを洗浄塔で洗浄し、この洗浄された脱離ガスを、転化塔で加熱して脱離ガス中のSO2をSO3に転化し、このSO3を、吸収塔で硫酸とし硫酸回収タンクに回収するというものである。
【0005】
【発明が解決しようとする課題】
ここで、上記硫酸回収装置にあっては、起動時に転化塔で加熱を完了させること、脱離ガス中のSO2と水分とが規定濃度になること(脱離ガス中の水分が製造硫酸(98%H2SO4−2%H2O)必要量より少ないこと)という二つの条件を満たす必要があり、この二つの条件が整うのに時間的なズレが生じると、種硫酸の濃度が薄く腐食性を持った取り扱いが難しい硫酸となってしまう。また、転化塔では、転化反応に必要なO2を大気から取り入れるため、脱離ガス中のSO2濃度が低いと大気中の水分により硫酸が薄くなってしまい、水分濃度の調整が非常に難しい。このように、従来の硫酸回収装置で所望の硫酸を回収するにあたっては、その回収のプロセスが複雑で難しいといった問題があった。
【0006】
また、上記硫酸回収装置では、洗浄塔、転化塔、吸収塔、硫酸回収タンクを備えることから、構成要素が多いと共に大きな設置領域が必要であり、設備コストが高くなるといった問題もある。
【0007】
本発明は、このような課題を解決するために成されたものであり、硫酸の回収が容易とされると共に設備コストが低減される排ガス処理システムの硫酸回収方法及び硫酸回収装置を提供することを目的とする。
【0008】
本発明による排ガス処理システムの硫酸回収方法は、排ガスを炭素系吸着材に通すことで排ガス中の硫黄分を当該炭素系吸着材で吸着し脱硫する脱硫装置と、この脱硫装置から取り出される炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに適用される硫酸回収方法であって、炭素系吸着材再生装置による炭素系吸着材の加熱の際に当該炭素系吸着材から脱離するSO2を含む脱離ガスを冷却し、この冷却した脱離ガスを活性炭繊維充填層に通すことで生成された乾式脱硫による硫酸を回収することを特徴としている。
【0009】
このような排ガス処理システムの硫酸回収方法によれば、炭素系吸着材から脱離したSO2を含む脱離ガスが例えば常温程度迄冷却されて活性炭繊維充填層に通されると、脱離ガス中のSO2は、活性炭繊維充填層の表面の酸化活性点に吸着し、脱離ガス中のO2により酸化されてSO3となり、脱離ガス中の水分と反応して硫酸の生成が起こり、この硫酸の水への吸収と活性炭繊維充填層の表面からの脱離が起こって回収される。この回収の際には、脱離ガス中の水分が活性炭繊維に凝縮しても、SO2の吸着が阻害されることなく生成硫酸の脱離が促進される。このため、水分調整を始めとした硫酸の回収プロセスが従来に比して簡略化されると共に、装置が簡略化され且つ省領域化される。
【0010】
ここで、脱離ガスを、洗浄装置で水冷洗浄してから活性炭繊維充填層に通すようにすれば、脱離ガスが、洗浄されると同時に常温程度迄水冷されるため、硫酸を回収するのに好適な脱離ガスとして活性炭繊維充填層に通されるようになる。
【0011】
また、本発明による排ガス処理システムの硫酸回収装置は、排ガスを炭素系吸着材に通すことで排ガス中の硫黄分を当該炭素系吸着材で吸着し脱硫する脱硫装置と、この脱硫装置から取り出される炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに適用される硫酸回収装置であって、炭素系吸着材再生装置による炭素系吸着材の加熱の際に当該炭素系吸着材から脱離するSO2を含む脱離ガスを、水冷洗浄する洗浄装置と、この水冷洗浄された脱離ガスが通過する活性炭繊維充填層と、この活性炭繊維充填層で生成されて当該活性炭繊維充填層から脱離する乾式脱硫による硫酸を回収する硫酸回収槽と、を備えることを特徴としている。
【0012】
このように構成された排ガス処理システムの硫酸回収装置によれば、上記硫酸回収方法が効果的に実施される。
【0013】
【発明の実施の形態】
以下、本発明に係る排ガス処理システムの硫酸回収方法及び硫酸回収装置の好適な実施形態について添付図面を参照しながら説明する。図1は、本発明による排ガス処理システムを示す概略構成図である。
【0014】
図1に示すように、排ガス処理システム1は、排ガスラインL1に接続されて排ガスが導入されるバグフィルタ2と、このバグフィルタ2に排ガスラインL2を介して接続されてバグフィルタ2からの排ガスが導入される活性炭吸着塔3と、この活性炭吸着塔3にガスラインL3を介して接続されて活性炭吸着塔3からのガスを大気に放出する煙突4と、この上流側のバグフィルタ2から下流側の煙突4に向かうガスの流れを形成すべく排ガスラインL2に配設される吸引ファン7と、を備えると共に、排ガスラインL1を流れる排ガスに消石灰を供給する消石灰供給装置5と、排ガスラインL2を流れる排ガスにNH3を供給するNH3供給装置6と、を備え、前段のバグフィルタ2で、導入される排ガスを除塵すると共に、消石灰と排ガス中のHCl、SOXとの反応生成物を捕集することで脱塩、脱硫し、後段の活性炭吸着塔3の活性炭(炭素系吸着材)で、導入される排ガス中のSOXを、硫酸やこの硫酸とNH3との反応生成物としてのアンモニウム塩の形で吸着して脱硫すると共に、排ガス中のNOXを、活性炭触媒作用によりNH3と反応させて還元分解して脱硝し、同時に、排ガス中のダイオキシンを吸着して脱ダイオキシンとし、実質的に無害なガスとして煙突4から放出する。
