JPS6113060Y2 - - Google Patents

Info

Publication number
JPS6113060Y2
JPS6113060Y2 JP7255980U JP7255980U JPS6113060Y2 JP S6113060 Y2 JPS6113060 Y2 JP S6113060Y2 JP 7255980 U JP7255980 U JP 7255980U JP 7255980 U JP7255980 U JP 7255980U JP S6113060 Y2 JPS6113060 Y2 JP S6113060Y2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas
dust
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7255980U
Other languages
Japanese (ja)
Other versions
JPS56176033U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7255980U priority Critical patent/JPS6113060Y2/ja
Publication of JPS56176033U publication Critical patent/JPS56176033U/ja
Application granted granted Critical
Publication of JPS6113060Y2 publication Critical patent/JPS6113060Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Description

【考案の詳細な説明】 この考案は排ガス処理装置に関し、特に窒素酸
化物を触媒存在下にアンモニア還元により除去す
る排ガス処理装置に関するものである。
[Detailed Description of the Invention] This invention relates to an exhaust gas treatment device, and more particularly to an exhaust gas treatment device that removes nitrogen oxides by ammonia reduction in the presence of a catalyst.

ボイラ排ガスのような窒素酸化物(NOx)お
よび硫黄酸化物(SOx)を含有する排ガスからこ
れら有害成分を除去し、低減させる方法は、脱硝
および脱硫と呼ばれ、それぞれ装置の実用化が進
められている。脱硝は250ないし400℃で触媒存在
下でアンモニア還元する方式が広く採用され、ま
た脱硫では石灰石スラリによる湿式吸収法が主な
方式となつている。
Methods to remove and reduce harmful components from exhaust gas containing nitrogen oxides (NOx) and sulfur oxides (SOx), such as boiler exhaust gas, are called denitrification and desulfurization, and the practical use of equipment for each is progressing. ing. For denitrification, ammonia reduction in the presence of a catalyst at 250 to 400°C is widely used, and for desulfurization, a wet absorption method using limestone slurry is the main method.

脱硝は触媒反応であることから、装置の高性能
化を図るためには触媒の活性向上が要点となつて
くる。これまで実用化された触媒のいくつかは排
ガス中のSOxにより被毒を受け触媒活性が低下す
る。これに対し、耐硫黄酸化物性触媒が開発さ
れ、例へば、酸化チタン(TiO2)をベースにし、
バナジウム(V)、モリブデン(Mo)、タングス
テン(W)等の遷移元素を添加した触媒が実用化
されている。
Since denitrification is a catalytic reaction, improving the activity of the catalyst is key to improving the performance of the equipment. Some of the catalysts that have been put into practical use so far are poisoned by SOx in exhaust gas, resulting in a decrease in catalytic activity. In response, sulfur oxide-resistant catalysts have been developed, for example, based on titanium oxide (TiO 2 ),
Catalysts to which transition elements such as vanadium (V), molybdenum (Mo), and tungsten (W) are added have been put into practical use.

これらの触媒に共通する現象として、ガス中に
三酸化硫黄(SO3)が共存すると触媒活性はむし
ろ向上し、逆に低濃度のSOx雰囲気中にあつて
は、経時的に活性が低下する。特にチタン−モリ
ブデン系触媒(Ti−Mo)やチタン−タングステ
ン系触媒(Ti−W)にこの現象が顕著に発生す
る。
A phenomenon common to these catalysts is that when sulfur trioxide (SO 3 ) coexists in the gas, the catalytic activity actually increases, but conversely, in a low-concentration SOx atmosphere, the activity decreases over time. This phenomenon occurs particularly with titanium-molybdenum catalysts (Ti-Mo) and titanium-tungsten catalysts (Ti-W).

一方、大型燃焼装置から発生する排ガス中のダ
ストは、通常、電気集塵器により除去されている
が、石灰燃焼排ガスを例にとると、ダストがアル
カリ性でしかも見掛固有電気抵抗が1012Ωcm以上
という高い値であることから、30ないし40ppm
のSO3を系外から添加し、固有電気抵抗を1011Ω
cm以下に下げて集塵効率を高める、いわゆる調湿
が実施されている。これに対しては、系内でSO3
を発生させて調湿することができれば、プロセス
はきわめて合理化されることになる。
On the other hand, dust in the exhaust gas generated from large combustion equipment is usually removed using an electrostatic precipitator, but if we take lime combustion exhaust gas as an example, the dust is alkaline and has an apparent specific electrical resistance of 10 12 Ωcm. Since it is a high value of 30 to 40 ppm
of SO 3 was added from outside the system, and the specific electrical resistance was reduced to 10 11 Ω.
Humidity control is being carried out to improve dust collection efficiency by lowering the humidity to less than cm. For this, SO 3 in the system
If it were possible to generate and control humidity, the process would be extremely streamlined.

