JPH0910553A - Treatment of discharged gas containing volatile organic halide - Google Patents

Treatment of discharged gas containing volatile organic halide

Info

Publication number
JPH0910553A
JPH0910553A JP7161035A JP16103595A JPH0910553A JP H0910553 A JPH0910553 A JP H0910553A JP 7161035 A JP7161035 A JP 7161035A JP 16103595 A JP16103595 A JP 16103595A JP H0910553 A JPH0910553 A JP H0910553A
Authority
JP
Japan
Prior art keywords
gas
volatile organic
organic halogen
halogen compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7161035A
Other languages
Japanese (ja)
Inventor
Miki Masuda
幹 増田
Toshio Yamaguchi
敏男 山口
Akiko Kitagawa
明子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7161035A priority Critical patent/JPH0910553A/en
Publication of JPH0910553A publication Critical patent/JPH0910553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To decompose a volatile organic halide efficiently and economically without producing a reaction by-product by adjusting a desorption temperature and preheating a mixed gas from a gas adjustment step within a specified range. CONSTITUTION: A gas 12 containing a volatile organic halide is sucked into adsorption devices 2, 3 filled with adsorbents 13, 14. An air 17 from a blower 16 is heated using a heater 18 and is guided into the adsorption devices 2, 3 as a recycled gas to desorb the volatile organic halide from adsorbents 13, 14. After that, a vapor 21 is added to the recycled gas 20 containing the volatile organic halide, then the gas 201 is heated at 130-300 deg.C using a preheater 4, and this preheated gas is guided into a catalytic reaction device 5. Thus the desorption temperature, and the preheating temperature are specified, then the degradation of the function or performance of a catalyst by an excess reaction heat is prevented from occurring, and the production of dioxins is also prevented from being entailed. The catalyst to be used should preferably be composed of one or more kinds of noble metals selected from among Pt, Pd, Rh and Au, borne by one or more kinds of oxides selected from among titania, zirconia, boria and phosphorus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、揮発性有機ハロゲン化
合物を含有する排ガスの処理方法に関するものである。
さらに詳しくいえば、大気中や地下水等に含まれている
トリクロロエチレンやテトラクロロエチレン等の揮発性
有機ハロゲン化合物を効率よく分解処理し、無害化する
ための処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas containing a volatile organic halogen compound.
More specifically, the present invention relates to a treatment method for efficiently decomposing and detoxifying volatile organic halogen compounds such as trichlorethylene and tetrachloroethylene contained in the atmosphere, groundwater and the like.

【0002】[0002]

【従来の技術】フロン、塩化メチレン、トリクロロエチ
レンやテトラクロロエチレン等の有機ハロゲン化合物
は、例えば冷媒や電子部品や金属製品の脱脂剤、そして
ドライクリーニングの溶剤などに広く利用されている。
これは通常の環境下ではこれらの化合物は化学的にきわ
めて安定であるからである。しかし、これらの化合物は
オゾン層破壊の原因物質であり、発ガン性を有するとも
疑われている。その結果、過去に発生した揮発性有機ハ
ロゲン化合物による土壌や地下水の汚染が極めて問題視
化されてきている。
Fluorocarbons, methylene chloride, organic halogen compounds such as trichloroethylene and tetrachloroethylene are widely used as refrigerants, degreasing agents for electronic parts and metal products, and solvents for dry cleaning.
This is because under normal circumstances these compounds are chemically very stable. However, these compounds are substances that cause ozone depletion and are also suspected to have carcinogenicity. As a result, pollution of soil and groundwater due to volatile organic halogen compounds generated in the past has become extremely problematic.

【0003】地下水等に含まれる揮発性有機ハロゲン化
合物を処理する方法として、真空抽出法等により揮発性
有機ハロゲン化合物を分離させ、活性炭等の吸着剤に吸
着し回収する方法が一般的であるが、完全無害化という
点で活性炭に吸着された揮発性有機ハロゲン化合物をど
う無害化するかといった根本的な問題が残る。
As a method for treating a volatile organic halogen compound contained in groundwater or the like, a method in which the volatile organic halogen compound is separated by a vacuum extraction method and the like is adsorbed on an adsorbent such as activated carbon and recovered is generally used. However, there remains a fundamental problem of how to detoxify volatile organic halogen compounds adsorbed on activated carbon in terms of complete detoxification.

【0004】揮発性有機ハロゲン化合物自体を無害化す
る方法としては熱分解法、光分解法、接触分解法等が提
案されている。熱分解法は、高温、高圧下で揮発性有機
ハロゲン化合物を燃焼させるものであるが、装置が大が
かりであったり、処理コストが高いなどの問題がある。
光分解法は、オゾンあるいは光触媒の存在下で紫外線を
照射し、揮発性有機ハロゲン化合物を分解させるもので
あるが、処理ガス中の当該化合物濃度が高い場合には不
適切であったり、処理効率が低いという欠点がある。こ
れに対して触媒による接触分解法は簡便な方法であり、
処理可能濃度範囲も広く注目されている技術である。
As a method of detoxifying the volatile organic halogen compound itself, a thermal decomposition method, a photodecomposition method, a catalytic decomposition method and the like have been proposed. The thermal decomposition method burns a volatile organic halogen compound at high temperature and high pressure, but has problems such as a large-scale apparatus and high processing cost.
The photolysis method irradiates ultraviolet rays in the presence of ozone or a photocatalyst to decompose volatile organic halogen compounds, but when the concentration of the compound in the processing gas is high, it is inappropriate or the processing efficiency is high. Has the drawback of being low. On the other hand, the catalytic cracking method using a catalyst is a simple method,
The processable concentration range is also a technology that has received widespread attention.