【0015】
上記活性炭吸着塔3は、収容する活性炭を底部の出口3bから取り出すと共に上部の入口3aから後述の再生済みの活性炭を導入することで活性炭が上部から底部に向かって移動する活性炭移動層を備え、この活性炭移動層に排ガスが接触することで、上記脱硫、脱硝、脱ダイオキシンを可能としている。
【0016】
この活性炭吸着塔3に対しては、当該活性炭吸着塔3の活性炭を再生する再生塔(炭素系吸着材再生装置)8が接続されている。
【0017】
この再生塔8は、活性炭吸着塔3の底部の出口3bから取り出される活性炭をラインL4を介して上部の入口8aから導入すると共に底部の出口8bから活性炭を取り出すことで活性炭が上部から底部に向かって移動する活性炭移動層を備え、この活性炭移動層の移動に伴い当該活性炭移動層を400°C程度に加熱することで、活性炭からSO2を脱離させて活性炭を再生し、底部の出口8bから再生済みの活性炭を取り出しラインL5を介して上記活性炭吸着塔3の上部の入口3aに戻す構成とされている。
【0018】
この再生塔8に対しては、活性炭再生の際に当該活性炭から脱離するSO2を主体に含む脱離ガスから、硫酸を副生品として回収する硫酸回収装置9が接続されている。
【0019】
この硫酸回収装置9は、本実施形態の特徴を成すもので、洗浄塔(洗浄装置)10、活性炭繊維収容体11、硫酸回収槽12をこの順に備える。
【0020】
洗浄塔10は、再生塔8からラインL6を介して導入される脱離ガスを水洗浄し当該脱離ガスを常温程度迄水冷する。
【0021】
活性炭繊維収容体11は、太さ10μm程度、表面に2×10-9m以下のミクロポアが発達している活性炭繊維を充填して成る活性炭繊維充填層11aを収容したもので、洗浄塔10からラインL7を介して導入される常温程度の脱離ガスを、活性炭繊維充填層11aに通過させる。
【0022】
このような構成を有する硫酸回収装置9によれば、再生塔8からのSO2を含む脱離ガスは、洗浄塔10で水洗浄され、粉塵等が洗い落とされて清浄化されると共に常温程度迄水冷され、この常温程度の脱離ガスは、活性炭繊維収容体11に流入し、活性炭繊維充填層11aを通過する。この常温程度の脱離ガスは、SO2の他にO2、水、CO2等を含んでいる。
【0023】
この脱離ガスの活性炭繊維充填層11aの通過に伴い、脱離ガス中のSO2は、活性炭繊維充填層11aの表面の酸化活性点に吸着し、脱離ガス中のO2により常温酸化されてSO3となる。次いで、脱離ガス中の水分と反応して硫酸の生成が起こり、最後に、硫酸の水への吸収と活性炭繊維充填層11aの表面からの脱離が起こる。この際に、脱離ガス中の水分が活性炭繊維に凝縮しても、SO2の吸着が阻害されることなく生成硫酸の脱離が促進される。このため、水分調整が従来に比して簡易とされている。
【0024】
そして、この脱離した硫酸は、硫酸回収槽12に回収され、一方、回収されない硫酸を含むガスは、ラインL9を介して活性炭吸着塔3の上流に戻され上記と同様な処理に供される。
【0025】
このように、本実施形態においては、活性炭吸着塔3の活性炭を再生塔8で加熱して再生する際に、当該活性炭から脱離するSO2を含む脱離ガスを常温程度迄冷却して活性炭繊維充填層11aに通すことで硫酸を回収するようにしているため、水分調整を始めとした硫酸の回収プロセスが従来に比して簡略化されると共に、装置が簡略化され且つ省領域化されている。このため、硫酸の回収を容易とすると共に設備コストを低減するのが可能とされている。
【0026】
以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、例えば、活性炭繊維収容体11と硫酸回収槽12との間に蒸留塔を配設し、この蒸留塔で、活性炭繊維充填層11aから脱離する硫酸を蒸留し濃硫酸として回収することも可能である。
【0027】
また、上記実施形態においては、活性炭を備えて排ガスを脱硫、脱硝、脱ダイオキシンとする活性炭吸着塔3と、この活性炭吸着塔3から取り出された活性炭を加熱して再生する再生塔8と、を備えているが、炭素系吸着材を備えて排ガス中の硫黄分を当該炭素系吸着材で吸着して脱硫する脱硫装置と、この脱硫装置から取り出された炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに対して適用可能である。
