JP2008188492A - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP2008188492A
JP2008188492A JP2007022821A JP2007022821A JP2008188492A JP 2008188492 A JP2008188492 A JP 2008188492A JP 2007022821 A JP2007022821 A JP 2007022821A JP 2007022821 A JP2007022821 A JP 2007022821A JP 2008188492 A JP2008188492 A JP 2008188492A
Authority
JP
Japan
Prior art keywords
water
adsorption
water treatment
organic substance
adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007022821A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugiura
勉 杉浦
Kazuyuki Kawada
和之 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007022821A priority Critical patent/JP2008188492A/en
Publication of JP2008188492A publication Critical patent/JP2008188492A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment system which is constituted so as to continuously purify water, is capable of stably removing a large amount of harmful organic substances with high efficiency without fundamentally requiring replacement of an adsorbent. <P>SOLUTION: The water treatment system for purifying organic substance-containing water by adsorbing and removing the organic substances is provided with following (1) and (2). (1) A water treatment apparatus for purifying the organic substance-containing water by adsorbing and removing the organic substances is constituted so as to alternately performing an adsorbing process of passing the organic substance-containing water through an adsorbing element containing activated carbon fiber to adsorb the organic substances onto the adsorbing element and a desorbing process of desorbing the organic substances adsorbed on the adsorbing element by passing heated gas of high temperature through the adsorbing element. (2) A gas combustion decomposition treatment apparatus for treating gas produced at the desorbing process of the water treatment apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機物質を含有する水から有機物質を除去して浄化する装置に関し、特に各種工場、研究施設等から排出される有機溶剤等の有機物質を含有した産業排水の浄化に用いられる水処理システムに関するものである。   The present invention relates to an apparatus for removing and purifying organic substances from water containing organic substances, and in particular, water used for the purification of industrial wastewater containing organic substances such as organic solvents discharged from various factories and research facilities. It relates to a processing system.

従来より、有害有機物質を水から除去して浄化する装置としては、活性炭等の吸着材を用いた交換式吸着装置が広く用いられている。すなわち、活性炭等の吸着を充填した槽に有機物資を含有した水を通流させ、吸着材により水中の有害有機物質を効率的に除去する事ができるシンプルな処理装置である。   Conventionally, as an apparatus for removing harmful organic substances from water and purifying it, an exchangeable adsorption apparatus using an adsorbent such as activated carbon has been widely used. In other words, it is a simple processing apparatus that allows water containing organic substances to flow through a tank filled with adsorption of activated carbon or the like and efficiently removes harmful organic substances in water by the adsorbent.

しかしながら、交換式吸着装置は有害有機物質を一定時間吸着し続け、吸着材の吸着能力が飽和に達すれば、新品への交換もしくは一度装置から吸着材を取り出して再生が必要となって連続浄化ができず、更に、水の浄化は、空気の浄化と異なり、微生物の繁殖が不可避であり、吸着材の寿命を縮めることもあって、交換および再生への労力、コスト増大が問題であった。
かかる問題を解決するために、多量の吸着材を用いることで、交換周期を延長させる事も考えられるが、装置の大型化、設備投資が不可避となる。また、吸着材である活性炭の表面を適度に疎水化させる等の吸着能力を向上させることも検討されているが(例えば特許文献1参照)、微量の有害物質を除去するには有効であっても、多量の有害有機物質を高効率で処理する事が要請される場合には根本的な解決手段にはなっておらず、特に研究所や工場等で用いる場合に満足できるものではなかった。また、従来の浄化装置では、吸着材使用開始時と使用終了前(吸着材取替え直前)では有害物質吸着性能が変化しており、安定に浄化処理する事ができないという問題点も有していた。
However, the exchangeable adsorption device continues to adsorb harmful organic substances for a certain period of time, and if the adsorption capacity of the adsorbent reaches saturation, replacement with a new one or removal of the adsorbent from the device once and regeneration are necessary, and continuous purification is possible. In addition, the purification of water, unlike the purification of air, inevitably propagates microorganisms and shortens the life of the adsorbent, and there is a problem of increase in labor and cost for replacement and regeneration.
In order to solve such a problem, it is conceivable to extend the replacement cycle by using a large amount of adsorbent, but it is inevitable to enlarge the apparatus and invest in the equipment. In addition, it has been studied to improve the adsorption capacity such as appropriately hydrophobizing the surface of activated carbon as an adsorbent (see, for example, Patent Document 1), but it is effective for removing a trace amount of harmful substances. However, it is not a fundamental solution when it is required to process a large amount of harmful organic substances with high efficiency, and it is not satisfactory particularly when used in laboratories and factories. In addition, the conventional purification device has a problem that the toxic substance adsorption performance is changed at the start of use of the adsorbent and before the end of use (immediately before the replacement of the adsorbent), and the purification process cannot be stably performed. .