この考案の目的は、上記した従来技術の欠点を
なくし、系外からSO3を供給することなく、NOx
還元触媒の活性向上を計り、また石灰燃焼排ガス
のごときアルカリ性ダストの調湿を可能にする排
ガス処理装置を提供することにある。
The purpose of this invention is to eliminate the drawbacks of the conventional technology mentioned above, and to eliminate NOx without supplying SO 3 from outside the system.
It is an object of the present invention to provide an exhaust gas treatment device that improves the activity of a reduction catalyst and also makes it possible to control the humidity of alkaline dust such as lime combustion exhaust gas.

本考案らは、耐硫黄酸化物性の酸化チタンベー
スの触媒においても、触媒中に硫酸根を含まない
ものは低活性であることから、活性向上策として
硫酸塩を含む物質を出発原料とした触媒について
検討したところ、低いSOx濃度、特にSO3分圧の
低いガス条件にあつては、経時的に触媒中の硫酸
根が減少し、触媒活性が低下することが分つた。
これは、触媒中の硫酸根が脱硝反応時の湿度と
SO3分圧とによつて増減するものであり、したが
つて、これらの結果から、ガス中のSO3濃度を適
度な状態に保つことにより、触媒活性を高く維持
できることを見出した。
Even in titanium oxide-based catalysts that are resistant to sulfur oxides, catalysts that do not contain sulfate groups have low activity. Therefore, as a way to improve activity, we developed a catalyst using a substance containing sulfates as a starting material. As a result, it was found that under gas conditions with low SOx concentration, especially low SO 3 partial pressure, the number of sulfate groups in the catalyst decreases over time, resulting in a decrease in catalytic activity.
This is because the sulfate groups in the catalyst interact with the humidity during the denitrification reaction.
It increases and decreases depending on the SO 3 partial pressure. Therefore, from these results, it was found that the catalyst activity can be maintained at a high level by keeping the SO 3 concentration in the gas at an appropriate level.

この考案は、酸化チタンベースの脱硝触媒装置
において、反応ガス中のSO3を一定以上の濃度に
高めるために、脱硝反応器内の窒素酸化物還元触
媒層の上流側に二酸化硫黄酸化触媒層を設け、上
述の経時的な硫酸根の減少、およびこれに起因す
る触媒活性の低下を防止したものである。
In a titanium oxide-based denitrification catalyst device, the sulfur dioxide oxidation catalyst layer is installed upstream of the nitrogen oxide reduction catalyst layer in the denitrification reactor in order to increase the concentration of SO 3 in the reaction gas to a certain level or higher. This prevents the above-mentioned decrease in sulfate groups over time and the decrease in catalytic activity caused by this.

ところで、SO3濃度を高めることは、低温部に
おける鋼材腐食やダストの堆積を引起すため、通
常好ましくないとされている。しかしながら、石
炭燃焼排ガスのようなアルカリ性の強いダストを
含む場合にあつては、低温度におけるSO3の影響
は小さく、さらにダストを除去する電気集じん器
においては、ダストの固有電気抵抗を減じ、集じ
ん効果を高めるため、系外からSO3をガス中に注
入して調湿を行つている。本発明は、上述のよう
にSO3を外部から注入することなく、系内でSO2
を酸化させ、一定濃度以上のSO3濃度としてNOx
還元触媒の活性を向上させるとともに、石炭燃焼
排ガスのようなアルカリ性ダストの調湿をも可能
にしたものである。
Incidentally, it is generally considered undesirable to increase the SO 3 concentration because it causes corrosion of steel materials and accumulation of dust in low-temperature parts. However, when containing strongly alkaline dust such as coal combustion exhaust gas, the influence of SO 3 is small at low temperatures, and furthermore, in an electrostatic precipitator that removes dust, it reduces the specific electrical resistance of the dust, To improve the dust collection effect, SO 3 is injected into the gas from outside the system to control humidity. The present invention allows SO 2 to be removed within the system without injecting SO 3 from the outside as described above.
oxidizes and produces NOx as SO 3 concentration above a certain concentration.
This not only improves the activity of the reduction catalyst, but also makes it possible to control the humidity of alkaline dust such as coal combustion exhaust gas.