【0028】
【発明の効果】
本発明による排ガス処理システムの硫酸回収方法及び硫酸回収装置は、脱硫装置の炭素系吸着材を炭素系吸着材再生装置で加熱して再生する際に、当該炭素系吸着材から脱離するSO2を含む脱離ガスを例えば常温程度迄冷却して活性炭繊維充填層に通すことで硫酸を回収するようにしているため、水分調整を始めとした硫酸の回収プロセスが従来に比して簡略化されると共に、装置が簡略化され且つ省領域化される。このため、硫酸の回収を容易とすると共に設備コストを低減するのが可能となる。
【図面の簡単な説明】
【図1】本発明による排ガス処理システムを示す構成図である。
【符号の説明】
1…排ガス処理システム、3…活性炭吸着塔(脱硫装置)、8…再生塔(炭素系吸着材再生装置)、9…硫酸回収装置、10…洗浄塔(洗浄装置)、11…活性炭繊維収容体、11a…活性炭繊維充填層、12…硫酸回収槽。
[0001]
BACKGROUND OF THE INVENTION
The present invention heats and regenerates a desulfurization apparatus that adsorbs and desulfurizes sulfur in the exhaust gas by passing the exhaust gas through the carbon-based adsorbent, and the carbon-based adsorbent taken out from the desulfurization apparatus. The present invention relates to a sulfuric acid recovery method and a sulfuric acid recovery device applied to an exhaust gas treatment system including a carbon-based adsorbent regeneration device.
[0002]
[Prior art]
For example, exhaust gas treatment systems that desulfurize exhaust gas from boilers, waste incinerators, and the like are known. This exhaust gas treatment system includes an activated carbon adsorption tower as a desulfurization device, and a regeneration tower that regenerates the activated carbon adsorption capacity of the activated carbon adsorption tower to recover the exhaust gas by passing the exhaust gas through the activated carbon of the activated carbon adsorption tower. The sulfur content is adsorbed with the activated carbon and desulfurized and used in the subsequent stage, while the activated carbon of the activated carbon adsorption tower is taken out, heated in the regeneration tower and regenerated and returned to the activated carbon adsorption tower.
[0003]
Here, when the activated carbon is heated and regenerated in the regeneration tower, SO 2 is desorbed from the activated carbon. Therefore, in order to treat the desorbed gas mainly containing this SO 2 , the exhaust gas treatment system is supplied with sulfuric acid from the desorbed gas. A sulfuric acid recovery device that collects raw products is attached.