特開平9−77508号公報JP-A-9-77508

本発明は、従来技術の課題を背景になされたもので、水の連続浄化を実現し、基本的には吸着材の交換が必要なく、多量有害有機物質を高効率且つ安定に除去することができる水処理システムを提供することを課題とするものである。     The present invention has been made against the background of the problems of the prior art, achieves continuous purification of water, basically eliminates the need for replacement of the adsorbent, and can remove a large amount of harmful organic substances with high efficiency and stability. It is an object of the present invention to provide a water treatment system that can be used.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。即ち本発明は、以下の通りである。
1.下記(1)と(2)を備えたことを特徴とする有機物質を含有する水から有機物質を吸着除去して水を浄化する水処理システム。
(1)有機物質を含有する水から有機物質を吸着除去して水を浄化する装置であって、有機物質を含有する水を、活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機物質を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機物質を脱着する脱着工程とを交互に行う事を特徴とする水処理装置。
(2)上記水処理装置の脱着工程にて発生したガスを処理する為のガス燃焼分解処理装置。
2.有機物質を含有する水を、活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機物質を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機物質を脱着する脱着工程との間に、ガスの通流により吸着素子内の水を除去するパージ工程を有することを特徴とする上記1に記載の水処理システム。
3.前記ガスの通流により吸着素子内の水を除去するパージ工程にて発生した水を水処理装置の入口に戻すように構成されていることを特徴とする上記1または2に記載の水処理システム。
As a result of intensive studies in order to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A water treatment system for purifying water by adsorbing and removing an organic substance from water containing the organic substance, comprising the following (1) and (2).
(1) An apparatus for purifying water by adsorbing and removing an organic substance from water containing an organic substance, wherein the water containing the organic substance is passed through an adsorption element containing activated carbon fiber to the adsorption element. A water treatment apparatus characterized by alternately performing an adsorption process for adsorbing an organic substance and a desorption process for desorbing an organic substance adsorbed on the adsorption element by passing a high-temperature heated gas through the adsorption element.
(2) A gas combustion decomposition treatment apparatus for treating the gas generated in the desorption process of the water treatment apparatus.
2. An adsorption process in which water containing an organic substance is passed through an adsorption element containing activated carbon fibers to adsorb the organic substance to the adsorption element, and a high-temperature heated gas is passed through the adsorption element to pass through the adsorption element. 2. The water treatment system according to 1 above, further comprising a purge step of removing water in the adsorption element by gas flow between the desorption step of desorbing the adsorbed organic substance.
3. 3. The water treatment system according to 1 or 2 above, wherein water generated in a purge process for removing water in the adsorption element by the gas flow is returned to the inlet of the water treatment device. .

本発明による水処理システムは、多量の有害有機物質を高い効率で連続的に除去する事ができ、基本的に吸着材の交換の必要が無いため、低コストで、安定に、高い能力で水中の有害有機物質を除去する事ができる利点がある。   The water treatment system according to the present invention can remove a large amount of harmful organic substances continuously with high efficiency, and basically does not require the replacement of the adsorbent. There is an advantage that harmful organic substances can be removed.

本発明にかかる水処理システムは、有機物質を含有する水を吸着素子に通流させて該吸着素子に有機物質を吸着させる吸着工程設備と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機物質を脱着する脱着工程設備を備え、かかる工程を交互に行う水処理装置を使用した水処理システムであることが好ましい。かかる構造を採用する事により、処理を連続的に行うことができるからである。   The water treatment system according to the present invention includes an adsorption process facility for allowing water containing an organic substance to flow through an adsorbing element and adsorbing the organic substance to the adsorbing element, and passing a high-temperature heating gas through the adsorbing element. It is preferable that the water treatment system includes a desorption process facility for desorbing the organic substance adsorbed on the adsorption element, and uses a water treatment apparatus that alternately performs the process. This is because the processing can be continuously performed by adopting such a structure.

より好ましい水処理システムに使用される水処理装置の構造としては、吸着素子が幾つかに分割されており、それらの吸着工程と脱着工程をダンパー等にて切替操作を行い、吸着と脱着を連続的に行う水処理装置であり、または、吸着素子が回転することができ、吸着工程で有機物質を吸着した吸着素子の部位が、吸着素子の回転により、脱着工程へ移動する構造を有する水処理装置である。かかる構造であれば、容易且つ安定に有害有機物質の吸着・脱着をおこなえるからである。   As the structure of the water treatment device used in a more preferable water treatment system, the adsorption element is divided into several parts, and the adsorption process and the desorption process are switched by a damper or the like, and the adsorption and desorption are continuously performed. A water treatment apparatus that can be rotated automatically, or has a structure in which the adsorbing element can rotate and the part of the adsorbing element that adsorbs the organic substance in the adsorption process moves to the desorption process by the rotation of the adsorbing element Device. This is because such a structure makes it possible to adsorb and desorb harmful organic substances easily and stably.

前記水処理装置の脱着工程により発生した有機物質を含有したガスを処理するガス燃焼分解処理装置は、特に限定されるものではないが、ガスを650〜800℃の高温で直接酸化分解する直接燃焼装置や、触媒を使用してガスを触媒酸化反応させて酸化分解する触媒燃焼装置や、蓄熱体を使用して熱回収を行い経済的に直接酸化分解する蓄熱式直接燃焼装置や蓄熱式触媒燃焼装置であってもよい。このような装置であれば、高効率・連続的に有害有機物質を分解処理できるからである。   The gas combustion decomposition treatment apparatus for treating the gas containing the organic substance generated by the desorption process of the water treatment apparatus is not particularly limited, but direct combustion that directly oxidizes and decomposes the gas at a high temperature of 650 to 800 ° C. Equipment, catalytic combustion equipment that catalyses and oxidatively decomposes gas using a catalyst, thermal storage direct combustion equipment and thermal storage catalytic combustion that recovers heat using a heat storage body and economically oxidatively decomposes It may be a device. This is because such an apparatus can continuously decompose harmful organic substances with high efficiency.