以下、図面および実施例によりこの考案をさら
に詳細に説明する。
This invention will be explained in more detail below with reference to drawings and examples.

第1図は、この考案の一実施例を示す装置系統
図である。燃焼装置1から排出されたガスは、煙
道11を通る間にアンモニア12を添加され、次
いで脱硝反応器2に導入される。脱硝反応器2
は、窒素酸化物還元触媒層22と、そのガス上流
側に設けられた二酸化硫黄酸化触媒層21とから
なる。この反応器2では、ガスの上流側に設置さ
れたSO2酸化触媒層21により排ガス中のSO2
一部がSO3へと転化され、SO3濃度が高められた
状態で脱硝触媒層22に接触し、NOxの還元反
応が進行する。脱硝された排ガスは煙道23を通
して空気予熱器3へ導かれ、熱交換された後、煙
道31から電気集じん器4へ導かれて除塵され
る。除塵された排ガスは煙道41から煙突へと排
出される。なお、脱硝反応の還元剤であるアンモ
ニアは、ライン12から煙道排ガスへ混入される
が、ガス混合を良くするため、燃焼装置の低温域
に注入してもよい。
FIG. 1 is a system diagram of an apparatus showing an embodiment of this invention. The gas discharged from the combustion device 1 is added with ammonia 12 while passing through the flue 11 and then introduced into the denitrification reactor 2. Denitration reactor 2
consists of a nitrogen oxide reduction catalyst layer 22 and a sulfur dioxide oxidation catalyst layer 21 provided on the gas upstream side thereof. In this reactor 2, a part of the SO 2 in the exhaust gas is converted into SO 3 by the SO 2 oxidation catalyst layer 21 installed on the upstream side of the gas, and the SO 2 is converted into SO 3 in the denitrification catalyst layer 22 with the SO 3 concentration increased. The NOx reduction reaction progresses. The denitrified exhaust gas is led to the air preheater 3 through the flue 23, where heat is exchanged, and then led from the flue 31 to the electrostatic precipitator 4 to remove dust. The dust-removed exhaust gas is discharged from the flue 41 to the chimney. Note that ammonia, which is a reducing agent for the denitrification reaction, is mixed into the flue gas through the line 12, but may be injected into the low temperature region of the combustion device in order to improve gas mixing.

実施例 1 50Nm3/h規模の上記装置系統(以下、A系統
と称する)を用い、SOx100ppm、一酸化窒素
(NO)150ppmおよび酸素2%を含む原油燃焼排
ガス(SO3濃度は1ppm以下)の脱硝実験を行つ
た。反応器2には、SO2酸化触媒として五酸化バ
ナジウム系を、またNO還元触媒としてTi−Mo系
を用い、それぞれ基板を用いて1mm厚さの板状に
成形し、5mmの等間隔でガス流に平行に配列して
反応器に装填した。ガス流の上流側にSO2酸化触
媒を設置し、NO還元触媒は下流側とした。触媒
層の密度はガスの空間速度でそれぞれ20000およ
び2000h-1となるようにした。比較のためにSO2
酸化触媒を装填しない以外は全てA系統と同じに
した装置をB系統とした。なお、燃焼装置出口の
ガス温度は350℃とし反応器および煙道は保温し
た。
Example 1 Using the above equipment system (hereinafter referred to as A system) with a capacity of 50Nm 3 /h, crude oil combustion exhaust gas containing 100ppm SOx, 150ppm nitric oxide (NO) and 2% oxygen (SO 3 concentration is 1ppm or less) A denitrification experiment was conducted. In reactor 2, a vanadium pentoxide system was used as an SO 2 oxidation catalyst, and a Ti-Mo system was used as an NO reduction catalyst, each of which was formed into a 1 mm thick plate shape using a substrate, and gas was supplied at equal intervals of 5 mm. The reactor was loaded in an array parallel to the flow. The SO 2 oxidation catalyst was installed on the upstream side of the gas flow, and the NO reduction catalyst was placed on the downstream side. The density of the catalyst layer was set to be 20,000 and 2,000 h -1 in terms of gas space velocity, respectively. SO 2 for comparison
The B system was a device that was the same as the A system except that no oxidation catalyst was loaded. The gas temperature at the combustion device outlet was 350°C, and the reactor and flue were kept warm.