【0005】触媒分解法を用いて土壌や水中の有機ハロ
ゲン化合物を処理するものとして特開平6−63357
号公報に開示された装置がある。この装置は、揮発性有
機ハロゲン化合物を含有するガスを吸着剤に濃縮し、そ
の後再生ガスにより脱着させるための吸着装置と有機ハ
ロゲン化合物分解触媒を充填した触媒分解装置と、有機
ハロゲン化合物の分解により発生したハロゲン化水素ガ
スを除去する洗浄塔からなり、このように装置を構成す
ることにより有機ハロゲン化合物を低温度で効率的に処
理可能にするものである。触媒としては、Si,Al,
Ti,Zr等から選ばれる1種または2種以上の酸化
物、具体的にはゼオライトのように強酸点を有するもの
が使用されている。
Japanese Patent Application Laid-Open No. 6-63357 discloses a method for treating organic halogen compounds in soil and water using a catalytic decomposition method.
There is an apparatus disclosed in Japanese Unexamined Patent Publication (Kokai) Publication. This equipment consists of an adsorption device for concentrating a gas containing a volatile organic halogen compound into an adsorbent and then desorbing it with a regeneration gas, a catalytic decomposition device filled with an organic halogen compound decomposition catalyst, and an organic halogen compound decomposition device. It is composed of a washing tower for removing the generated hydrogen halide gas, and by constructing the apparatus in this way, the organic halogen compound can be efficiently treated at a low temperature. As the catalyst, Si, Al,
One or more oxides selected from Ti, Zr, etc., specifically, those having a strong acid point such as zeolite are used.

【0006】しかし、この装置では、有機ハロゲン化合
物の処理に際して、分解処理を施す前に有機ハロゲン化
合物を400℃以上の高温下にさらしているが、このよ
うにすると揮発性有機ハロゲン化合物の一部が分解し、
重合反応を起こし、ダイオキシン類等の猛毒の物質が生
成する可能性が高い。
However, in this apparatus, when treating the organohalogen compound, the organohalogen compound is exposed to a high temperature of 400 ° C. or higher before the decomposition treatment. Is disassembled,
There is a high possibility that a highly toxic substance such as dioxins will be generated due to the polymerization reaction.

【0007】また、特開平6−134241号公報に
は、排水中の揮発性有機化合物をストリッピングして排
気される揮発性有機物を吸着剤に濃縮し、その後再生ガ
スにより脱着させ、そのガスを触媒に接触させ揮発性有
機物を分解する処理方法が開示されている。
Further, in Japanese Patent Laid-Open No. 6-134241, the volatile organic compounds in the waste water are stripped to concentrate the exhausted volatile organic compounds to an adsorbent, which is then desorbed by a regeneration gas, and the gas is removed. A treatment method of contacting a catalyst and decomposing volatile organic substances is disclosed.

【0008】しかし、吸着剤から揮発性有機物を再生ガ
スにより脱着させる工程において一定温度の再生ガスを
使用しているため、後述した比較例が示すように、脱着
後の再生ガス中の揮発性有機物濃度(以下、「脱着濃
度」と示す。)は時間軸に対して一つの放物線を描くと
推定される。すなわち、脱着濃度を一定の範囲で制御す
ることができていないといえる。脱着濃度を一定の範囲
に制御できないと触媒がシンタリングを起こして劣化し
たり、トータルとしての処理効率が低下したりする。
However, since the regenerated gas having a constant temperature is used in the step of desorbing the volatile organic substance from the adsorbent with the regenerated gas, as shown in the comparative example described later, the volatile organic substance in the regenerated gas after desorption is shown. The concentration (hereinafter referred to as "desorption concentration") is estimated to draw one parabola with respect to the time axis. That is, it can be said that the desorption concentration cannot be controlled within a certain range. If the desorption concentration cannot be controlled within a certain range, the catalyst will deteriorate due to sintering, or the total processing efficiency will decrease.

【0009】すなわち、脱着濃度が高すぎると触媒の発
熱量が多くなり、触媒温度が高くなりすぎシンタリング
を起こすからであり、また低脱着濃度領域が長いと処理
時間が長くなり、トータルの処理効率の低下につなが
る。
That is, if the desorption concentration is too high, the calorific value of the catalyst increases, and the catalyst temperature rises too much to cause sintering. Also, if the low desorption concentration region is long, the processing time becomes long and the total processing is performed. It leads to a decrease in efficiency.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述したこ
とを考慮し、排水中や大気中に含まれている揮発性有機
ハロゲン化合物を副反応物を生成させることなく、効率
よく経済的に分解し、無害化する方法の提供を課題とす
るものである。
SUMMARY OF THE INVENTION In consideration of the above, the present invention efficiently and economically produces volatile organic halogen compounds contained in wastewater or the atmosphere without producing a side reaction product. It is an object to provide a method of decomposing and detoxifying.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果本発明に至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention.

【0012】すなわち、本発明は排水に含まれる揮発性
有機ハロゲン化合物をストリッピングして排気される揮
発性有機ハロゲン化合物、あるいは、気体中に含まれる
揮発性有機ハロゲン化合物を吸着剤に吸着させる吸着工
程と、該吸着剤から吸着された吸着成分を再生ガスによ
り脱着させ、ガス中に移行させて吸着剤を再生させる脱
着工程と、脱着した揮発性有機ハロゲン化合物を含有す
るガスに水蒸気を添加、混合するガス調整工程と、ガス
調整工程より得られる混合ガスを加熱する予備加熱工程
と、予備加熱された混合ガスを分解触媒に接触させて分
解する接触分解工程と、分解により生成したハロゲン化
水素をアルカリ溶液で吸収する除害工程とからなる揮発
性有機ハロゲン化物の処理方法において、脱着濃度がほ
ぼ一定となるように脱着温度を調節し、かつガス調整工
程より得られる混合ガスを予備加熱する温度を130〜
300℃の範囲するものである。
That is, according to the present invention, the volatile organic halogen compound contained in the waste water is stripped and exhausted, or the volatile organic halogen compound contained in the gas is adsorbed to the adsorbent. A step, a desorption step of desorbing an adsorbed component adsorbed from the adsorbent with a regeneration gas, and transferring the gas into the gas to regenerate the adsorbent; and adding steam to the gas containing the desorbed volatile organic halogen compound, A gas adjusting step of mixing, a preheating step of heating the mixed gas obtained in the gas adjusting step, a catalytic cracking step of bringing the preheated mixed gas into contact with a cracking catalyst to decompose, and a hydrogen halide produced by the cracking. In the method for treating volatile organic halides, which consists of a detoxification process of absorbing the Adjust the desorption temperature, and 130 to a temperature to preheat the gas mixture obtained from the gas adjustment step
It is in the range of 300 ° C.