以下、図面を参照して、本発明にかかる水処理システムについて詳細に説明する。図1は本発明の好ましい実施形態の例である。図1に例示した水処理システム使用される水処理装置は、有害有機物質を含有した水を、原水導入ライン11を通じて吸着素子12は吸着領域13に送られ、吸着材により有機物質を吸着除去して浄化水として排出する吸着工程を有する。   Hereinafter, a water treatment system according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of a preferred embodiment of the present invention. The water treatment apparatus used in the water treatment system illustrated in FIG. 1 sends water containing harmful organic substances to the adsorption region 13 through the raw water introduction line 11 and adsorbs and removes the organic substances using the adsorbent. And an adsorption process for discharging as purified water.

一方で吸着素子12はパージ領域14に送られ、ガスの通流により吸着素子表面に残存する水滴を除去するパージ工程を有することが好ましい。水滴を気流で除去することにより、加熱による有害有機物質の脱着が容易になるからである。パージガスを高温加熱気流とすることにより、後述する脱着工程を同時におこなってもよいが、エネルギーコスト等から考えて、パージ工程と脱着工程を別にすることが好ましい。   On the other hand, the adsorption element 12 is preferably sent to the purge region 14 and preferably has a purge step of removing water droplets remaining on the surface of the adsorption element by gas flow. This is because removal of water droplets with an air stream facilitates desorption of harmful organic substances by heating. Although the desorption process described later may be performed simultaneously by using the purge gas as a high-temperature heating airflow, it is preferable to separate the purge process and the desorption process from the viewpoint of energy cost.

ここで除去された水は、有機物質を含むものであり、集積して焼却等してもよいが、戻りライン15より装置入口の有機物質を含有する原水に戻すことが好ましい。かかる方法によれば、工程数を省略でき、効率的だからである。   The water removed here contains an organic substance and may be accumulated and incinerated. However, it is preferable to return to the raw water containing the organic substance at the inlet of the apparatus through the return line 15. This is because the number of steps can be omitted and this method is efficient.

また、吸着素子12は回転し、パージ工程の後工程で脱着領域16にて加熱ガスにより吸着素子を加熱する事で吸着した有害物質を脱着して再度吸着が行える状態に再生される脱着工程を有することが好ましい。加熱により有害有機物質を脱着した後、連続的に吸着工程に移動することができるからである。脱着工程により発生した有機物質を含有したガスは、直接燃焼装置や触媒燃焼装置、蓄熱式燃焼装置等の燃焼装置にて処理する事ができる。   Further, the adsorption element 12 rotates, and a desorption process is performed in which a harmful substance adsorbed by heating the adsorption element with a heated gas in the desorption region 16 after the purge process is desorbed and regenerated so that the adsorption can be performed again. It is preferable to have. This is because after the harmful organic substance is desorbed by heating, it can be continuously moved to the adsorption step. The gas containing the organic substance generated by the desorption process can be processed by a combustion apparatus such as a direct combustion apparatus, a catalytic combustion apparatus, or a regenerative combustion apparatus.

前記水処理装置の脱着工程で発生したガスの処理は、熱交換機器を経由して白金触媒17を備えた触媒反応器18に送られ、ガスを触媒酸化反応させて該ガス中の有機物質を分解除去する触媒燃焼装置を用いる。   The treatment of the gas generated in the desorption process of the water treatment device is sent to a catalytic reactor 18 equipped with a platinum catalyst 17 via a heat exchange device, and the gas is subjected to a catalytic oxidation reaction to remove organic substances in the gas. A catalytic combustion apparatus that decomposes and removes is used.

上記の吸着工程→パージ工程→脱着工程を連続的に繰り返す事で、有機物質を含有する水から有機物質を経済的に吸着除去できる装置となる。かかる連続的な吸着−加熱脱着により、低コストで、安定に、高い能力で水中の有害有機物質を除去処理することができ、更には藻等の発生を防ぐことができる。   By continuously repeating the above-described adsorption process → purge process → desorption process, the apparatus can economically adsorb and remove organic substances from water containing organic substances. By such continuous adsorption-heat desorption, it is possible to remove and remove harmful organic substances in water at low cost, stably and with high capacity, and to prevent generation of algae and the like.