A系統におけるSO2酸化率を約5%とし、ガス
中の初期SO3濃度を5ppm付近に維持し、アンモ
ニアを150ppm(NO/HN3比=1)反応器の上流
に注入してNO還元を行つた。NO還元触媒の経時
変化を調べた結果、活性の経時変化を示す反応速
度定数の対初期値比は、500時間経過後でA系統
が0.97、B系統が0.93となり、また1000時間経過
後においてはA系統で0.95、B系統で0.86であつ
た。
The SO 2 oxidation rate in system A was set to approximately 5%, the initial SO 3 concentration in the gas was maintained at around 5 ppm, and ammonia was injected at 150 ppm (NO/HN 3 ratio = 1) upstream of the reactor to reduce NO. I went. As a result of investigating the change in NO reduction catalyst over time, the ratio of the reaction rate constant to the initial value, which indicates the change in activity over time, was 0.97 for the A system and 0.93 for the B system after 500 hours, and after 1000 hours. It was 0.95 for A strain and 0.86 for B strain.

これらの結果からSO2酸化触媒によりSO3濃度
を高くした場合(A系統)NO還元触媒の活性を
高く維持できることが判明した。
These results revealed that when the SO 3 concentration was increased using the SO 2 oxidation catalyst (A system), the activity of the NO reduction catalyst could be maintained at a high level.

実施例 2 実施例1と同じ装置および触媒を用いて石炭燃
焼排ガスの試験をした。この排ガスのSOxおよび
NOはそれぞれ1500ppmおよび250ppmであり、
酸素は2%であつた。反応温度は実施例1と同じ
350℃とした。
Example 2 A coal combustion exhaust gas test was conducted using the same equipment and catalyst as in Example 1. This exhaust gas SOx and
NO is 1500ppm and 250ppm respectively,
Oxygen was 2%. Reaction temperature is the same as Example 1
The temperature was 350℃.

排ガス中のSO2は25ppmであり、A系統におけ
るSO2酸化率は約5%で、ガス中の総SO3
100ppmであつた。
The SO 2 in the exhaust gas is 25 ppm, the SO 2 oxidation rate in the A system is about 5%, and the total SO 3 in the gas is
It was 100ppm.

このような条件でNO還元反応を行つた後、熱
交換された150℃付近に冷却された排ガスに対
し、電気集じん器におけるダストの補集効率を測
定した。その結果、SO2酸化触媒を有しないB系
統のダストは集塵性が悪く、A系統の集塵効率の
0.8であつた。A系統と同じ効率を得るために
は、集じん器入口において系外から約40ppmの
SO3を注入する必要があつた。
After carrying out the NO reduction reaction under these conditions, the dust collection efficiency in the electrostatic precipitator was measured for the heat-exchanged exhaust gas that was cooled to around 150°C. As a result, the dust of system B, which does not have an SO 2 oxidation catalyst, has poor dust collection performance, and the dust collection efficiency of system A is lower.
It was 0.8. In order to obtain the same efficiency as system A, approximately 40 ppm from outside the system must be removed at the dust collector inlet.
It was necessary to inject SO 3 .

これらの結果から明らかなように、SO2酸化性
触媒によりガス中のSO3濃度を高めると、系外か
らSO3を注入することなく石炭燃焼排ガス中のダ
ストを効率良く捕集できることが判明した。
As is clear from these results, it was found that by increasing the SO 3 concentration in the gas using an SO 2 oxidizing catalyst, it was possible to efficiently collect dust in coal combustion exhaust gas without injecting SO 3 from outside the system. .