【0013】[0013]

【作用】本発明の処理対象となる揮発性有機ハロゲン化
合物としては、四塩化炭素、クロロホルム、クロロエチ
レン、1,1,1−トリクロロエタン、トリクロロエチ
レン、テトラクロロエチレン、トリフルオロメタン、ジ
クロロジフルオロメタンなどが挙げられる。
The volatile organic halogen compound to be treated in the present invention includes carbon tetrachloride, chloroform, chloroethylene, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, trifluoromethane, dichlorodifluoromethane and the like.

【0014】以下図面を用いて本発明の方法を説明す
る。
The method of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の処理方法が適用される設備
の1例を示した概念図である。
FIG. 1 is a conceptual diagram showing an example of equipment to which the processing method of the present invention is applied.

【0016】図1の設備はストリッピング装置1と、吸
着装置2,3と、予備加熱装置4と、触媒反応装置5と
洗浄装置6とから主として構成されたものである。そし
て、図1の設備を用いて地下水等の排水中に含まれる揮
発性有機ハロゲン化合物を処理する場合は、揮発性有機
ハロゲン化合物含有排水7をポンプ8によりストリッピ
ング装置1の上部に供給すると共に空気9をストリッピ
ング装置1の下部から吹き込む。このストリッピング装
置1内では、前記揮発性有機ハロゲン化合物含有排水7
と空気9とが向流接触し、揮発性有機ハロゲン化合物は
空気9側に移行し揮発性有機ハロゲン化合物含有ガス1
0とし、該排水7は処理水11として系外に排出され
る。
The equipment of FIG. 1 mainly comprises a stripping device 1, adsorption devices 2 and 3, a preheating device 4, a catalytic reaction device 5 and a cleaning device 6. When the volatile organic halogen compound contained in the wastewater such as groundwater is treated using the equipment of FIG. 1, the volatile organic halogen compound-containing wastewater 7 is supplied to the upper part of the stripping device 1 by the pump 8. Air 9 is blown into the stripping device 1 from below. In the stripping device 1, the volatile organic halogen compound-containing wastewater 7
And air 9 come into countercurrent contact with each other, the volatile organic halogen compound moves to the air 9 side, and the volatile organic halogen compound-containing gas 1
The drainage 7 is discharged as treated water 11 outside the system.

【0017】揮発性有機ハロゲン化合物を含む大気12
等を処理する場合には、揮発性有機ハロゲン化合物含有
大気12はポンプ8により吸着装置2,3内に直接吸引
される。
Atmosphere 12 Containing Volatile Organic Halogen Compounds
In the case of processing the above, the atmosphere 12 containing the volatile organic halogen compound is directly sucked into the adsorption devices 2 and 3 by the pump 8.

【0018】揮発性有機ハロゲン化合物含有ガス12
は、吸着剤13,14を充填した吸着装置2,3に吸引
され、該ガス中の揮発性有機ハロゲン化合物は吸着剤1
3,14に吸着され、揮発性有機ハロゲン化合物が除去
された空気15は大気中に放出される。通常、この吸着
剤13,14としては、粒状活性炭、繊維状活性炭、ゼ
オライト等が使用される。
Gas containing volatile organic halogen compound 12
Is sucked into the adsorbing devices 2 and 3 filled with the adsorbents 13 and 14, and the volatile organic halogen compound in the gas is adsorbent 1
The air 15 adsorbed by 3, 14 and from which the volatile organic halogen compound has been removed is released into the atmosphere. Usually, as the adsorbents 13 and 14, granular activated carbon, fibrous activated carbon, zeolite or the like is used.

【0019】図1では吸着装置2,3を2塔用いてい
る。これは、一方で吸着処理を行いながら、もう一方で
脱着再生処理を行い、これを交互に繰り返すことによ
り、揮発性有機ハロゲン化合物の除去処理を連続的に行
い、処理効率を上げるためであるが、処理対象物や処理
条件によっては吸着装置が1塔でも差し支えはない。ま
た、吸着装置の方式としては、固定床式、流動床式等が
考えられるが、特に制限されるものではない。
In FIG. 1, two towers are used as the adsorption devices 2 and 3. This is because while performing the adsorption treatment on the one hand, the desorption regeneration treatment on the other hand and by repeating this alternately, the treatment for removing the volatile organic halogen compound is continuously performed, and the treatment efficiency is improved. Depending on the object to be treated and the treatment conditions, there is no problem even if only one adsorption device is used. Further, the adsorption device system may be a fixed bed system, a fluidized bed system or the like, but is not particularly limited.

【0020】送風機16から送られた空気17は加熱器
18で加熱され再生ガス19となり、吸着装置2,3に
導入され、揮発性有機ハロゲン化合物を吸着剤より脱離
して吸着剤を再生し、揮発性有機ハロゲン化合物を再生
ガス中に移行させ、揮発性有機ハロゲン化合物含有再生
ガス20を得る。
The air 17 sent from the blower 16 is heated by a heater 18 to become a regeneration gas 19 which is introduced into the adsorbers 2 and 3 to desorb the volatile organic halogen compound from the adsorbent to regenerate the adsorbent, The volatile organic halogen compound is transferred into the regeneration gas to obtain the volatile organic halogen compound-containing regeneration gas 20.

【0021】次に揮発性有機ハロゲン化合物含有再生ガ
ス20に水蒸気21を添加する。これは、揮発性有機ハ
ロゲン化合物の分解において、水素源としての水蒸気を
共存させることにより揮発性有機ハロゲン化合物の分解
が容易となり、かつ毒性の高いハロゲンガスやホスゲン
の生成を抑制するからである。
Next, water vapor 21 is added to the volatile organic halogen compound-containing regeneration gas 20. This is because, in the decomposition of the volatile organic halogen compound, the coexistence of water vapor as a hydrogen source facilitates the decomposition of the volatile organic halogen compound and suppresses the generation of highly toxic halogen gas or phosgene.