本発明にかかる吸着素子の構造は、粒状、粉体状、ハニカム状の活性炭やゼオライトがあるが、特に性能面から活性炭素繊維である事が好ましい。つまり、活性炭素繊維は表面にミクロ孔を有する事と繊維状構造である事で水との接触効率が高い事で、特に水中の有機物質の吸着速度が速くなり、他の構造に比べて極めて高い除去効率を発現でき、更にはパージ工程においてガスの流通により吸着素子表面の水滴を除去する際にも、容易に水滴の除去が可能となるからである。   The structure of the adsorbing element according to the present invention includes granular activated carbon and zeolite activated carbon and zeolite, and activated carbon fibers are particularly preferable from the viewpoint of performance. In other words, activated carbon fibers have micropores on the surface and a fibrous structure, so the contact efficiency with water is high, and in particular, the adsorption rate of organic substances in water is increased, which is extremely high compared to other structures. This is because high removal efficiency can be exhibited, and furthermore, when removing water droplets on the surface of the adsorption element by gas flow in the purge process, water droplets can be easily removed.

本発明にかかる、吸着素子の運転は、連続的であることが好ましいが、除去すべき有害有機物質の量、処理水の量等を勘案して、間欠運転としてもよい。有害有機物質の量があるいは処理水の量が少ないような条件では、連続運転であることまで要求されず、運転コストを削減できるからである。   Although the operation of the adsorption element according to the present invention is preferably continuous, it may be intermittent operation in consideration of the amount of harmful organic substances to be removed, the amount of treated water, and the like. This is because, under the condition that the amount of harmful organic substances or the amount of treated water is small, it is not required that the operation is continuous, and the operation cost can be reduced.

本発明で用いる活性炭素繊維の物性は特に限定されるものではないが、BET比表面積が900〜2000m/gで、細孔容積が0.4〜0.9cm/gで平均細孔経が17〜18Åのものが好ましい。それはBET比表面積900m/g以下、細孔容積0.4cm/g、細孔径が17Å以下では、有機物質の吸着量が低くなり、BET比表面積2000m/g以下、細孔容積0.9cm/g、細孔径が18Å以上なると、細孔径が大きくなる事で、分子量の小さい物質などの吸着能力が低下したり、強度が弱くなり、また素材のコストが高くなり経済的では無くなるからである。 The physical properties of the activated carbon fiber used in the present invention are not particularly limited, but the BET specific surface area is 900 to 2000 m 2 / g, the pore volume is 0.4 to 0.9 cm 3 / g, and the average pore diameter is Is preferably 17 to 18 mm. When the BET specific surface area is 900 m 2 / g or less, the pore volume is 0.4 cm 3 / g, and the pore diameter is 17 mm or less, the adsorption amount of the organic substance is low, the BET specific surface area is 2000 m 2 / g or less, and the pore volume is 0.00. If 9 cm 3 / g and the pore diameter is 18 mm or more, the pore diameter increases, so that the adsorption ability of a substance having a low molecular weight is reduced, the strength is weakened, and the cost of the material is increased, which is not economical. It is.

以下、実施例によりさらに本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
なお、評価は下記の方法によりおこなった。
(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。
(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m/g)
(平衡吸着量)
平衡吸着量(q*)は、50%破過時間を測定し、以下の式で求めた。
q*(g/g)=溶剤供給量×50%破過時間/吸着材重量
(吸着帯厚み)
吸着帯厚み(10%Za)は、10%破過する破過時間を測定し、以下の式で求めた。
10%Za=(50%破過時間−10%破過時間)×2/(50%破過時間)
(有機物質除去効果)
1000mg/Lの濃度の各種溶剤を含有する原水を温度30℃の水を空間速度(SV)25で流し、10時間後と500時間運転後の各水処理装置出口のイソプロピルアルコール(以下、「IPA」という)濃度を測定した。
(溶剤濃度評価)
入口・出口の水濃度をガスクロマトグラフ法により分析し測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
The evaluation was performed by the following method.
(BET specific surface area)
The BET specific surface area was measured by measuring several points of nitrogen adsorption on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.
(Pore volume)
The pore volume was measured by a nitrogen gas adsorption method at a relative pressure of 0.95.
(Average pore diameter)
The average pore diameter was determined by the following formula.
dp = 40000 Vp / S (where dp: average pore diameter (径))
Vp: pore volume (cc / g)
S: BET specific surface area (m 2 / g)
(Equilibrium adsorption amount)
The equilibrium adsorption amount (q *) was determined by measuring the 50% breakthrough time and using the following equation.
q * (g / g) = solvent supply amount × 50% breakthrough time / adsorbent weight (adsorption zone thickness)
The adsorption band thickness (10% Za) was determined by the following formula by measuring the breakthrough time for breakthrough by 10%.
10% Za = (50% breakthrough time−10% breakthrough time) × 2 / (50% breakthrough time)
(Organic substance removal effect)
Raw water containing various solvents with a concentration of 1000 mg / L was passed through water at a temperature of 30 ° C. at a space velocity (SV) of 25, and isopropyl alcohol (hereinafter referred to as “IPA”) at the outlet of each water treatment apparatus after 10 hours and 500 hours of operation. The concentration was measured.
(Solvent concentration evaluation)
The water concentration at the inlet / outlet was analyzed and measured by gas chromatography.