[0004]
This sulfuric acid recovery unit is equipped with a washing tower, a conversion tower, an absorption tower, and a sulfuric acid recovery tank in this order. The desorption gas from the regeneration tower is washed by the washing tower, and the washed desorption gas is heated by the conversion tower. Thus, SO 2 in the desorbed gas is converted to SO 3 , and this SO 3 is converted into sulfuric acid in an absorption tower and recovered in a sulfuric acid recovery tank.
[0005]
[Problems to be solved by the invention]
Here, in the above-described sulfuric acid recovery apparatus, heating is completed in the conversion tower at the start-up, SO 2 and moisture in the desorbed gas reach a specified concentration (the moisture in the desorbed gas is produced sulfuric acid ( 98% H 2 SO 4 -2% H 2 O) must be less than the required amount), and if these two conditions are met, there will be a time shift, the concentration of the seed sulfuric acid will It becomes thin and corrosive sulfuric acid that is difficult to handle. In addition, since the conversion tower takes in O 2 necessary for the conversion reaction from the atmosphere, if the SO 2 concentration in the desorption gas is low, sulfuric acid becomes thin due to moisture in the atmosphere, and it is very difficult to adjust the moisture concentration. . Thus, when recovering desired sulfuric acid with a conventional sulfuric acid recovery apparatus, there is a problem that the recovery process is complicated and difficult.
[0006]
Further, since the sulfuric acid recovery apparatus includes a cleaning tower, a conversion tower, an absorption tower, and a sulfuric acid recovery tank, there are problems that many components are required and a large installation area is required, resulting in an increase in equipment cost.
[0007]
The present invention has been made to solve such a problem, and provides a sulfuric acid recovery method and a sulfuric acid recovery device for an exhaust gas treatment system that facilitates recovery of sulfuric acid and reduces equipment costs. With the goal.
[0008]
The method for recovering sulfuric acid in an exhaust gas treatment system according to the present invention includes a desulfurization apparatus that adsorbs sulfur in exhaust gas by the carbon-based adsorbent by passing the exhaust gas through the carbon-based adsorbent, and a carbon system that is taken out from the desulfurization apparatus. A sulfuric acid recovery method applied to an exhaust gas treatment system comprising a carbon-based adsorbent regenerator that heats and regenerates an adsorbent, wherein the carbon adsorbent is heated when the carbon-based adsorbent is heated by the carbon-based adsorbent regenerator The desorption gas containing SO 2 desorbed from the system adsorbent is cooled, and the sulfuric acid produced by dry desulfurization generated by passing the cooled desorption gas through an activated carbon fiber packed bed is recovered.
[0009]
According to the sulfuric acid recovery method of such an exhaust gas treatment system, when the desorbed gas containing SO 2 desorbed from the carbon-based adsorbent is cooled to, for example, about room temperature and passed through the activated carbon fiber packed bed, the desorbed gas SO 2 in the catalyst is adsorbed on the oxidation active sites on the surface of the activated carbon fiber packed bed, oxidized by O 2 in the desorbed gas to become SO 3 , and reacts with moisture in the desorbed gas to generate sulfuric acid. The sulfuric acid is absorbed in water and desorbed from the surface of the activated carbon fiber packed bed, and is recovered. At the time of this recovery, even if moisture in the desorbed gas is condensed into the activated carbon fiber, desorption of the generated sulfuric acid is promoted without inhibiting SO 2 adsorption. For this reason, the process of recovering sulfuric acid including moisture adjustment is simplified as compared with the conventional one, and the apparatus is simplified and the area is reduced.
[0010]
Here, if the desorbed gas is washed with water with a washing device and then passed through the activated carbon fiber packed bed, the desorbed gas is cooled to room temperature at the same time as being washed, so that sulfuric acid is recovered. Is passed through the activated carbon fiber packed bed as a suitable desorption gas.
[0011]
Further, the sulfuric acid recovery device of the exhaust gas treatment system according to the present invention takes out the sulfur content in the exhaust gas by adsorbing the sulfur content in the exhaust gas with the carbon-based adsorbent by passing the exhaust gas through the carbon-based adsorbent, and the desulfurization device. A sulfuric acid recovery device applied to an exhaust gas treatment system comprising a carbon-based adsorbent regenerator that heats and regenerates a carbon-based adsorbent, wherein the carbon-based adsorbent regenerator heats the carbon-based adsorbent The desorbed gas containing SO 2 desorbed from the carbon-based adsorbent is generated by a cleaning device for water-cooled cleaning, an activated carbon fiber packed bed through which the desorbed gas cleaned by water cooling passes, and the activated carbon fiber packed bed. And a sulfuric acid recovery tank for recovering sulfuric acid by dry desulfurization desorbed from the activated carbon fiber packed bed.