【0022】この水蒸気を添加する方式としては、ボイ
ラーにより生成した水蒸気を添加する方式や約200℃
に加熱した気化器に揮発性有機ハロゲン化合物含有再生
ガスと水とを導入し、水を気化させる方式等が考えられ
るが、水蒸気を反応系内に導入できる方法であれば何で
もかまわない。例えば、気化器を用いる場合は、気化器
にアルミナを発泡させて作成したビード等を充填剤とし
て充填するとガスと水との混合拡散が向上し、かつ水の
気化が容易になる。
As a method of adding this steam, a method of adding steam generated by a boiler or about 200.degree.
A method in which a volatile organic halogen compound-containing regenerated gas and water are introduced into a vaporizer heated to the above to vaporize the water can be considered, but any method can be used as long as it can introduce water vapor into the reaction system. For example, in the case of using a vaporizer, if the vaporizer is filled with beads or the like formed by foaming alumina as a filler, mixing and diffusion of gas and water is improved, and vaporization of water is facilitated.

【0023】水蒸気が添加された揮発性有機ハロゲン化
合物含有再生ガス20は予備加熱装置4により130〜
300℃に加熱された後、触媒反応装置5に導入され、
触媒層22と接触させられ、分解処理される。予備加熱
装置4で130℃以上に加熱するのは、揮発性有機ハロ
ゲン化合物含有再生ガス中の水蒸気が凝縮するのを防止
するためである。一方、300℃を越えると前記したよ
うにダイオキシン類が副成する可能性があるからであ
る。
The regenerated gas 20 containing the volatile organic halogen compound, to which steam has been added, is heated by the preheating device 4 to 130
After being heated to 300 ° C., introduced into the catalytic reaction device 5,
It is brought into contact with the catalyst layer 22 and decomposed. The reason why the preheating device 4 heats at 130 ° C. or higher is to prevent water vapor in the volatile organic halogen compound-containing regeneration gas from condensing. On the other hand, if the temperature exceeds 300 ° C., dioxins may be by-produced as described above.

【0024】なお、ダイオキシン類は、熱燃焼により副
成し易く、特に300〜500℃近辺で多く生成すると
言われている。
It is said that dioxins are easily formed as a by-product due to thermal combustion, and that a large amount of dioxins is produced particularly in the vicinity of 300 to 500 ° C.

【0025】ところで、分解する揮発性有機ハロゲン化
合物が、触媒反応温度が200℃程度の四塩化炭素等で
ある場合には予備加熱装置4による加熱のみで充分であ
る。しかし、トリクロロエチレンやテトラクロロエチレ
ン等を触媒反応により分解しようとすれば、必要とされ
る触媒反応温度は400℃以上となる。このため、予備
か熱装置4による加熱では十分な触媒反応は期待できな
い。触媒反応装置に導入する前に揮発性有機ハロゲン化
合物含有再生ガス20をさらに300〜500℃に加熱
する方法を採用すると、一部の揮発性有機ハロゲン化合
物が熱分解し重合反応が進行し、猛毒なダイオキシン類
等が副成する可能性がある。
By the way, when the volatile organic halogen compound to be decomposed is carbon tetrachloride or the like having a catalytic reaction temperature of about 200 ° C., heating by the preheating device 4 is sufficient. However, if trichlorethylene, tetrachloroethylene, or the like is to be decomposed by a catalytic reaction, the required catalytic reaction temperature will be 400 ° C. or higher. Therefore, a sufficient catalytic reaction cannot be expected by heating with the preliminary or heating device 4. If a method of further heating the volatile organic halogen compound-containing regenerated gas 20 to 300 to 500 ° C. before introducing it into the catalytic reactor is used, a part of the volatile organic halogen compound is thermally decomposed and the polymerization reaction proceeds, resulting in severe poisoning. Dioxins may form as by-products.

【0026】よって、この目的のためには触媒反応装置
5全体を加熱する方法と、触媒層22を加熱する方法と
がある。いずれを採用するかは装置自体の大きさや設計
上の問題より決定されることである。例えば、多量の触
媒を用いる場合には触媒層22の加熱が有効であるが、
使用する触媒の量が少ないときには触媒反応装置5自体
を加熱した方が、装置組立上からは好ましい。
Therefore, for this purpose, there are a method of heating the entire catalytic reaction apparatus 5 and a method of heating the catalyst layer 22. Which one is adopted depends on the size of the device itself and design problems. For example, when a large amount of catalyst is used, heating the catalyst layer 22 is effective,
When the amount of catalyst used is small, it is preferable to heat the catalytic reaction device 5 itself from the viewpoint of device assembly.

【0027】本発明で使用する揮発性有機ハロゲン化合
物分解用の触媒は耐酸性を有し、かつ固体酸性を高めた
触媒であり、チタニア、ジルコニア、ボリア、リン等か
ら選ばれる1種または2種以上の酸化物にPt、Pd、
Rh、Au等から選ばれる1種または2種以上の貴金属
を担持したものである。この様なものの例として、例え
ば、特開平5−317645号公報に開示された白金担
持ジルコニア・燐酸触媒がある。触媒の形状は、円筒
状、球状、ハニカム状等があるが、実際の反応条件に適
した所望形状を選択すればよい。
The catalyst for decomposing the volatile organic halogen compound used in the present invention is a catalyst having acid resistance and increased solid acidity, and is one or two selected from titania, zirconia, boria, phosphorus and the like. Pt, Pd,
It carries one or more precious metals selected from Rh, Au and the like. An example of such a catalyst is the platinum-supported zirconia-phosphoric acid catalyst disclosed in JP-A-5-317645. The catalyst may have a cylindrical shape, a spherical shape, a honeycomb shape, or the like, and a desired shape suitable for actual reaction conditions may be selected.

【0028】触媒分解反応により、分解処理を施した処
理ガス23は、洗浄装置6に導入され、処理ガス中のハ
ロゲン化水素がアルカリ洗浄液24により吸収除外され
る。
The processing gas 23 that has been decomposed by the catalytic decomposition reaction is introduced into the cleaning device 6, and the hydrogen halide in the processing gas is absorbed and excluded by the alkaline cleaning liquid 24.