[実施例1]
吸着材として平均細孔径17.1Å、BET比表面積1100m/g、全細孔容積0.47(m/g)の活性炭素繊維を使用した50mmφで、厚み225mmの重量38gの吸着素子を2個作成し、図2のダンパー切替方式の水処理システムに設置して1000mg/LのIPAを含む原水を導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が42mmであり、平衡吸着量(q*)が0.13(g/g)と良好な吸着速度と破過時間であった。
[Example 1]
An adsorbing element with an average pore diameter of 17.1 mm, an activated carbon fiber having a BET specific surface area of 1100 m 2 / g and a total pore volume of 0.47 (m 3 / g) as an adsorbent and a weight of 38 g and a weight of 225 mm. Two were prepared and installed in the damper-switching water treatment system of FIG. 2 to introduce raw water containing 1000 mg / L IPA. As a result of confirming the time-dependent change of the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 42 mm, and the equilibrium adsorption amount (q *) was 0.13 (g / g) and good. Adsorption rate and breakthrough time.

次に、水処理装置の脱着工程における加熱ガスとして130℃の空気を使用し、脱着の風速を50cm/secとした。吸着工程における吸着時間は10min、脱着工程における脱着時間は10minとして切替サイクルとした。その際の出口のIPA濃度は10mg/L以下であり、表1に示すように除去率は99%以上が可能であった。   Next, 130 degreeC air was used as heating gas in the desorption process of a water treatment apparatus, and the wind speed of desorption was 50 cm / sec. The adsorption cycle in the adsorption process was 10 min, and the desorption time in the desorption process was 10 min. At that time, the IPA concentration at the outlet was 10 mg / L or less, and as shown in Table 1, the removal rate could be 99% or more.

脱着工程で発生したガスを、白金触媒を使用した触媒燃焼装置に導入し触媒入口温度を300℃にして触媒酸化分解処理を実施して処理した。除去率は99%以上と良好であった。   The gas generated in the desorption process was introduced into a catalytic combustion apparatus using a platinum catalyst, and the catalyst inlet temperature was set to 300 ° C. to perform catalytic oxidative decomposition treatment. The removal rate was as good as 99% or more.

本実施例の水処理システムにより浄化された水は、10時間後でも99%以上の効率で処理が可能であった。吸着と脱着を連続して行い処理するため、性能低下がなく安定して高い効率で処理ができる。本システムを導入することで、有害有機物質の吸着−脱着−酸化分解をおこなうことによって、有害物質をほぼ完全に除去することができる。   The water purified by the water treatment system of this example could be treated with an efficiency of 99% or more even after 10 hours. Since adsorption and desorption are performed continuously, processing is stable and highly efficient with no performance degradation. By introducing this system, harmful substances can be almost completely removed by adsorption-desorption-oxidative decomposition of harmful organic substances.

[実施例2]
吸着材として平均細孔径17.3Å、BET比表面積1660m/g、全細孔容積0.72(m/g)の活性炭素繊維を使用した50mmφで、厚み225mmの重量38gの吸着素子を2個作成し、図2のダンパー切替方式の水処理システムに設置して1000mg/LのIPAを含む原水を導入した。その際の出口濃度の経時変化を確認した結果、表1に示す様な吸着帯厚み(Za10%)が49mmであり、平衡吸着量(q*)が0.11(g/g)と良好な吸着速度と破過時間であった。
[Example 2]
An adsorbing element having an average pore diameter of 17.3 mm, an activated carbon fiber having a BET specific surface area of 1660 m 2 / g and a total pore volume of 0.72 (m 3 / g) as an adsorbent and a weight of 38 g and a thickness of 225 mm. Two were prepared and installed in the damper-switching water treatment system of FIG. 2 to introduce raw water containing 1000 mg / L IPA. As a result of confirming the change with time in the outlet concentration at that time, the adsorption band thickness (Za 10%) as shown in Table 1 was 49 mm, and the equilibrium adsorption amount (q *) was 0.11 (g / g). Adsorption rate and breakthrough time.

次に、水処理装置の脱着工程における加熱ガスとして130℃の空気を使用し、脱着の風速を50cm/secとした。吸着工程における吸着時間は10min、脱着工程における脱着時間は10minとして切替サイクルとした。その際の出口のIPA濃度は10mg/L以下であり、表1に示す様に除去率は99%以上が可能であった。   Next, 130 degreeC air was used as heating gas in the desorption process of a water treatment apparatus, and the wind speed of desorption was 50 cm / sec. The adsorption cycle in the adsorption process was 10 min, and the desorption time in the desorption process was 10 min. At that time, the IPA concentration at the outlet was 10 mg / L or less, and as shown in Table 1, the removal rate could be 99% or more.

脱着工程で発生したガスを、白金触媒を使用した触媒燃焼装置に導入し触媒入口温度を300℃にして触媒酸化分解処理を実施して処理した。除去率は99%以上と良好であった。   The gas generated in the desorption process was introduced into a catalytic combustion apparatus using a platinum catalyst, and the catalyst inlet temperature was set to 300 ° C. to perform catalytic oxidative decomposition treatment. The removal rate was as good as 99% or more.