以上この考案によれば、酸化チタンベース触媒
で代表される窒素酸化物還元触媒の活性を経時的
に高く維持することができる。これは、特に原油
や低硫黄重油排ガスのようなSOx濃度の低い排ガ
ス処理において効果的である。さらに、石炭燃焼
排ガスのごときアルカリ性で固有電気抵抗の高い
ダストに対しては、系内で調湿が可能になり、系
外からSO3を注入することなく集じん効率を高め
ることができる。
As described above, according to this invention, the activity of the nitrogen oxide reduction catalyst, typified by the titanium oxide-based catalyst, can be maintained at a high level over time. This is particularly effective in treating exhaust gases with low SOx concentrations, such as crude oil and low-sulfur heavy oil exhaust gas. Furthermore, for dust that is alkaline and has high specific electrical resistance, such as coal combustion exhaust gas, it is possible to control the humidity within the system, increasing dust collection efficiency without injecting SO 3 from outside the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す排ガスの処
理装置の系統図である。 1……燃焼装置、2……脱硝反応器、3……空
気予熱器、4……電気集じん器、21……SO2
化触媒層、22……窒素酸化物還元触媒層。
FIG. 1 is a system diagram of an exhaust gas treatment apparatus showing an embodiment of this invention. 1... Combustion device, 2... Denitration reactor, 3... Air preheater, 4... Electrostatic precipitator, 21... SO 2 oxidation catalyst layer, 22... Nitrogen oxide reduction catalyst layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 窒素酸化物および硫黄酸化物を含有する排ガ
ス中の窒素酸化物を脱硝反応器内で触媒存在下
にアンモニア還元により除去する排ガス処理装
置において、脱硝反応器内に設置された窒素酸
化物還元触媒の上流側に二酸化硫黄酸化触媒を
設置したことを特徴とする排ガス処理装置。 (2) 実用新案登録請求の範囲第1項において、脱
硝反応器の後段に電気集じん器を設置したこと
を特徴とする排ガス処理装置。
[Scope of Claim for Utility Model Registration] (1) In an exhaust gas treatment device that removes nitrogen oxides in exhaust gas containing nitrogen oxides and sulfur oxides by ammonia reduction in the presence of a catalyst in a denitrification reactor, An exhaust gas treatment device characterized in that a sulfur dioxide oxidation catalyst is installed upstream of a nitrogen oxide reduction catalyst installed inside the exhaust gas treatment device. (2) The exhaust gas treatment device according to claim 1 of the utility model registration claim, characterized in that an electrostatic precipitator is installed downstream of the denitrification reactor.
JP7255980U 1980-05-28 1980-05-28 Expired JPS6113060Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255980U JPS6113060Y2 (en) 1980-05-28 1980-05-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255980U JPS6113060Y2 (en) 1980-05-28 1980-05-28

Publications (2)

Publication Number Publication Date
JPS56176033U JPS56176033U (en) 1981-12-25
JPS6113060Y2 true JPS6113060Y2 (en) 1986-04-23

Family

ID=29435744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255980U Expired JPS6113060Y2 (en) 1980-05-28 1980-05-28

Country Status (1)

Country Link
JP (1) JPS6113060Y2 (en)

Also Published As

Publication number Publication date
JPS56176033U (en) 1981-12-25

Similar Documents

Publication Publication Date Title
US6027697A (en) Method and apparatus for treating combustion exhaust gases
JP4175465B2 (en) Method and system for removing mercury from exhaust gas
EP3031514B1 (en) Exhaust gas treatment system and treatment method
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
EP0779100A1 (en) Flue-gas treatment system
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JPH01184311A (en) Coal fired boiler device with denitration device
CN107185406A (en) A kind of coke oven flue gas desulfurization denitration method and equipment
CN112604400B (en) Flue gas purification method and flue gas purification system
EP3515578B1 (en) Method of regenerating a denox catalyst
JPS6113060Y2 (en)
US6814948B1 (en) Exhaust gas treating systems
KR100510049B1 (en) A Method for Simultaneous Removal of NOx and SOx by Using Combined Process of Nonthermal Plasma and Low Temperature Catalyst and An Apparatus Used for the Method
CN209393034U (en) A kind of middle low temperature SCR denitration preprocessor and system
JP2001113131A (en) Method for regenerating denitration catalyst
JPH11165043A (en) Treatment of waste gas of waste incinerator
JP2001070749A (en) Waste gas treatment system
Herrlander The fläkt denox concept
JPS5817821A (en) Method for removing nox and sox from waste gas
JPH0194925A (en) Apparatus for removing nitrogen oxides in flue gas
Weber et al. High and Low Dust SCR Processes
JPH1015345A (en) Combustion exhaust gas purification and device therefor
JPS60220129A (en) Treatment of exhaust gas
JPH0249122B2 (en) HAIGASUDATSURYUHOHO
Samish et al. NO x reduction in flue gas