【0029】洗浄装置6は、予備洗浄塔25と主洗浄塔
26と吸収液タンク27とから構成されており、処理ガ
ス23は予備洗浄塔25上部より導入され、吸収タンク
27上部空間部を経て主洗浄塔26上部より大気中に放
出される。予備洗浄塔25と主洗浄塔26とではいずれ
もその上部からアルカリ洗浄液24が降らされ、処理ガ
ス23と接触し、ハロゲン化水素を吸収除去する。アル
カリ洗浄液24は循環ポンプ28により循環して用いて
いるが、pHの低下に従いアルカリを補給しても良く、
一部のアルカリ洗浄液を排出しつつ、新規なアルカリ洗
浄液を補給しても良い。なお、吸収装置は基本的に処理
ガス23中のハロゲン化水素を吸収除去できれば支障な
く、吸収塔の形式やその段数などもこの目的に従い選択
すればよい。
The cleaning device 6 comprises a pre-cleaning tower 25, a main cleaning tower 26 and an absorbent tank 27. The processing gas 23 is introduced from the upper part of the pre-cleaning tower 25 and passes through the space above the absorption tank 27. It is discharged into the atmosphere from the upper part of the main washing tower 26. In both the pre-cleaning tower 25 and the main cleaning tower 26, the alkaline cleaning liquid 24 is dropped from the upper part thereof, comes into contact with the processing gas 23, and absorbs and removes hydrogen halide. The alkaline cleaning liquid 24 is circulated and used by a circulation pump 28, but alkali may be replenished as the pH decreases,
A new alkali cleaning liquid may be replenished while discharging a part of the alkali cleaning liquid. It should be noted that the absorption device basically does not cause any problem if it can absorb and remove hydrogen halide in the processing gas 23, and the type of the absorption tower and the number of stages thereof may be selected according to this purpose.

【0030】図1の装置を用いて有機ハロゲン化合物の
脱着濃度を制御するには、例えば、図2に示すような再
生ガスの温度を一定時間間隔で上下に変化させる。この
場合、吸着剤中の有機ハロゲン化合物の残留濃度低下に
従って、再生ガス温度を順次高くすることが望ましい。
その他の例としては、図3に示すように、一サイクルの
み再生ガス温度を図2に示した方法のように上下に変化
させ、次いで温度を徐々に直線的に上げる方法等があ
る。いずれにしろ脱着濃度を一定に制御できれば図2の
ようにしても図3のようにしてもどちらでも良い。
In order to control the desorption concentration of the organic halogen compound using the apparatus of FIG. 1, for example, the temperature of the regeneration gas as shown in FIG. 2 is changed up and down at regular time intervals. In this case, it is desirable to increase the temperature of the regeneration gas sequentially as the residual concentration of the organic halogen compound in the adsorbent decreases.
As another example, as shown in FIG. 3, there is a method in which the regeneration gas temperature is changed up and down for one cycle only as in the method shown in FIG. 2, and then the temperature is gradually and linearly increased. In any case, as long as the desorption concentration can be controlled to be constant, it may be either as shown in FIG. 2 or as shown in FIG.

【0031】一定の再生ガス温度で脱着処理を行った場
合は、時間と共に脱着濃度の上昇が続き、やがて最大値
に到達しその後徐々に脱着濃度が下降し続ける。それに
ともない触媒反応装置内では急激な発熱を生じ、反応温
度も急激に上昇する。装置の構造等により異なるが、ト
リクロロエチレンを例に挙げると5000ppmの燃焼で
約100℃、10000ppmの燃焼で約200℃も反応
温度が上昇する。このように急上昇する反応温度を外部
熱源で一定範囲内に制御することはかなり困難であるた
め、反応温度は600℃を越えることがある。このよう
な状況下においては、触媒がシンタリングにより比表面
積及びメタル表面積が著しく減少し、触媒劣化を早める
結果となる。
When the desorption treatment is carried out at a constant regeneration gas temperature, the desorption concentration continues to increase with time, eventually reaches the maximum value, and thereafter the desorption concentration gradually continues to decrease. Along with this, a rapid heat generation occurs in the catalytic reaction device, and the reaction temperature also rises rapidly. Although it depends on the structure of the apparatus and the like, when trichloroethylene is taken as an example, the reaction temperature rises by about 100 ° C. at combustion of 5000 ppm and about 200 ° C. at combustion of 10,000 ppm. Since it is quite difficult to control the reaction temperature thus rapidly rising within a certain range by an external heat source, the reaction temperature may exceed 600 ° C. Under such a condition, the specific surface area and the metal surface area of the catalyst are remarkably reduced due to sintering, resulting in accelerated catalyst deterioration.

【0032】さらに、分解性能は処理ガス中の揮発性有
機ハロゲン化物濃度にも依存し、例えば濃度が5000
ppmの場合と15000ppmとの場合では濃度5000pp
mの方が分解性能が高い。よって、再生温度を高くして
あまりに脱着濃度を高くすることは必ずしも好ましいこ
とではない。脱着濃度の差が極端に生じることも当然な
がら好ましくない。また反対に、再生ガスの温度を低く
し、最高脱着濃度を最適化した場合、脱着時間が長時間
となり、かつ低脱着濃度状態が長時間続くため、処理時
間が増加し、ひいては処理効率が低下し、かつ燃焼によ
る発熱が少ないので、触媒分解に必要な反応温度を得る
ために外部熱源への負荷が増加し、ランニングコストが
増大する。
Further, the decomposition performance also depends on the concentration of volatile organic halides in the processing gas, and for example, the concentration is 5000
In case of ppm and 15000ppm, the concentration is 5000pp
m has higher decomposition performance. Therefore, it is not always preferable to raise the regeneration temperature to raise the desorption concentration too much. Naturally, it is not preferable that the desorption concentration is extremely different. On the other hand, if the temperature of the regenerated gas is lowered and the maximum desorption concentration is optimized, the desorption time will be long and the low desorption concentration state will continue for a long time, which will increase the processing time and eventually reduce the processing efficiency. In addition, since the heat generated by combustion is small, the load on the external heat source increases in order to obtain the reaction temperature required for catalytic decomposition, and the running cost increases.

