JPH0194925A - Apparatus for removing nitrogen oxides in flue gas - Google Patents

Apparatus for removing nitrogen oxides in flue gas

Info

Publication number
JPH0194925A
JPH0194925A JP62249137A JP24913787A JPH0194925A JP H0194925 A JPH0194925 A JP H0194925A JP 62249137 A JP62249137 A JP 62249137A JP 24913787 A JP24913787 A JP 24913787A JP H0194925 A JPH0194925 A JP H0194925A
Authority
JP
Japan
Prior art keywords
ash
inorganic oxide
exhaust gas
flue gas
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62249137A
Other languages
Japanese (ja)
Inventor
Shogo Nagamine
正吾 長峯
Isato Morita
勇人 森田
Tsuneo Yoshitake
吉武 庸夫
Masato Mukai
正人 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62249137A priority Critical patent/JPH0194925A/en
Publication of JPH0194925A publication Critical patent/JPH0194925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To minimize a poisoning of a catalyst by attaching an injection equipment of an inorganic oxide, which captures heavy metal components in a flue gas, to a flue gas passage between a combustion equipment and a denitration equipment and also arranging an equipment for removing the inorganic oxide. CONSTITUTION:An inorganic oxide powder and ammonia are introduced into an upstream position of a denitration equipment 2 through an inorganic oxide injection line 16 and an ammonia injection line 15, respectively. The inorganic oxide powder absorbs heavy metal compounds such as As etc., so as to lower their concentrations in a flue gas. The flue gas, denitrated by the denitration equipment 2, is led through an air heater 3 and introduced into an electrostatic precipitator 4, wherein the ash and inorganic oxide powder in the flue gas are collected. The collected ash and inorganic oxide powder are returned to the boiler 1 by way of an ash recycle line 19, The inorganic oxide powder is discharged out of the system through a line 12 as a clinker together with part of recycled coal ash.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガス中の窒素酸化物除去装置に係り、特に燃
料中に触媒の被毒成分である重金属元素を含む排ガスの
処理を行なうのに好適な排ガス中の窒素酸化物除去装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for removing nitrogen oxides from exhaust gas, and is particularly suitable for treating exhaust gas containing heavy metal elements, which are catalyst poisoning components, in fuel. The present invention relates to a suitable device for removing nitrogen oxides from exhaust gas.

〔従来の技術〕[Conventional technology]

第3図は、従来技術による最も一般的な排煙脱硝装置を
組込んだボイラプラントの主要排ガス系統図を示す。例
えば排ガス発生装置(以下、ボイラで代表する) 1よ
り排出された排ガス中の窒素酸化物(以下、NOxと称
す)を処理するため、ボイラ1の排ガス煙道18にアン
モニア注入ライン15からアンモニアを還元剤として注
入し、かつNOxとNH3の反応を促進するための触媒
を内蔵した脱硝装置(脱硝反応器)2が設けられている
。この脱硝装置2は一般的に300〜400℃程度の温
度域で最も効率よく脱硝が行なわれるため、ボイラの節
炭器24とエアヒータ3の間に設けられている。一方、
ボイラ1からの排ガスは、エアヒータ3を経て、除塵装
置(例えば電気集塵装置等)4にて除塵された後、脱硫
装置5を経て煙突6から大気へ放出される。他方、排ガ
ス中に含まれる灰分は、ボイラ1の火炉25で約15%
程度の灰分が火炉25の炉底からクリンカとして排出さ
れ、残り84%が集塵装置4で除塵される。
FIG. 3 shows a main exhaust gas system diagram of a boiler plant incorporating the most common flue gas denitrification device according to the prior art. For example, in order to treat nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas discharged from the exhaust gas generator (hereinafter referred to as boiler) 1, ammonia is injected into the exhaust gas flue 18 of the boiler 1 from the ammonia injection line 15. A denitrification device (denitrification reactor) 2 is provided, which is injected as a reducing agent and contains a catalyst for promoting the reaction between NOx and NH3. This denitrification device 2 is provided between the boiler economizer 24 and the air heater 3 because denitrification is generally performed most efficiently in a temperature range of about 300 to 400°C. on the other hand,
Exhaust gas from the boiler 1 passes through an air heater 3, is removed by a dust removal device (for example, an electrostatic precipitator, etc.) 4, and then passes through a desulfurization device 5 and is released into the atmosphere from a chimney 6. On the other hand, the ash content in the exhaust gas is approximately 15% in the furnace 25 of boiler 1.
A certain amount of ash is discharged from the bottom of the furnace 25 as clinker, and the remaining 84% is removed by the dust collector 4.