[0012]
According to the sulfuric acid recovery apparatus of the exhaust gas treatment system configured as described above, the sulfuric acid recovery method is effectively carried out.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a sulfuric acid recovery method and a sulfuric acid recovery device of an exhaust gas treatment system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an exhaust gas treatment system according to the present invention.
[0014]
As shown in FIG. 1, an exhaust gas treatment system 1 includes a bag filter 2 connected to an exhaust gas line L1 to introduce exhaust gas, and an exhaust gas from the bag filter 2 connected to the bag filter 2 via an exhaust gas line L2. Is introduced to the activated carbon adsorption tower 3 through a gas line L3 and discharges the gas from the activated carbon adsorption tower 3 to the atmosphere, and the upstream side of the bag filter 2 on the downstream side. A suction fan 7 disposed in the exhaust gas line L2 to form a gas flow toward the side chimney 4, and a slaked lime supply device 5 for supplying slaked lime to the exhaust gas flowing through the exhaust gas line L1, and an exhaust gas line L2. a NH 3 supply unit 6 for supplying NH 3 to the exhaust gas flowing comprises, in front of the bag filter 2, as well as dust and exhaust gas introduced, slaked lime and the exhaust gas By collecting the reaction products with HCl and SO x in the catalyst, desalting and desulfurization are performed, and the activated carbon (carbon-based adsorbent) of the activated carbon adsorption tower 3 in the latter stage is used to convert SO x in the exhaust gas introduced into sulfuric acid. In addition, it is adsorbed and desulfurized in the form of an ammonium salt as a reaction product of this sulfuric acid and NH 3, and NO x in the exhaust gas is reacted with NH 3 by activated carbon catalysis to reduce and decompose to denitrate, The dioxin in the exhaust gas is adsorbed to be dedioxin, and is emitted from the chimney 4 as a substantially harmless gas.
[0015]
The activated carbon adsorption tower 3 includes an activated carbon moving layer in which activated carbon moves from the top to the bottom by introducing the activated carbon to be described later from the top inlet 3a and taking out the activated carbon to be accommodated from the bottom outlet 3b, The desulfurization, denitration, and dioxin are made possible by contacting exhaust gas with the activated carbon moving layer.
[0016]
The activated carbon adsorption tower 3 is connected to a regeneration tower (carbon-based adsorbent regeneration apparatus) 8 for regenerating the activated carbon of the activated carbon adsorption tower 3.
[0017]
The regeneration tower 8 introduces activated carbon taken out from the outlet 3b at the bottom of the activated carbon adsorption tower 3 through the line L4 from the upper inlet 8a and takes out the activated carbon from the outlet 8b at the bottom so that the activated carbon moves from the top to the bottom. The activated carbon moving layer is moved, and the activated carbon moving layer is heated to about 400 ° C. along with the movement of the activated carbon moving layer to desorb SO 2 from the activated carbon to regenerate the activated carbon. The activated carbon which has been regenerated is taken out from the above and returned to the inlet 3a at the upper part of the activated carbon adsorption tower 3 through the line L5.
[0018]
The regeneration tower 8 is connected with a sulfuric acid recovery device 9 for recovering sulfuric acid as a by-product from a desorbed gas mainly containing SO 2 desorbed from the activated carbon during regeneration of the activated carbon.
[0019]
The sulfuric acid recovery device 9 is a feature of the present embodiment, and includes a cleaning tower (cleaning device) 10, an activated carbon fiber container 11, and a sulfuric acid recovery tank 12 in this order.
[0020]
The cleaning tower 10 cleans the desorbed gas introduced from the regeneration tower 8 through the line L6 with water, and cools the desorbed gas to about room temperature.
[0021]
The activated carbon fiber container 11 contains an activated carbon fiber packed layer 11a filled with activated carbon fibers having a thickness of about 10 μm and having micropores of 2 × 10 −9 m or less on the surface. A desorbed gas of about room temperature introduced through the line L7 is passed through the activated carbon fiber packed bed 11a.