本実施例の水処理装置により浄化された水は、10時間後でも99%以上の効率で処理が可能であった。吸着と脱着を連続して行い処理するため、性能低下がなく安定して高い効率で処理ができる。本システムを導入することで、有害有機物質の吸着−脱着−酸化分解をおこなうことによって、有害物質をほぼ完全に除去することができる。   The water purified by the water treatment apparatus of this example could be treated with an efficiency of 99% or more even after 10 hours. Since adsorption and desorption are performed continuously, processing is stable and highly efficient with no performance degradation. By introducing this system, harmful substances can be almost completely removed by adsorption-desorption-oxidative decomposition of harmful organic substances.

[実施例3]
吸着材として平均細孔径17.1Å、BET比表面積1100m/g、全細孔容積0.47(m/g)の活性炭素繊維を使用した50mmφで、厚み225mmの重量38gの吸着素子を2個作成し、図2のダンパー切替方式の水処理システムに設置して1000mg/Lのフェノールを含む原水を導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が39mmであり、平衡吸着量(q*)が0.38(g/g)と良好な吸着速度と破過時間であった。
[Example 3]
An adsorbing element with an average pore diameter of 17.1 mm, an activated carbon fiber having a BET specific surface area of 1100 m 2 / g and a total pore volume of 0.47 (m 3 / g) as an adsorbent and a weight of 38 g and a weight of 225 mm. Two were prepared and installed in the water treatment system of the damper switching type in FIG. 2 to introduce raw water containing 1000 mg / L phenol. As a result of confirming the change in the outlet concentration with time, as shown in Table 1, the adsorption zone thickness (Za 10%) is 39 mm, and the equilibrium adsorption amount (q *) is 0.38 (g / g), which is good. Adsorption rate and breakthrough time.

次に、水処理装置の脱着工程における加熱ガスとして130℃の空気を使用し、脱着の風速を50cm/secとした。吸着工程における吸着時間は20min、脱着工程における脱着時間は20minとして切替サイクルとした。その際の出口のIPA濃度は10mg/L以下であり、表1に示すように除去率は99%以上が可能であった。   Next, 130 degreeC air was used as heating gas in the desorption process of a water treatment apparatus, and the wind speed of desorption was 50 cm / sec. The adsorption cycle in the adsorption process was 20 min, and the desorption time in the desorption process was 20 min. At that time, the IPA concentration at the outlet was 10 mg / L or less, and as shown in Table 1, the removal rate could be 99% or more.

脱着工程で発生したガスを、白金触媒を使用した触媒燃焼装置に導入し触媒入口温度を300℃にして触媒酸化分解処理を実施して処理した。除去率は99%以上と良好であった。   The gas generated in the desorption process was introduced into a catalytic combustion apparatus using a platinum catalyst, and the catalyst inlet temperature was set to 300 ° C. to perform catalytic oxidative decomposition treatment. The removal rate was as good as 99% or more.

本実施例の水処理装置により浄化された水は、10時間後でも99%以上の効率で処理が可能であった。吸着と脱着を連続して行い処理するため、性能低下がなく安定して高い効率で処理ができる。本システムを導入することで、有害有機物質の吸着−脱着−酸化分解をおこなうことによって、有害物質をほぼ完全に除去することができる。   The water purified by the water treatment apparatus of this example could be treated with an efficiency of 99% or more even after 10 hours. Since adsorption and desorption are performed continuously, processing is stable and highly efficient with no performance degradation. By introducing this system, harmful substances can be almost completely removed by adsorption-desorption-oxidative decomposition of harmful organic substances.

[比較例1]
吸着材として平均細孔径17.9Å、BET比表面積1208m/g、全細孔容積0.52(m/g)で8/32メッシュの粒状活性炭を使用した50mmφで、厚み225mmの重量185gの吸着素子を2個作成し、図2のダンパー切替方式の水処理システムに設置して1000mg/LのIPAを含む原水を導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が248mmであり、平衡吸着量(q*)が0.04(g/g)と実施例に比べて著しく吸着速度が遅く、破過時間が短くなる結果となった。
[Comparative Example 1]
The adsorbent has an average pore diameter of 17.9 mm, a BET specific surface area of 1208 m 2 / g, a total pore volume of 0.52 (m 3 / g) and 8/32 mesh granular activated carbon, 50 mmφ, and a weight of 225 mm and a weight of 185 g. Two adsorbing elements were prepared and installed in the damper-switching water treatment system of FIG. 2 to introduce raw water containing 1000 mg / L of IPA. As a result of confirming the change with time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 248 mm, and the equilibrium adsorption amount (q *) was 0.04 (g / g). As a result, the adsorption speed was remarkably slow and the breakthrough time was shortened.

次に、水処理装置の脱着工程における加熱ガスとして130℃の空気を使用し、脱着の風速を50cm/secとした。吸着工程における吸着時間は10min、脱着工程における脱着時間は10minとして切替サイクルとした。その際の出口のIPA濃度は250mg/以下であり、表1に示すように除去率は75%と実施例に比べて初期除去効率が低い結果となった。   Next, 130 degreeC air was used as heating gas in the desorption process of a water treatment apparatus, and the wind speed of desorption was 50 cm / sec. The adsorption cycle in the adsorption process was 10 min, and the desorption time in the desorption process was 10 min. At that time, the IPA concentration at the outlet was 250 mg / less or less, and as shown in Table 1, the removal rate was 75%, which was lower than the initial removal efficiency.