ボイラ1で燃焼される燃料(石炭)の種類によっては燃
焼しにくいものもあり、例えば集塵装置4で集塵された
灰中に多量の未燃分を含む場合がある。例えば、ボイラ
1に供給される燃料分の約5〜10%もの量が未燃分と
して含まれる場合もある。したがってこの未燃分を第3
図に示すように灰排出ライン20′からそのまま廃棄し
たのではボイラ1の燃焼効率が低くなり、ボイラ効率の
低下を招くこととなり熱収支上問題があった。なお、こ
の場合の一例では灰のマスバランスは、燃料供給ライン
10を100とした場合、ボイラ1の出口で85、ボイ
ラ1の灰排出ライン20′で15、集塵装置4の捕−灰
で84、脱硫装置5の入口ラインで1となる。
Some types of fuel (coal) burned in the boiler 1 are difficult to burn; for example, the ash collected by the dust collector 4 may contain a large amount of unburned matter. For example, about 5 to 10% of the fuel supplied to the boiler 1 may be included as unburned fuel. Therefore, this unburned content is
As shown in the figure, if the ash was disposed of directly from the ash discharge line 20', the combustion efficiency of the boiler 1 would be lowered, leading to a reduction in boiler efficiency and causing problems in terms of heat balance. In this case, as an example, if the fuel supply line 10 is 100, the mass balance of ash is 85 at the outlet of the boiler 1, 15 at the ash discharge line 20' of the boiler 1, and 15 at the ash caught in the dust collector 4. 84, becomes 1 at the inlet line of the desulfurizer 5.

そこで第4図に示すごとく、集塵装置4にて除塵した灰
を再びボイラlへ灰リサイクルライン19を用いてリサ
イクルし、ボイラ1で再燃焼させることにより、未燃分
を少なくし、燃焼効率を高めるシステムを採用している
例があるが、この場合の灰のマスバランスは、−例では
燃料供給ライン10を100とした場合、ボイラ1の出
口で65、集塵装置4の灰リサイクルライン19で63
、ボイラ1の灰排出ライン20′で98、脱硫装置5の
入口ラインで2となる。したがって灰のマスバランス上
からはボイラ1の火炉25にて分離除去された灰が灰排
出ライン20′を経て系外へ排出されているため、脱硝
装置2の部分においては第3図の場合と大差がない。
Therefore, as shown in Fig. 4, the ash removed by the dust collector 4 is recycled back to the boiler 1 using the ash recycling line 19 and re-burned in the boiler 1, thereby reducing the amount of unburned matter and increasing the combustion efficiency. In some cases, a system is adopted to increase the ash mass balance, but in this case, if the fuel supply line 10 is 100, the ash mass balance is 65 at the outlet of the boiler 1, and the ash recycling line of the dust collector 4 is 65 at the outlet of the boiler 1. 19 and 63
, 98 at the ash discharge line 20' of the boiler 1, and 2 at the inlet line of the desulfurizer 5. Therefore, in terms of the ash mass balance, the ash separated and removed in the furnace 25 of the boiler 1 is discharged to the outside of the system via the ash discharge line 20'. There's no big difference.