【0033】[0033]

【実施例】以下の例ではダイオキシン類の分析値の代用
値としてクロロベンゼンの分析値を示した。クロロベン
センは、ダイオキシン類生成の前駆体となる物質であ
り、クロロベンゼン分析値が高ければ、ダイオキシン類
の分析値も高くなることが既に確認されているからであ
る。
EXAMPLES In the following examples, the analysis value of chlorobenzene is shown as a substitute value for the analysis value of dioxins. Chlorobenzene is a substance that becomes a precursor for the formation of dioxins, and it has already been confirmed that the higher the analysis value of chlorobenzene, the higher the analysis value of dioxins.

【0034】なお、ガス分析はGC−MSを用い、比表
面積は窒素吸着BET法により求めた。
The gas analysis was carried out by using GC-MS, and the specific surface area was determined by the nitrogen adsorption BET method.

【0035】(実施例1)真空ポンプにより空気を11
0Nm3/hで吸引し、トリクロロエチレン原液を曝気して
得たトリクロロエチレン150ppmを含む空気を20リ
ットルの椰子殻製粒状活性炭を充填した吸着装置に導入
し、トリクロロエチレンをこの活性炭に吸着させた。吸
着処理後のガス濃度を分析し、トリクロロエチレン濃度
が0.1ppmに達したとき吸着処理を停止した。この間約
38時間を要した。
(Embodiment 1) A vacuum pump was used to supply 11
Air containing 150 ppm of trichloroethylene obtained by aerating the stock solution of trichlorethylene by suctioning at 0 Nm 3 / h was introduced into an adsorption device filled with 20 liters of granular activated carbon made of coconut shell to adsorb trichloroethylene to the activated carbon. The gas concentration after the adsorption treatment was analyzed, and the adsorption treatment was stopped when the trichlorethylene concentration reached 0.1 ppm. During this time, it took about 38 hours.

【0036】次いで、図2に示したように温度を150
℃と120℃の間で1時間毎に変化させて得た再生ガス
を3Nm3/hの割合で、吸着装置に装入し、トリクロロエ
チレンを脱着させ、活性炭を再生した。再生ガス温度は
4時間毎に上限と下限の温度とを10℃づつ上昇させ
た。その結果、吸着装置出口の再生ガス中のトリクロロ
エチレン濃度は図4の実線Aに示したようにほぼ一定濃
度となった。
Then, as shown in FIG.
The regeneration gas obtained by changing the temperature between 1 ° C. and 120 ° C. for 1 hour was charged into the adsorption device at a rate of 3 Nm 3 / h to desorb trichlorethylene and regenerate the activated carbon. The regeneration gas temperature was increased by 10 ° C. at the upper and lower limits every 4 hours. As a result, the concentration of trichlorethylene in the regeneration gas at the outlet of the adsorption device was almost constant as shown by the solid line A in FIG.

【0037】このトリクロロエチレン含有再生ガスを2
00℃に加熱した気化器に導入し、水蒸気を10vol%
の割合になるように添加・混合し、予備加熱装置により
200℃に維持した。
This regeneration gas containing trichlorethylene was mixed with 2
Introduced into a vaporizer heated to 00 ° C, steam 10 vol%
Was added and mixed in such a proportion that it was maintained at 200 ° C by a preheating device.

【0038】このトリクロロエチレン含有再生ガスを、
0.5w%の割合でPtを担時させたジルコニア・燐酸
触媒800ミリリットルを充填した触媒反応装置に導入し、反
応温度470〜510℃で触媒反応させた。処理後のガ
スは洗浄塔に導入し、5Nの水酸化ナトリウム溶液で洗
浄した。そして、洗浄後の排ガス中のトリクロロエチレ
ンの濃度を分析したところ約1ppmであり、塩化水素や
一酸化炭素、クロロベンゼン等は検出されなかった。ま
た、使用後の触媒の比表面積を測定したところ、未使用
時とほぼ同じ値であった。
This trichlorethylene-containing regeneration gas is
The catalyst was introduced into a catalytic reaction apparatus filled with 800 ml of a zirconia-phosphoric acid catalyst in which Pt was carried at a rate of 0.5 w%, and catalytically reacted at a reaction temperature of 470 to 510 ° C. The treated gas was introduced into a washing tower and washed with a 5N sodium hydroxide solution. When the concentration of trichlorethylene in the exhaust gas after cleaning was analyzed, it was about 1 ppm, and hydrogen chloride, carbon monoxide, chlorobenzene, etc. were not detected. The specific surface area of the catalyst after use was measured and found to be almost the same value as when it was not used.

【0039】(実施例2)再生ガスの温度を図3のよう
に最初150℃とし、次いで1時間かけて120℃まで
低下させ、その後は再生ガス温度を昇温速度6.7℃/
hで上昇させた以外は実施例1と同様の方法でトリクロ
ロエチレンの処理試験を行った。
(Example 2) As shown in FIG. 3, the temperature of the regeneration gas was first set to 150 ° C. and then lowered to 120 ° C. over 1 hour, after which the temperature of the regeneration gas was raised to 6.7 ° C. /
A treatment test of trichlorethylene was carried out in the same manner as in Example 1 except that the temperature was raised by h.

【0040】活性炭からのトリクロロエチレン脱着濃度
は図4の一点鎖線Bで示したような経時変化を示した以
外は実施例1とほぼ同様の結果が得られた。
The same results as in Example 1 were obtained except that the concentration of desorbed trichloroethylene from the activated carbon showed the change with time as shown by the chain line B in FIG.

【0041】(比較例1)活性炭の再生ガス温度を15
0℃一定とする以外は実施例1と同様の方法でトリクロ
ロエチレンの処理試験を行った。
(Comparative Example 1) The regeneration gas temperature of activated carbon was set to 15
A treatment test of trichlorethylene was conducted in the same manner as in Example 1 except that the temperature was kept constant at 0 ° C.

【0042】活性炭からのトリクロロエチレン脱着濃度
は図4の破線Cで示したような経時変化を示し、最高1
7000ppmに達した。そのときの触媒反応温度は約6
50℃であった。
The concentration of desorption of trichlorethylene from activated carbon shows the change with time as shown by the broken line C in FIG.
It reached 7,000 ppm. At that time, the catalyst reaction temperature is about 6
It was 50 ° C.