脱着工程で発生したガスを、白金触媒を使用した触媒燃焼装置に導入し触媒入口温度を300℃にして触媒酸化分解処理を実施して処理した。除去率は99%以上と良好であった。   The gas generated in the desorption process was introduced into a catalytic combustion apparatus using a platinum catalyst, and the catalyst inlet temperature was set to 300 ° C. to perform catalytic oxidative decomposition treatment. The removal rate was as good as 99% or more.

本実施例の水処理装置により浄化された水は、脱着操作を行わなければ70分後には吸着材が飽和してしまい除去率は0%となり、安定して高い効率で処理する事ができなった。脱着操作を行えば、10時間後でも75%の効率での処理が可能であるが、初期性能が実施例に比べて低なる。   If the water purified by the water treatment apparatus of this embodiment is not desorbed, the adsorbent becomes saturated after 70 minutes and the removal rate becomes 0%, and cannot be treated stably and with high efficiency. It was. If the desorption operation is performed, processing with an efficiency of 75% is possible even after 10 hours, but the initial performance is lower than in the example.

[比較例2]
吸着材として平均細孔径17.2Å、BET比表面積1200m/g、全細孔容積0.51(m/g)の粒状活性炭をハニカム高さ1.5mm、ハニカムピッチ2.6mmに加工したハニカムを使用した50mmφで、厚み225mmの重量98gの吸着素子を2個作成し、図2のダンパー切替方式の水処理システムに設置して1000mg/LのIPAを含む原水を導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が800mmであり、平衡吸着量(q*)が0.02(g/g)と実施例に比べて著しく吸着速度が遅く、破過時間が短くなる結果となった。
[Comparative Example 2]
As an adsorbent, granular activated carbon having an average pore diameter of 17.2 mm, a BET specific surface area of 1200 m 2 / g, and a total pore volume of 0.51 (m 3 / g) was processed to a honeycomb height of 1.5 mm and a honeycomb pitch of 2.6 mm. Two adsorbing elements with a honeycomb diameter of 50 mmφ and a thickness of 225 mm and a weight of 98 g were prepared and installed in the damper switching type water treatment system of FIG. 2 to introduce raw water containing 1000 mg / L of IPA. As a result of confirming the change with time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) is 800 mm, and the equilibrium adsorption amount (q *) is 0.02 (g / g). As a result, the adsorption speed was remarkably slow and the breakthrough time was shortened.

次に、水処理装置の脱着工程における加熱ガスとして130℃の空気を使用し、脱着の風速を50cm/secとした。吸着工程における吸着時間は10min、脱着工程における脱着時間は10minとして切替サイクルとした。その際の出口のIPA濃度は800mg/Lであり、表1に示すように除去率は20%と実施例に比べて初期除去効率が著しく低い結果となった。   Next, 130 degreeC air was used as heating gas in the desorption process of a water treatment apparatus, and the wind speed of desorption was 50 cm / sec. The adsorption cycle in the adsorption process was 10 min, and the desorption time in the desorption process was 10 min. At that time, the IPA concentration at the outlet was 800 mg / L, and as shown in Table 1, the removal rate was 20%.

脱着工程で発生したガスを、白金触媒を使用した触媒燃焼装置に導入し触媒入口温度を300℃にして触媒酸化分解処理を実施して処理した。除去率は99%以上と良好であった。   The gas generated in the desorption process was introduced into a catalytic combustion apparatus using a platinum catalyst, and the catalyst inlet temperature was set to 300 ° C. to perform catalytic oxidative decomposition treatment. The removal rate was as good as 99% or more.

本実施例の水処理装置により浄化された水は、10時間後でも20%の効率で処理が可能であった。吸着と脱着を連続して行い処理しているので、初期除去率は低いが性能低下はなかったが、初期除去率が実施例に比べて低くなる。   The water purified by the water treatment apparatus of this example could be treated with an efficiency of 20% even after 10 hours. Since the adsorption and desorption are continuously performed and processed, the initial removal rate is low but the performance is not deteriorated, but the initial removal rate is lower than that of the example.

Figure 2008188492
Figure 2008188492

本発明の水処理システムは、水の連続浄化を実現し、基本的に吸着剤の交換が必要なく、多量有害有機物質を高効率且つ安定に除去することができる処理装置であるため、設備増大を必要とせずに、吸着剤交換作業を省略でき、コスト低減、有害物質安定除去でき、特に研究所や工場等の幅広い分野に利用することができ、産業界に寄与することが大である。   The water treatment system of the present invention is a treatment device that realizes continuous purification of water, basically does not require replacement of the adsorbent, and can remove a large amount of harmful organic substances with high efficiency and stability. Therefore, it is possible to omit the adsorbent replacement work, reduce costs and stably remove harmful substances, and can be used in a wide range of fields such as laboratories and factories.

本発明の好ましい一形態の例である、円柱型のハニカム構造状の吸着素子を用いた場合の水システム装置。The water system apparatus in the case of using a columnar honeycomb-structured adsorbing element, which is an example of a preferred embodiment of the present invention. ダンパー切替方式の水処理システム。Damper switching type water treatment system.