[0022]
According to the sulfuric acid recovery device 9 having such a configuration, the desorbed gas containing SO 2 from the regeneration tower 8 is washed with water in the washing tower 10, dust and the like are washed away and cleaned, and at about room temperature. The desorbed gas at about room temperature flows into the activated carbon fiber container 11 and passes through the activated carbon fiber packed layer 11a. This desorbed gas at room temperature contains O 2 , water, CO 2 and the like in addition to SO 2 .
[0023]
As the desorbed gas passes through the activated carbon fiber packed bed 11a, SO 2 in the desorbed gas is adsorbed on the oxidation active sites on the surface of the activated carbon fiber packed bed 11a and is oxidized at room temperature by O 2 in the desorbed gas. the SO 3 Te. Next, it reacts with moisture in the desorption gas to generate sulfuric acid, and finally, absorption of sulfuric acid into water and desorption from the surface of the activated carbon fiber packed layer 11a occur. At this time, even if moisture in the desorption gas is condensed into the activated carbon fiber, the desorption of the generated sulfuric acid is promoted without inhibiting the adsorption of SO 2 . For this reason, moisture adjustment is simpler than in the past.
[0024]
The desorbed sulfuric acid is recovered in the sulfuric acid recovery tank 12, while the gas containing sulfuric acid that is not recovered is returned to the upstream side of the activated carbon adsorption tower 3 via the line L9 and subjected to the same processing as described above. .
[0025]
Thus, in the present embodiment, when the activated carbon of the activated carbon adsorption tower 3 is regenerated by heating in the regeneration tower 8, the desorbed gas containing SO 2 desorbed from the activated carbon is cooled to about room temperature to activate the activated carbon. Since sulfuric acid is recovered by passing through the fiber packed layer 11a, the process of recovering sulfuric acid including moisture adjustment is simplified as compared with the conventional method, and the apparatus is simplified and the area is reduced. ing. For this reason, it is possible to facilitate the recovery of sulfuric acid and reduce the equipment cost.
[0026]
As mentioned above, although this invention was demonstrated concretely based on the embodiment, this invention is not limited to the said embodiment, For example, a distillation column is provided between the activated carbon fiber container 11 and the sulfuric acid collection tank 12. It is possible to dispose the sulfuric acid desorbed from the activated carbon fiber packed bed 11a in this distillation tower and collect it as concentrated sulfuric acid.
[0027]
Moreover, in the said embodiment, the activated carbon adsorption tower 3 which comprises activated carbon and makes exhaust gas desulfurization, denitration, and dedioxin, and the regeneration tower 8 which heats and regenerates the activated carbon taken out from this activated carbon adsorption tower 3; Equipped with a carbon-based adsorbent, the sulfur content in the exhaust gas is adsorbed with the carbon-based adsorbent and desulfurized, and the carbon-based adsorbent taken out from the desulfurizer is heated and regenerated. The present invention is applicable to an exhaust gas treatment system including a carbon-based adsorbent regeneration device.
[0028]
【The invention's effect】
The sulfuric acid recovery method and the sulfuric acid recovery apparatus of the exhaust gas treatment system according to the present invention are SO 2 that is desorbed from the carbon-based adsorbent when the carbon-based adsorbent of the desulfurization apparatus is heated and regenerated by the carbon-based adsorbent regenerator. For example, sulfuric acid is recovered by cooling the desorbed gas containing hydrogen to about room temperature and passing it through an activated carbon fiber packed bed, so the process of recovering sulfuric acid including moisture adjustment is simplified compared to the conventional method. In addition, the apparatus is simplified and saved in area. For this reason, it becomes possible to collect | recover sulfuric acid easily and to reduce an installation cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an exhaust gas treatment system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas treatment system, 3 ... Activated carbon adsorption tower (desulfurization apparatus), 8 ... Regeneration tower (carbon-type adsorbent regeneration apparatus), 9 ... Sulfuric acid recovery apparatus, 10 ... Washing tower (washing apparatus), 11 ... Activated carbon fiber container 11a ... Activated carbon fiber packed bed, 12 ... Sulfuric acid recovery tank.