【0043】洗浄後の排ガス中のトリクロロエチレンの
濃度を分析したところ約1ppmであり、塩化水素や一酸
化炭素、クロロベンゼン等は検出されなかった。しか
し、使用後の触媒の比表面積を測定したところ、未使用
時と比較して30%減少していた。
When the concentration of trichlorethylene in the exhaust gas after cleaning was analyzed, it was about 1 ppm, and hydrogen chloride, carbon monoxide, chlorobenzene, etc. were not detected. However, when the specific surface area of the catalyst after use was measured, it was reduced by 30% as compared with that when it was not used.

【0044】(比較例2)予備加熱装置により、トリク
ロロエチレン含有再生ガスの温度を400℃一定とする
以外は実施例1と同様の方法で行った。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that the temperature of the trichlorethylene-containing regeneration gas was kept constant at 400 ° C by the preheating device.

【0045】洗浄後の排ガス中のトリクロロエチレンの
濃度は約1ppmであり、塩化水素や一酸化炭素等は検出
されなかったがクロロベンゼンが約25μg/Nm3検出さ
れた。このことは、洗浄後の排ガス中には有害なダイオ
キシン類が高い濃度で含まれていることを示していると
言える。
The concentration of trichlorethylene in the exhaust gas after cleaning was about 1 ppm, and hydrogen chloride, carbon monoxide, etc. were not detected, but about 25 μg / Nm 3 of chlorobenzene was detected. This can be said to indicate that the exhaust gas after cleaning contains harmful dioxins at a high concentration.

【0046】なお、使用後の触媒の比表面積を測定した
ところ、未使用時と同程度であり、触媒自体に変化はな
かった。
When the specific surface area of the catalyst after use was measured, it was about the same as when it was not used, and there was no change in the catalyst itself.

【0047】[0047]

【発明の効果】本発明の揮発性有機ハロゲン化合物含有
排ガスの処理方法に従えば、脱着濃度を一定とすること
が可能であるので、過剰の反応熱の発生による触媒劣化
を防止できる。このため、効率的な処理が可能であり、
かつ触媒分解以前のガスを高温下にさらすことがないの
でダイオキシン類等の生成がない。よって、大気汚染の
問題なく、経済的に揮発性有機ハロゲン化合物を分解で
きる。
According to the method for treating exhaust gas containing a volatile organic halogen compound of the present invention, it is possible to keep the desorption concentration constant, so that it is possible to prevent catalyst deterioration due to generation of excessive reaction heat. Therefore, efficient processing is possible,
Moreover, since the gas before catalytic decomposition is not exposed to high temperature, dioxins and the like are not generated. Therefore, the volatile organic halogen compound can be economically decomposed without the problem of air pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法が適用される設備の1例を示
した概念図である。
FIG. 1 is a conceptual diagram showing an example of equipment to which a processing method of the present invention is applied.

【図2】実施例1で採用した再生ガスの温度の経時変化
を示した図である。
FIG. 2 is a diagram showing a change with time of a temperature of a regeneration gas adopted in Example 1.

【図3】実施例2で採用した再生ガスの温度の経時変化
を示した図である。
FIG. 3 is a diagram showing a change with time of a temperature of a regeneration gas adopted in Example 2.

【図4】実施例1,2と比較例1での脱着濃度の経時変
化を示した図である。
FIG. 4 is a diagram showing changes with time in desorption concentration in Examples 1 and 2 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1−−−−ストリッピング装置 2,3−−吸着
装置 4−−−−予備加熱装置 5−−−−触媒
反応装置 6−−−−洗浄装置 7−−−−揮発性有機ハロゲン化合物含有排水 8−−−−ポンプ 9−−−−空気 10−−−−揮発性有機ハロゲン化合物含有ガス 11−−−−処理水 12−−−−揮発性有機ハロゲン化合物を含む大気 13,14−吸着剤 15−−−−揮発性有機ハロゲン化合物が除去された空
気 16−−−−送風機 16−−−−
空気 17−−−−加熱器 18−−−−
再生ガス 19−−−−揮発性有機ハロゲン化合物含有再生ガス 20−−−−水蒸気 21−−−−
触媒層 22−−−−処理ガス 23−−−−
アルカリ洗浄液 24−−−−予備洗浄塔 25−−−−
主洗浄塔 26−−−−吸収液タンク 27−−−−
循環ポンプ
1 ---- stripping device 2,3--adsorption device 4 ---- preheating device 5 ---- catalytic reaction device 6 ---- cleaning device 7 ---- wastewater containing volatile organic halogen compounds 8 ------ Pump 9 --- Air 10 --- Gas containing volatile organic halogen compound 11 --- Processed water 12 --- Air containing volatile organic halogen compound 13,14-Adsorbent 15 ------ Air from which volatile organic halogen compounds have been removed 16 --- Blower 16 ---
Air 17 --- Heater 18 ---
Regeneration gas 19 --- Regeneration gas containing volatile organic halogen compound 20 --- Steam 21 ---
Catalyst layer 22 --- Processing gas 23 ---
Alkaline cleaning liquid 24 --- Preliminary cleaning tower 25 ---
Main washing tower 26 ---- Absorbing liquid tank 27 ---
Circulation pump