しかし、ボイラ1にて燃焼される燃料中に含まれる微量
の重金属元素の中には、ボイラ1の火炉25における高
温ガスの雰囲気ではガス化しているものがあり、その後
脱硝装置2、エアヒータ3を経るうちに、低温度域で凝
縮固化し、灰中に入り、集塵装置4で灰とともに除去さ
れるものがある。したがって、灰中に前記微量の重金属
元素を含んだ灰を灰リサイクルライン19より再びボイ
ラ1゛に供給して再度燃焼させることから、重金属元素
は前記灰リサイクルライン19による循環によって濃縮
されることとなる。−例として前記重金属元素の含有量
を灰をリサイクルしない場合(第3図の場合)、排ガス
煙道18において排ガス中に重金属元素が30ppm含
まれているとすると、第4図の場合、ボイラ系外から供
給される量と集塵装置4から系外へ排出されるバランス
から灰リサイクルライン19中においては理論上50倍
に濃縮されることとなり、排ガス中の重金属元素が実に
1500ppmという高濃度まで濃縮されることとなる
However, some of the trace amounts of heavy metal elements contained in the fuel burned in the boiler 1 are gasified in the high-temperature gas atmosphere in the furnace 25 of the boiler 1. Over time, some particles condense and solidify in a low temperature range, enter the ash, and are removed together with the ash by the dust collector 4. Therefore, since the ash containing the trace amount of heavy metal elements in the ash is supplied to the boiler 1 again from the ash recycling line 19 and burned again, the heavy metal elements are concentrated by the circulation by the ash recycling line 19. Become. - As an example, if the content of the heavy metal elements is not recycled (as shown in Figure 3), and if the exhaust gas in the exhaust gas flue 18 contains 30 ppm of heavy metal elements, then in the case of Figure 4, the boiler system Due to the balance between the amount supplied from outside and the amount discharged from the dust collector 4 to the outside of the system, the ash recycle line 19 is theoretically concentrated 50 times, and the heavy metal elements in the exhaust gas reach a high concentration of 1500 ppm. It will be concentrated.

前記微量重金属元素としては、第5図に示したボイラプ
ラントの各部の排ガス温度とその重金属元素の気化温度
の関係から、As、Cd、Cu、Pb5Sbs Ses
 Tls Znが考えられる。
The trace heavy metal elements include As, Cd, Cu, Pb5SbsSes, from the relationship between the exhaust gas temperature of each part of the boiler plant shown in Fig. 5 and the vaporization temperature of the heavy metal element.
Tls Zn is considered.

第6図は、前記第3図に示した、灰をリサイクルしてい
ないAプラントと、第4図に示した灰リサイクルを行な
うBプラントにそれぞれに脱硝袋WL2を設けた場合の
脱硝性能の低下状況を示したものである。Aプラントの
場合、初期運転開始直後、若干の脱硝性能の低下が見ら
れるものの、その後は安定した脱硝反応を行なっている
。一方、Bプラントの場合には運転初期で大きく脱硝性
能の低下があり、その後も運転時間の経過とともに触媒
活性が大きく低下している。
Figure 6 shows the decrease in denitrification performance when denitrification bags WL2 are installed in plant A, which does not recycle ash, as shown in Figure 3, and plant B, which recycles ash, as shown in Figure 4. It shows the situation. In the case of Plant A, a slight decrease in denitrification performance was observed immediately after the start of initial operation, but thereafter stable denitrification reactions were performed. On the other hand, in the case of Plant B, the denitrification performance significantly decreased in the early stages of operation, and thereafter, the catalyst activity decreased significantly as the operation time progressed.

A、Bプラントの系統上の相違点は、灰のリサイクルの
有無であり、前記微量重金属元素の濃縮作用による脱硝
装置2内の触媒の被毒が直接の原因となっていることが
わかる。
The difference in the system between plants A and B is whether or not ash is recycled, and it can be seen that the poisoning of the catalyst in the denitrification device 2 due to the concentration effect of the trace heavy metal elements is a direct cause.