Claims (3)

排ガスを炭素系吸着材に通すことで排ガス中の硫黄分を当該炭素系吸着材で吸着し脱硫する脱硫装置と、この脱硫装置から取り出される前記炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに適用される硫酸回収方法であって、
前記炭素系吸着材再生装置による前記炭素系吸着材の加熱の際に当該炭素系吸着材から脱離するSO2を含む脱離ガスを冷却し、
この冷却した脱離ガスを活性炭繊維充填層に通すことで生成された乾式脱硫による硫酸を回収することを特徴とする排ガス処理システムの硫酸回収方法。
By passing the exhaust gas through the carbon-based adsorbent, the sulfur content in the exhaust gas is adsorbed by the carbon-based adsorbent and desulfurized, and the carbon-based adsorbent that heats and regenerates the carbon-based adsorbent taken out from the desulfurizer A sulfuric acid recovery method applied to an exhaust gas treatment system comprising a material recycling device,
Cooling the desorbed gas containing SO 2 desorbed from the carbon-based adsorbent when the carbon-based adsorbent is heated by the carbon-based adsorbent regenerator,
A sulfuric acid recovery method for an exhaust gas treatment system, characterized in that sulfuric acid by dry desulfurization generated by passing the cooled desorption gas through an activated carbon fiber packed bed is recovered.
前記脱離ガスを、洗浄装置で水冷洗浄してから前記活性炭繊維充填層に通すことを特徴とする請求項1記載の排ガス処理システムの硫酸回収方法。The sulfuric acid recovery method for an exhaust gas treatment system according to claim 1, wherein the desorbed gas is washed with water by a washing device and then passed through the activated carbon fiber packed bed. 排ガスを炭素系吸着材に通すことで排ガス中の硫黄分を当該炭素系吸着材で吸着し脱硫する脱硫装置と、この脱硫装置から取り出される前記炭素系吸着材を加熱して再生する炭素系吸着材再生装置と、を備える排ガス処理システムに適用される硫酸回収装置であって、
前記炭素系吸着材再生装置による前記炭素系吸着材の加熱の際に当該炭素系吸着材から脱離するSO2を含む脱離ガスを、水冷洗浄する洗浄装置と、
この水冷洗浄された脱離ガスが通過する活性炭繊維充填層と、
この活性炭繊維充填層で生成されて当該活性炭繊維充填層から脱離する乾式脱硫による硫酸を回収する硫酸回収槽と、を備えることを特徴とする排ガス処理システムの硫酸回収装置。
By passing the exhaust gas through the carbon-based adsorbent, the sulfur content in the exhaust gas is adsorbed by the carbon-based adsorbent and desulfurized, and the carbon-based adsorbent that heats and regenerates the carbon-based adsorbent taken out from the desulfurizer A sulfuric acid recovery device applied to an exhaust gas treatment system comprising a material recycling device,
A cleaning device for water-cooled cleaning of the desorbed gas containing SO 2 desorbed from the carbon-based adsorbent when the carbon-based adsorbent is heated by the carbon-based adsorbent regeneration device;
Activated carbon fiber packed bed through which this water-cooled desorbed gas passes,
A sulfuric acid recovery tank for an exhaust gas treatment system, comprising: a sulfuric acid recovery tank that recovers sulfuric acid by dry desulfurization generated in the activated carbon fiber packed bed and desorbed from the activated carbon fiber packed bed.