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排水に含まれる揮発性有機ハロゲン化
合物をストリッピングして排気される揮発性有機ハロゲ
ン化合物、あるいは、気体中に含まれる揮発性有機ハロ
ゲン化合物を吸着剤に吸着させる吸着工程と、該吸着剤
から吸着された吸着成分を再生ガスにより脱着させ、ガ
ス中に移行させて吸着剤を再生させる脱着工程と、脱着
した揮発性有機ハロゲン化合物を含有するガスに水蒸気
を添加、混合するガス調整工程と、ガス調整工程より得
られる混合ガスを加熱する予備加熱工程と、予備加熱さ
れた混合ガスを分解触媒に接触させて分解する接触分解
工程と、分解により生成したハロゲン化水素をアルカリ
溶液で吸収する除害工程とからなる揮発性有機ハロゲン
化物の処理方法において、脱着濃度がほぼ一定となるよ
うに脱着温度を調節し、かつガス調整工程より得られる
混合ガスを予備加熱する温度を130〜300℃の範囲
とする揮発性有機ハロゲン化合物含有排ガスの処理方
法。
1. An adsorption step of adsorbing a volatile organic halogen compound contained in a waste gas by stripping a volatile organic halogen compound contained in a waste gas, or adsorbing a volatile organic halogen compound contained in a gas to an adsorbent, A desorption step of desorbing an adsorbed component adsorbed from the adsorbent with a regeneration gas, transferring the gas to the gas to regenerate the adsorbent, and a gas for adding and mixing water vapor to the gas containing the desorbed volatile organic halogen compound. Adjustment step, a preheating step of heating the mixed gas obtained in the gas adjustment step, a catalytic decomposition step of decomposing the preheated mixed gas with a decomposition catalyst, and an alkali solution of hydrogen halide produced by the decomposition In the treatment method for volatile organic halides, which consists of a detoxification process of absorption by desorption, the desorption temperature is adjusted so that the desorption concentration becomes almost constant. And a method for treating an exhaust gas containing a volatile organic halogen compound, wherein the temperature for preheating the mixed gas obtained in the gas adjusting step is in the range of 130 to 300 ° C.
【請求項2】 揮発性有機ハロゲン化合物分解用の触
媒として、チタニア、ジルコニア、ボリア、リン等から
選ばれる1種または2種以上の酸化物にPt、Pd、R
h、Au等から選ばれる1種または2種以上の貴金属を
担持したものを用いることを特徴とする請求項1記載の
方法。
2. As a catalyst for decomposing a volatile organic halogen compound, Pt, Pd and R are added to one or more oxides selected from titania, zirconia, boria, phosphorus and the like.
The method according to claim 1, wherein a material carrying one or more kinds of noble metals selected from h, Au and the like is used.
【請求項3】 触媒反応温度を300〜600℃とす
ることを特徴とする請求項1または2記載の方法。
3. The method according to claim 1, wherein the catalytic reaction temperature is 300 to 600 ° C.
JP7161035A 1995-06-27 1995-06-27 Treatment of discharged gas containing volatile organic halide Pending JPH0910553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7161035A JPH0910553A (en) 1995-06-27 1995-06-27 Treatment of discharged gas containing volatile organic halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7161035A JPH0910553A (en) 1995-06-27 1995-06-27 Treatment of discharged gas containing volatile organic halide

Publications (1)

Publication Number Publication Date
JPH0910553A true JPH0910553A (en) 1997-01-14

Family

ID=15727363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7161035A Pending JPH0910553A (en) 1995-06-27 1995-06-27 Treatment of discharged gas containing volatile organic halide

Country Status (1)

Country Link
JP (1) JPH0910553A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316106A (en) * 2000-05-02 2001-11-13 Japan Organo Co Ltd Regeneration method of granulated activated carbon
JP2007014885A (en) * 2005-07-07 2007-01-25 Toyo Netsu Kogyo Kk Gas treating system
JP2008207139A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Exhaust gas treating method and device
JP2010125397A (en) * 2008-11-28 2010-06-10 Orion Mach Co Ltd Method of regenerating adsorbent and device using this method
JP2014508120A (en) * 2010-12-23 2014-04-03 クラリアント・プロドゥクテ(ドイチュラント)ゲーエムベーハー Method for producing organic compounds by fermentation of biomass and zeolite catalysis
CN113117520A (en) * 2019-12-31 2021-07-16 中国石化工程建设有限公司 Device and method for processing VOCs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316106A (en) * 2000-05-02 2001-11-13 Japan Organo Co Ltd Regeneration method of granulated activated carbon
JP2007014885A (en) * 2005-07-07 2007-01-25 Toyo Netsu Kogyo Kk Gas treating system
JP2008207139A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Exhaust gas treating method and device
JP2010125397A (en) * 2008-11-28 2010-06-10 Orion Mach Co Ltd Method of regenerating adsorbent and device using this method
JP2014508120A (en) * 2010-12-23 2014-04-03 クラリアント・プロドゥクテ(ドイチュラント)ゲーエムベーハー Method for producing organic compounds by fermentation of biomass and zeolite catalysis
CN113117520A (en) * 2019-12-31 2021-07-16 中国石化工程建设有限公司 Device and method for processing VOCs

Similar Documents

Publication Publication Date Title
EP0485787B1 (en) Treatment equipment of exhaust gas containing organic halogen compounds
KR20010060338A (en) Method and apparatus for treating a waste gas containing fluorine-containing compounds
EP1353742B1 (en) Decomposition of fluorine containing compounds
JPH03106419A (en) Treatment process for gas containing fluorocarbon and catalyst for decomposing fluorocarbon
AU2002226536A1 (en) Decomposition of fluorine containing compounds
JPH0910553A (en) Treatment of discharged gas containing volatile organic halide
JPS6348574B2 (en)
JP3293181B2 (en) Gas phase decomposition treatment method for volatile organic halogen compound-containing gas
EP0604198B1 (en) Method for treating ammonia
JPH10128063A (en) Treatment of volatile organic halogen compound-containing gas and device therefor
KR20030004660A (en) Cleaning method of exhaust gas containing ammonia/hydrogen mixtures and the apparatus therefor
JPS61200837A (en) Treatment of exhaust gas
JP2548665B2 (en) Adsorption treatment method
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JP4574884B2 (en) Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
JPH07163832A (en) Treatment of exhaust gas
JP3379677B2 (en) Inhibitor for dioxin formation in incinerator and method
JP2004098014A (en) Method for treating gas containing volatile organic compound
JPH06134315A (en) Catalyst for reduction treatment of volatile organic halogen compound
JP3360353B2 (en) Method for treating volatile organic halogen compounds
JP2004000916A (en) Decomposition device for material to be decomposed and decomposition method therefor
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
JP2571176B2 (en) Removal method of CVD exhaust gas
JPH07124443A (en) Treatment of volatile organohalogen compound containing gas
JP3326910B2 (en) Method for treating volatile organic halogen compounds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050310