したがってこのような微量の重金属元素の問題に対して
は、第7図に示すごとく脱硝装置2を脱硫装置5の後流
に設置した、いわゆるアフターDesOx型の脱硝装置
2を採用することが検討されている。しかしながら脱硫
装置5の出口の処理ガス温度が脱硝を行なうには低すぎ
るため(通常DeSOx出ロガス出口は150℃程度)
、ガス加熱炉22等を設けて排ガスを燃料供給ライン2
3からの燃料によって脱硝に適した温度(約300〜4
00℃)まで昇温する等の対策を行なう必要がある。こ
のため、ガス加熱炉22に供給される燃料費および熱回
収装置であるガス−ガスヒータ21等の設備費用がかさ
み、建設費、運転費ともにコスト高になる問題があった
Therefore, to solve the problem of trace amounts of heavy metal elements, it has been considered to adopt a so-called after-DesOx type denitrification device 2, in which the denitrification device 2 is installed downstream of the desulfurization device 5, as shown in Fig. 7. ing. However, the temperature of the treated gas at the outlet of the desulfurization device 5 is too low to perform denitrification (usually around 150°C at the DeSOx output log gas outlet).
, a gas heating furnace 22 etc. is provided to transfer the exhaust gas to the fuel supply line 2.
The temperature suitable for denitration (approximately 300 to 4
It is necessary to take measures such as raising the temperature to 00°C. Therefore, there is a problem in that the cost of fuel supplied to the gas heating furnace 22 and the cost of equipment such as the gas-gas heater 21, which is a heat recovery device, increase, resulting in high construction and operating costs.

また、第9図のように、捕集灰の一部をライン14を介
して系外に抜出し、重金属成分の濃縮度を下げる方法(
部分リサイクル法)も検討されている。灰のリサイクル
率 が低くなれば重金属成分の濃縮割合も下がり、触媒被毒
は緩和されるが、灰のリサイクル率を下げるということ
は未燃分を多く含む灰を多く捨てることであり、ボイラ
1の熱効率の低下につながる。
Alternatively, as shown in Figure 9, a part of the collected ash is extracted out of the system via line 14 to reduce the concentration of heavy metal components (
Partial recycling method) is also being considered. If the ash recycling rate is lowered, the concentration ratio of heavy metal components will also be lowered, and catalyst poisoning will be alleviated. leads to a decrease in thermal efficiency.

しかしこの点の妥協をすれば簡単なシステムで触媒被毒
を低減できるメリットは得られる。
However, if this point is compromised, the advantage of reducing catalyst poisoning can be obtained with a simple system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように第3図に示した一般的なフローを採用した
場合、ボイラ1の燃焼効率が低いとき、これが原因でボ
イラの熱効率が低下するという問題がある。さらに第4
図に示した未燃分を含む燃焼灰をリサイクルした方式を
採用した場合、第3図のものと較べてボイラの熱効率の
向上は図れるものの、触媒被毒成分の濃縮作用により脱
硝触媒が被毒されるという問題があった。
As described above, when the general flow shown in FIG. 3 is adopted, there is a problem that when the combustion efficiency of the boiler 1 is low, the thermal efficiency of the boiler decreases due to this. Furthermore, the fourth
When adopting the method shown in the figure that recycles combustion ash containing unburned content, the thermal efficiency of the boiler can be improved compared to the method shown in Figure 3, but the denitrification catalyst becomes poisoned due to the concentration of catalyst poisoning components. There was a problem with being exposed.

これらに対する対策として第7図に示すように脱硝装置
2を脱硫装置5の後流に設ける、いわゆるアフターDe
SOx方式が検討されているが、本方式を採用すれば建
設費、運転費が高くなり、コストが高くなる問題があっ
た。またある程度の熱効率を犠牲にし、第9図に示すよ
うに捕集灰の一部を系外に抜く方法(部分リサイクル法
)もあるが、触媒被毒は低減はされるものの、未燃分を
含む灰が系外に排出されるので、依然として熱効率の低
下の問題が残る。
As a countermeasure against these problems, a denitrification device 2 is installed downstream of the desulfurization device 5 as shown in FIG.
The SOx method is being considered, but if this method is adopted, construction costs and operating costs will be high, leading to higher costs. There is also a method (partial recycling method) that sacrifices some thermal efficiency and removes a portion of the collected ash from the system as shown in Figure 9, but although catalyst poisoning is reduced, unburned ash is removed. Since the ash contained therein is discharged outside the system, the problem of reduced thermal efficiency still remains.