JP2001090637A 2001-03-27 2001-03-27 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system Expired - Lifetime JP4574884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090637A JP4574884B2 (en) 2001-03-27 2001-03-27 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090637A JP4574884B2 (en) 2001-03-27 2001-03-27 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system

Publications (2)

Publication Number Publication Date
JP2002284510A JP2002284510A (en) 2002-10-03
JP4574884B2 true JP4574884B2 (en) 2010-11-04

Family

ID=18945396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090637A Expired - Lifetime JP4574884B2 (en) 2001-03-27 2001-03-27 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system

Country Status (1)

Country Link
JP (1) JP4574884B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039715B1 (en) 2009-01-23 2011-06-13 엘에스니꼬동제련 주식회사 Method of Treating a By-product Gas from Copper Smelting
JP5917190B2 (en) * 2012-02-27 2016-05-11 太平洋セメント株式会社 Mercury recovery equipment in exhaust gas
JP6066191B2 (en) * 2013-03-11 2017-01-25 太平洋セメント株式会社 Mercury recovery method in exhaust gas
CN106178813A (en) * 2016-07-08 2016-12-07 中山市道享节能技术服务有限公司 A kind of coal high-efficiency clean utilization system based on activated coke dry FGD process technology
CN113731101B (en) * 2020-05-28 2023-06-23 中冶长天国际工程有限责任公司 Garbage incineration flue gas treatment system and flue gas treatment method based on activated carbon separation and analysis
CN113082946A (en) * 2021-04-08 2021-07-09 成都达奇环境科技有限公司 Method for treating waste gas from non-ferrous metal smelting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101361A (en) * 1972-04-04 1973-12-20
JPS5057096A (en) * 1973-09-21 1975-05-19
JPS61287423A (en) * 1985-06-12 1986-12-17 Sumitomo Heavy Ind Ltd Treatment of exhaust gas
JPH04506932A (en) * 1990-06-08 1992-12-03 ミシガン ステイト ユニバーシティー Method of removing SOx from flue gas and other gas streams using absorbents
JPH07241441A (en) * 1994-03-03 1995-09-19 Chiyoda Corp Method for desulfurizing sulfur dioxide-containing gas as gas to be treated
JPH11235515A (en) * 1997-12-09 1999-08-31 Outokumpu Oy Method of thermally regenerating spent acid
JPH11347349A (en) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizing method and apparatus
JPH11347364A (en) * 1998-06-09 1999-12-21 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer
JP2000111032A (en) * 1998-10-05 2000-04-18 Mitsubishi Heavy Ind Ltd Coal gasifying composite power generation system
JP2000281320A (en) * 1999-03-31 2000-10-10 Nippon Mining & Metals Co Ltd Production of sulfuric acid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101361A (en) * 1972-04-04 1973-12-20
JPS5057096A (en) * 1973-09-21 1975-05-19
JPS61287423A (en) * 1985-06-12 1986-12-17 Sumitomo Heavy Ind Ltd Treatment of exhaust gas
JPH04506932A (en) * 1990-06-08 1992-12-03 ミシガン ステイト ユニバーシティー Method of removing SOx from flue gas and other gas streams using absorbents
JPH07241441A (en) * 1994-03-03 1995-09-19 Chiyoda Corp Method for desulfurizing sulfur dioxide-containing gas as gas to be treated
JPH11235515A (en) * 1997-12-09 1999-08-31 Outokumpu Oy Method of thermally regenerating spent acid
JPH11347349A (en) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizing method and apparatus
JPH11347364A (en) * 1998-06-09 1999-12-21 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer
JP2000111032A (en) * 1998-10-05 2000-04-18 Mitsubishi Heavy Ind Ltd Coal gasifying composite power generation system
JP2000281320A (en) * 1999-03-31 2000-10-10 Nippon Mining & Metals Co Ltd Production of sulfuric acid

Also Published As

Publication number Publication date
JP2002284510A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
EP1308198B1 (en) Mercury removal method and system
JP4001554B2 (en) Coke oven gas purification method
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
JPH09262432A (en) Method for recovering basic amine compound in waste gas of decarboxylation column
EP0678056A1 (en) A packed bed and process for removal of residual mercury from gaseous hydrocarbons
JP4574884B2 (en) Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
JP2008188492A (en) Water treatment system
JPH01262921A (en) Removal of h2s from gas stream
JPH11114366A (en) Treatment of released gas in waste gas treating device for refuse incinerator
JP3411482B2 (en) Operating method of exhaust gas treatment device in garbage incinerator
JP2006035042A (en) Regeneration method of gas purifying apparatus, and gas purifying method using the same
JP4512993B2 (en) Water treatment equipment
JPH06228573A (en) Treatment of tail gas in coal gasification plant
CN108815985A (en) A kind of method of pulse-heating type processing contaminated soil Thermal desorption tail gas
JP4512994B2 (en) Water treatment system
CN210699395U (en) Low-temperature methanol purge gas-discharging desulfurization zero-emission system
JPH0910553A (en) Treatment of discharged gas containing volatile organic halide
JP2002292238A (en) Waste gas treatment system
JPH1147536A (en) Method for treating exhaust gas
JP2831214B2 (en) Activated coke regeneration method
JPH11156189A (en) Exhaust gas treatment method
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
JP2001038149A (en) Device and method for treating waste gas
JPH06262038A (en) Method for treatment of exhaust gas
JP3095327B2 (en) Dry dedusting apparatus and operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4574884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term