符号の説明Explanation of symbols

11 原水導入ライン
12 吸着素子
13 吸着領域
14 パージ領域
15 戻りライン
16 脱着領域
17 触媒燃焼装置
21 原水
22 処理出口水
23 脱着空気
24 濃縮ガス
25 吸着素子
26 触媒燃焼装置
DESCRIPTION OF SYMBOLS 11 Raw water introduction line 12 Adsorption element 13 Adsorption area | region 14 Purge area | region 15 Return line 16 Desorption area | region 17 Catalytic combustion apparatus 21 Raw water 22 Process outlet water 23 Desorption air 24 Concentrated gas 25 Adsorption element 26 Catalytic combustion apparatus

Claims (3)

下記(1)と(2)を備えたことを特徴とする有機物質を含有する水から有機物質を吸着除去して水を浄化する水処理システム。
(1)有機物質を含有する水から有機物質を吸着除去して水を浄化する装置であって、有機物質を含有する水を、活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機物質を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機物質を脱着する脱着工程とを交互に行う事を特徴とする水処理装置。
(2)上記水処理装置の脱着工程にて発生したガスを処理する為のガス燃焼分解処理装置。
A water treatment system for purifying water by adsorbing and removing an organic substance from water containing the organic substance, comprising the following (1) and (2).
(1) An apparatus for purifying water by adsorbing and removing an organic substance from water containing an organic substance, wherein the water containing the organic substance is passed through an adsorption element containing activated carbon fiber to the adsorption element. A water treatment apparatus characterized by alternately performing an adsorption process for adsorbing an organic substance and a desorption process for desorbing an organic substance adsorbed on the adsorption element by passing a high-temperature heated gas through the adsorption element.
(2) A gas combustion decomposition treatment apparatus for treating the gas generated in the desorption process of the water treatment apparatus.
有機物質を含有する水を、活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機物質を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機物質を脱着する脱着工程との間に、ガスの通流により吸着素子内の水を除去するパージ工程を有することを特徴とする請求項1に記載の水処理システム。   An adsorption process in which water containing an organic substance is passed through an adsorption element containing activated carbon fibers to adsorb the organic substance to the adsorption element, and a high-temperature heated gas is passed through the adsorption element to pass through the adsorption element. 2. The water treatment system according to claim 1, further comprising a purge step of removing water in the adsorption element by a gas flow between the desorption step of desorbing the adsorbed organic substance. 前記ガスの通流により吸着素子内の水を除去するパージ工程にて発生した水を水処理装置の入口に戻すように構成されていることを特徴とする請求項1または2に記載の水処理システム。
The water treatment according to claim 1 or 2, wherein water generated in a purge step of removing water in the adsorption element by the gas flow is returned to the inlet of the water treatment device. system.
JP2007022821A 2007-02-01 2007-02-01 Water treatment system Withdrawn JP2008188492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022821A JP2008188492A (en) 2007-02-01 2007-02-01 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022821A JP2008188492A (en) 2007-02-01 2007-02-01 Water treatment system

Publications (1)

Publication Number Publication Date
JP2008188492A true JP2008188492A (en) 2008-08-21

Family

ID=39749107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022821A Withdrawn JP2008188492A (en) 2007-02-01 2007-02-01 Water treatment system

Country Status (1)

Country Link
JP (1) JP2008188492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142791A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd System for treating exhaust
JP2010142793A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010142792A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2013111551A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Water treatment apparatus
JP2013111553A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Water treatment system
JP2017000993A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010142791A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd System for treating exhaust
JP2010142793A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010142792A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2013111551A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Water treatment apparatus
JP2013111553A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Water treatment system
JP2017000993A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system

Similar Documents

Publication Publication Date Title
JP2008188492A (en) Water treatment system
JP2008188493A (en) Water treatment apparatus
WO2011114978A1 (en) Method and device for treating gas discharged from a carbon dioxide recovery device
JP5810488B2 (en) Wastewater treatment system
JP6393965B2 (en) Wastewater treatment system
JP6332599B2 (en) Water treatment system
JP2010221075A (en) System for treating organic solvent-containing gas
JP6311342B2 (en) Wastewater treatment system
JP2012035232A (en) Wastewater treatment system
JP4512993B2 (en) Water treatment equipment
JP2007000733A5 (en)
JP4512994B2 (en) Water treatment system
JP6332586B2 (en) Water treatment device and water treatment system
KR101310945B1 (en) Apparatus for purification of polluted air with absorption means attached a catalyst and production method for absorption means attached a catalyst
JP2009291676A (en) Solvent refining apparatus
JP2010142730A (en) Wastewater treatment system
JP6409589B2 (en) Water treatment equipment
JP5565106B2 (en) Wastewater treatment equipment
JP2006035042A (en) Regeneration method of gas purifying apparatus, and gas purifying method using the same
JP6699129B2 (en) Water treatment system
JP6428992B2 (en) Wastewater treatment system
JP5861547B2 (en) Wastewater treatment system
JP2009262121A (en) System for treating organic solvent-containing gas
KR20020061087A (en) Adsorption and desorption system for organic solvent recovery
KR20210122943A (en) Concentrated Oxidation Rotor For VOCs Treatment Executing Combination Process of Adsorption Process and Catalytic Oxidation Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110524