本発明の目的は、上記従来技術の欠点をなくし、脱硝装
置を最も経済的なボイラ出口に設け、熱効率を大幅に低
下させることなく、部分リサイクル法において触媒被毒
を最小限に抑えることができる排ガス中の窒素酸化物除
去装置を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, install a denitrification device at the most economical boiler outlet, and minimize catalyst poisoning in the partial recycling method without significantly reducing thermal efficiency. An object of the present invention is to provide a device for removing nitrogen oxides from exhaust gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、燃焼装置からの燃焼排ガスを導く通路と、該
通路に設けた脱硝装置と、脱硝装置からの排ガスを処理
して含有灰分を分離する除塵装置と、分離した灰分を前
記燃焼装置に再循環する装置とを設けた排ガス中の窒素
酸化物除去装置において、前記燃焼装置から脱硝装置へ
燃焼排ガスを導く通路に、燃焼排ガス中の重金属成分を
捕捉するための無機酸化物注入装置を設けるとともに、
前記燃焼装置に灰分とともに再循環された無機酸化物を
除去する装置を設けたことを特徴とする。
The present invention provides a path for guiding combustion exhaust gas from a combustion device, a denitration device installed in the path, a dust removal device for treating the exhaust gas from the denitration device and separating contained ash, and directing the separated ash to the combustion device. In a device for removing nitrogen oxides from exhaust gas, which is equipped with a recirculation device, an inorganic oxide injection device for capturing heavy metal components in the combustion exhaust gas is provided in a passageway that leads the combustion exhaust gas from the combustion device to the denitrification device. With,
The combustion apparatus is characterized in that a device for removing inorganic oxides recycled together with ash is provided.

本発明で使用される無機酸化物としては、BET法(比
表面積をはかる方法の一つ)による比表面積の値が10
rrf/g以上であれば特に限定されるものではなく、
例えばアナターゼ型チタニア、γ−アルミナ、シリカ、
マグネシア、酸化マンガンなどが用いられる。アルカリ
金属の酸化物は触媒毒成分となり得るので好ましくない
The inorganic oxide used in the present invention has a specific surface area of 10 by the BET method (one of the methods for measuring specific surface area).
There is no particular limitation as long as it is rrf/g or more,
For example, anatase titania, γ-alumina, silica,
Magnesia, manganese oxide, etc. are used. Alkali metal oxides are not preferred because they can become catalyst poison components.

また、無機酸化物の注入量については排ガスINnf中
に0.1〜100g程度が好ましい。100g以上では
触媒摩耗を促進するおそれがある。
Further, the amount of inorganic oxide to be injected into the exhaust gas INnf is preferably about 0.1 to 100 g. If it exceeds 100 g, catalyst abrasion may be accelerated.

〔作用〕[Effect]

無機酸化物粉体を、ボイラ出口から脱硝装置の間の煙道
に注入することにより、排ガス中の重金属揮発分が無機
酸化物粉体表面に吸着され、排ガス中の重金属揮発分濃
度を低下させることができる。重金属を吸着した粉体は
、脱硝装置の下流にある集塵機で捕集され、石炭灰とと
もに灰リサイクルラインによりボイラ燃焼装置に送り込
まれ、一部または全部が燃焼時に溶融あるいは焼結によ
る粒子成長により、リサイクルされた石炭灰の一部とと
もにボイラ底部に降下しクリンカとして排出される。こ
のため、無機酸化物粉体の注入による灰分の増加がほと
んどな(1,安定して灰のリサイクルが行なえる。
By injecting inorganic oxide powder into the flue between the boiler outlet and the denitrification equipment, heavy metal volatiles in the exhaust gas are adsorbed on the surface of the inorganic oxide powder, reducing the concentration of heavy metal volatiles in the exhaust gas. be able to. The powder that has adsorbed heavy metals is collected by a dust collector located downstream of the denitrification equipment, and sent to the boiler combustion equipment along with the coal ash via the ash recycling line. It falls to the bottom of the boiler together with some of the recycled coal ash and is discharged as clinker. Therefore, there is almost no increase in ash content due to the injection of inorganic oxide powder (1) Ash can be recycled stably.

〔実施例〕〔Example〕

、以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明になる排ガス中の窒素酸化物除去装置の
系統図である。燃焼装置(ボイラ) 1で生じた排ガス
は、排ガス煙道18を通って脱硝装置2に導入される。
FIG. 1 is a system diagram of an apparatus for removing nitrogen oxides from exhaust gas according to the present invention. The exhaust gas generated in the combustion device (boiler) 1 is introduced into the denitrification device 2 through the exhaust gas flue 18.

脱硝装置2の上流には無機酸化物注入ライン16より無
機酸化物粉体と、アンモニア注入ライン15よりアンモ
ニアが注入される。該粉体ルよ、排ガス中に揮発分とし
て存在するA3などの重金属成分を吸着し、排ガス中の
重金属成分の濃度を低下させる。脱硝装置2にて脱硝さ
れた排ガスは、エアヒータ3を経て電気集塵機4に導入
され、排ガス中の灰および無機酸化物粉体が捕集される
。捕集された灰および無機酸化物粉体は灰リサイクルラ
イン19を介してボイラ1に戻される。ここで無機酸化
物粉体は、リサイクルされた石炭灰の一部とともにクリ
ンカとして灰および無機酸化物の排出ライン12より糸
外に排出される。
Upstream of the denitrification device 2, inorganic oxide powder is injected from an inorganic oxide injection line 16 and ammonia is injected from an ammonia injection line 15. The powder adsorbs heavy metal components such as A3 present as volatile components in the exhaust gas, thereby reducing the concentration of heavy metal components in the exhaust gas. The exhaust gas denitrified by the denitrification device 2 is introduced into an electrostatic precipitator 4 via an air heater 3, where ash and inorganic oxide powder in the exhaust gas are collected. The collected ash and inorganic oxide powder are returned to the boiler 1 via the ash recycling line 19. Here, the inorganic oxide powder is discharged to the outside of the yarn from the ash and inorganic oxide discharge line 12 as clinker together with a portion of the recycled coal ash.

一方、除塵された排ガスは、脱硫装置5で脱硫された後
、煙突6より糸外に出される。
On the other hand, the dust-removed exhaust gas is desulfurized by the desulfurizer 5 and then discharged from the chimney 6 to the outside.

実施例1 第1図に示す装置において、無機酸化物注入ライン16
より、BET法による比表面積が110of/gである
アナターゼ型チタニアの粉体を、排ガスIN−当たり1
0g注入し、約1000時間の運転を行なった。運転時
間経過による脱硝の効果を調べ、その結果を第2図(実
線C)に示した。
Example 1 In the apparatus shown in FIG.
Accordingly, powder of anatase type titania having a specific surface area of 110 of/g by the BET method was
0 g was injected and the operation was performed for about 1000 hours. The effect of denitrification over the course of operation time was investigated, and the results are shown in Figure 2 (solid line C).

比較例1 実施例1において無機酸化物を注入しなかった以外は同
様にして約1000時間の運転を行なった。運転時間経
過による脱硝の効果を調べ、その結果を第2図(鎖線D
)に示した。
Comparative Example 1 Operation for about 1000 hours was carried out in the same manner as in Example 1 except that the inorganic oxide was not injected. The effect of denitrification over the course of operation time was investigated, and the results are shown in Figure 2 (dashed line D).
)It was shown to.

第2図の結果から無機酸化物の注入により触媒劣化を抑
えられることが明らかである。
From the results shown in FIG. 2, it is clear that catalyst deterioration can be suppressed by injecting inorganic oxides.

実施例2および3 実施例1で使用したアナターゼ型チタニア粉体に熱処理
を加え、BET法による比表面積を10rd / gお
よび50nf/gとした他は実施例1と同様の手順にて
運転を行なった。
Examples 2 and 3 The anatase-type titania powder used in Example 1 was heat-treated and the operation was performed in the same manner as in Example 1, except that the specific surface area by the BET method was set to 10rd/g and 50nf/g. Ta.

実施例4および5 、実施例1のアナターゼ型チタニア粉体の注入量を、排
ガスINnr当たり0.1gおよび100gとした他は
実施例1と同様の手順にて運転を行なった。
Examples 4 and 5 The same procedure as in Example 1 was carried out except that the injection amount of the anatase titania powder in Example 1 was changed to 0.1 g and 100 g per exhaust gas INnr.

実施例6〜9 実施例1のアナターゼ型チタニアの代わりに、γ−アル
ミナ、シリカ、マグネシアおよび酸化マンガンを用い、
その他は実施例1と同様の手順にて運転を行なった。
Examples 6 to 9 Instead of anatase titania in Example 1, γ-alumina, silica, magnesia and manganese oxide were used,
The operation was otherwise carried out in the same manner as in Example 1.

実施例2〜9および比較例1の1000時間運転後の触
媒劣化率(初期活性60%−1000時間後の活性)を
調べ、その結果を第1表に示した。
The catalyst deterioration rates (initial activity 60% - activity after 1000 hours) of Examples 2 to 9 and Comparative Example 1 after 1000 hours of operation were investigated, and the results are shown in Table 1.

第   1   表 〔発明の効果〕 本発明によれば、排ガス中の重金属成分の濃度を低下さ
瀬て脱硝触媒活性の劣下を防ぐことができ、また、未燃
灰分を再燃焼させて、燃料の燃焼効率を高く保つ7こと
ができる。
Table 1 [Effects of the Invention] According to the present invention, it is possible to reduce the concentration of heavy metal components in exhaust gas and prevent deterioration of denitrification catalyst activity, and also to reburn unburned ash to improve fuel efficiency. It is possible to maintain high combustion efficiency7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる排ガスの窒素酸化物除去装置の
系統図、第2図は、脱硝活性の運転時間による劣下状況
を示す図、第3図および第4図は、従来技術による排ガ
スの窒素酸化物除去装置の系統図、第5図は、燃焼装置
における各部のガス温度分布を示す図、第6図は、第3
図および第4図に示す装置における運転時間と浸硼率の
関係を示す図、第7図、第8図および第9図は、従来技
術による他の窒素酸化物除去装置の系統図である。 1・・・燃焼装置、2・・・脱硝装置、3・・・エアヒ
ータ、4・・・除塵装置、5・・・脱硫装置、6・・・
煙突、10・・・燃料供給ライン、12・・・灰および
無機酸化物の排出ライン、15・・・アンモニア注入ラ
イン、16・・・無機酸化物注入ライン、19・・・捕
集灰リサイクルライン。 代理人 弁理士 川 北 武 長 第1図 1:燃焼装置      2:脱硝装置   3:エア
ヒータ4:除塵装置      5:脱祉装置   6
:煙突1o:燃料供給ライン   12:灰および無機
酸化物の排出ライン15:アンモニアi7Aライン 1
6:無機酸化物注入フィン19:捕集灰リサイクルライ
ン 運転時間(hr) 第5図 第6図 運転時間(h)
Fig. 1 is a system diagram of the exhaust gas nitrogen oxide removal device according to the present invention, Fig. 2 is a diagram showing the deterioration of denitrification activity depending on operating time, and Figs. 3 and 4 are diagrams according to the prior art. Figure 5 is a system diagram of the exhaust gas nitrogen oxide removal device, and Figure 6 is a diagram showing the gas temperature distribution in each part of the combustion equipment.
7, 8, and 9 are system diagrams of other nitrogen oxide removal devices according to the prior art. DESCRIPTION OF SYMBOLS 1... Combustion device, 2... Denitration device, 3... Air heater, 4... Dust removal device, 5... Desulfurization device, 6...
Chimney, 10... Fuel supply line, 12... Ash and inorganic oxide discharge line, 15... Ammonia injection line, 16... Inorganic oxide injection line, 19... Collected ash recycling line . Agent Patent Attorney Takenaga Kawakita Figure 1 1: Combustion device 2: Denitration device 3: Air heater 4: Dust removal device 5: Welfare removal device 6
: Chimney 1o: Fuel supply line 12: Ash and inorganic oxide discharge line 15: Ammonia i7A line 1
6: Inorganic oxide injection fin 19: Collected ash recycling line operating time (hr) Figure 5 Figure 6 Operating time (hr)

Claims (1)

【特許請求の範囲】[Claims] 燃焼装置からの燃焼排ガスを導く通路と、該通路に設け
た脱硝装置と、脱硝装置からの排ガスを処理して含有灰
分を分離する除塵装置と、分離した灰分を前記燃焼装置
に再循環する装置とを設けた排ガス中の窒素酸化物除去
装置において、前記燃焼装置から脱硝装置へ燃焼排ガス
を導く通路に、燃焼排ガス中の重金属成分を捕捉するた
めの無機酸化物注入装置を設けるとともに、前記燃焼装
置に灰分とともに再循環された無機酸化物を除去する装
置を設けたことを特徴とする排ガス中の窒素酸化物除去
装置。
A passage for guiding combustion exhaust gas from the combustion device, a denitrification device installed in the passage, a dust removal device for treating the exhaust gas from the denitration device and separating contained ash, and a device for recirculating the separated ash to the combustion device. In an apparatus for removing nitrogen oxides from exhaust gas, an inorganic oxide injection device for capturing heavy metal components in the combustion exhaust gas is provided in a passage leading the combustion exhaust gas from the combustion apparatus to the denitrification apparatus, and A device for removing nitrogen oxides from exhaust gas, characterized in that the device is equipped with a device for removing inorganic oxides recycled together with ash.
JP62249137A 1987-10-02 1987-10-02 Apparatus for removing nitrogen oxides in flue gas Pending JPH0194925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249137A JPH0194925A (en) 1987-10-02 1987-10-02 Apparatus for removing nitrogen oxides in flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249137A JPH0194925A (en) 1987-10-02 1987-10-02 Apparatus for removing nitrogen oxides in flue gas

Publications (1)

Publication Number Publication Date
JPH0194925A true JPH0194925A (en) 1989-04-13

Family

ID=17188476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249137A Pending JPH0194925A (en) 1987-10-02 1987-10-02 Apparatus for removing nitrogen oxides in flue gas

Country Status (1)

Country Link
JP (1) JPH0194925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151256A (en) * 1988-01-19 1992-09-29 Babcock-Hitachi Kabushiki Kaisha Coal combustion apparatus provided with a denitration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151256A (en) * 1988-01-19 1992-09-29 Babcock-Hitachi Kabushiki Kaisha Coal combustion apparatus provided with a denitration

Similar Documents

Publication Publication Date Title
US8480984B2 (en) Biomass boiler SCR NOx and CO reduction system
US5176088A (en) Furnace ammonia and limestone injection with dry scrubbing for improved simultaneous SOX and NOX removal
US20050147549A1 (en) Method and system for removal of NOx and mercury emissions from coal combustion
WO2012063466A1 (en) Exhaust gas treatment method and apparatus
KR100530973B1 (en) System for treating exhaust gas
US20150030508A1 (en) Method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
BR112016008249B1 (en) METHOD AND APPLIANCE FOR THE REMOVAL OF CONTAMINANTS FROM EXHAUST GASES
CN103785290A (en) Sintering and pelletizing flue gas desulfurization and denitrification coordinating management system and process
JP2008241061A (en) Flue gas treatment facility
US4272497A (en) Method for treating a nitrogen oxide- and sulphur oxide-containing waste gas
KR101495087B1 (en) Combustion system
WO2018115499A1 (en) Process and plant for denitrification of combustion gases
KR20150118546A (en) Exhaust gas after-treatment system and method for the exhaust gas after-treatment
EP0933516B1 (en) Gasification power generation process and equipment
US20040213720A1 (en) Method for treating flue gases containing ammonia
JPH0194925A (en) Apparatus for removing nitrogen oxides in flue gas
FI88363B (en) ROEKGASANLAEGGNING
JPH11300164A (en) Boiler plant having denitration device, and denitration method
JPS583730B2 (en) Exhaust gas treatment method
EP0468205B1 (en) Apparatus for treating exhaust gas
JP3868078B2 (en) Power generation equipment
JPH0729028B2 (en) Denitration treatment method
JPS6113060Y2 (en)
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
WO2020161874A1 (en) Combustion system