JPS583730B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JPS583730B2
JPS583730B2 JP53003308A JP330878A JPS583730B2 JP S583730 B2 JPS583730 B2 JP S583730B2 JP 53003308 A JP53003308 A JP 53003308A JP 330878 A JP330878 A JP 330878A JP S583730 B2 JPS583730 B2 JP S583730B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
electrostatic precipitator
amount
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53003308A
Other languages
Japanese (ja)
Other versions
JPS5496470A (en
Inventor
矢田勝利
立花直治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP53003308A priority Critical patent/JPS583730B2/en
Publication of JPS5496470A publication Critical patent/JPS5496470A/en
Publication of JPS583730B2 publication Critical patent/JPS583730B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Description

【発明の詳細な説明】 本発明は、NOx ,SOxおよびフライアツシュ等を
含む排ガス中のフライアツシュ等のダストを効率良く集
塵すると共に窒素酸化物を除去し得る排ガスの処理方法
に関し、特にフライアツシュ等のダストの集塵性能を改
善し得る上記排ガスの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas treatment method capable of efficiently collecting dust such as fly ash in exhaust gas containing NOx, SOx, fly ash, etc. and removing nitrogen oxides. The present invention relates to a method for treating the above exhaust gas that can improve dust collection performance.

NOxと同時にSOxを含む排ガス中のNOxを除去す
る方法としては、現在、NH3を還元剤とする選択的乾
式接触還元法が主流を占めている。
Currently, the mainstream method for removing NOx from exhaust gas containing SOx as well as NOx is a selective dry catalytic reduction method using NH3 as a reducing agent.

従って、石炭焚ボイラ排ガス等のようにNOx ,SO
xおよびフライアツシュ等のダストを含む排ガスの処理
方法としては、上記方法によるNOx除去装置と、フラ
イアツシュ等のダスト除去のための電気集塵装置との組
み合せプロセスが用いられる方向にある。
Therefore, NOx and SO such as coal-fired boiler exhaust gas, etc.
As a method for treating exhaust gas containing dust such as x and fly ash, there is a tendency to use a combined process of a NOx removal device according to the above method and an electrostatic precipitator for removing dust such as fly ash.

現在実施化されつつある石炭焚ボイラ排ガスの処理プロ
セスとしては第1図に示すようなものがある。
As a treatment process for coal-fired boiler exhaust gas that is currently being implemented, there is a process as shown in Figure 1.

すなわち、石炭焚ボイラ1から出た排ガスは、電気集塵
装置5内に入り、電気集塵装置5で排ガス中のフライア
ツシュが除去され、電気集塵装置5から出た排ガス中に
NH,注入手段2からNH3を注入した後、乾式脱硝装
置3内に導き、排ガス中のNOxを除去し、さらにその
後、排ガスを熱交換器4内に導入して熱交換を行い、排
ガスの温度を下げて、後流の脱流装置あるいは煙突に送
っている。
That is, the exhaust gas emitted from the coal-fired boiler 1 enters the electrostatic precipitator 5, fly ash in the exhaust gas is removed by the electrostatic precipitator 5, and NH and injection means are added to the exhaust gas emitted from the electrostatic precipitator 5. After injecting NH3 from 2, it is introduced into a dry denitrification device 3 to remove NOx in the exhaust gas, and then the exhaust gas is introduced into a heat exchanger 4 for heat exchange to lower the temperature of the exhaust gas. It is sent to the wake deflow device or chimney.

この処理プロセスによれば、電気集塵装置5を熱交換器
4の上流部に配置しているので、電気抵抗の高いフライ
アツシュを集塵する場合、排ガス温度の低下により発生
していた逆電離現象を防止している利点はあるが、しか
しながら、該処理プロセスには次のような欠点がある。
According to this treatment process, since the electrostatic precipitator 5 is placed upstream of the heat exchanger 4, when fly ash with high electrical resistance is collected, reverse ionization occurs due to a decrease in exhaust gas temperature. However, the treatment process has the following drawbacks.

(1)石炭焚ボイラ1内での石炭中のS分が燃焼してS
O2が発生し、その一部が更に転化してできたSO3が
熱交換器4内で、乾式脱硝装置3内から漏洩したNH3
および排ガス中の水分と反応し酸性硫酸アンモニウムN
H4HSO4を生成するため、この酸性硫酸アンモニウ
ムが溶融付着して熱交換器4が目詰りを起す。
(1) The S component in the coal is burned in the coal-fired boiler 1, resulting in S
O2 is generated, and a part of it is further converted into SO3, which is generated in the heat exchanger 4, and NH3 leaked from the dry denitration equipment 3.
and acidic ammonium sulfate N, which reacts with moisture in exhaust gas.
Since H4HSO4 is generated, this acidic ammonium sulfate melts and adheres, causing clogging of the heat exchanger 4.

(2)SO3とNH3および排ガス中の水分の反応によ
って生成された硫酸アンモニウム( NH4)2SO4
系の反応生成物が熱交換器4出口では排ガス温度が下る
ため微細なダストとなり、例えば1oppmのSO3か
ら約5 0 mg/Nmのダストを生成するため、排ガ
ス中のダストが増加する。
(2) Ammonium sulfate (NH4)2SO4 produced by the reaction of SO3, NH3, and moisture in exhaust gas
The reaction products of the system become fine dust at the outlet of the heat exchanger 4 because the exhaust gas temperature decreases, and for example, about 50 mg/Nm of dust is generated from 1 oppm of SO3, so the amount of dust in the exhaust gas increases.

そこで本発明者等は、先に、上記欠点のない石炭焚ボイ
ラの排ガス処理方法を提供することを目的として第2〜
4図のフローに示すような方法を提案した(特願昭52
−81144号)。
Therefore, the present inventors first conducted the second to
We proposed the method shown in the flowchart in Figure 4 (Japanese Patent Application No. 1983).
-81144).

第2〜4図中、第1図と同一符号は第1図と同一機器で
あり、6は機械式集塵装置である。
In FIGS. 2 to 4, the same symbols as in FIG. 1 are the same devices as in FIG. 1, and 6 is a mechanical dust collector.

しかしながら、上記方法においては、本発明者等のその
後の検討により次のような欠点があることが判った。
However, the above method has been found to have the following drawbacks through subsequent studies by the present inventors.

すなわち、電気集塵装置5は熱交換器4の後流に設置さ
れているため、電気集塵装置5に入る排ガス温度は通常
100〜160℃程度まで下げられ、そのために排ガス
中のダストの性質によっては、その電気抵抗がいわゆる
逆電離開始抵抗値を超え、電気集塵装置5内で逆電離現
象が発生して電気集塵装置5の集塵性能を大幅に低下す
ることがある。
That is, since the electrostatic precipitator 5 is installed downstream of the heat exchanger 4, the temperature of the exhaust gas entering the electrostatic precipitator 5 is usually lowered to about 100 to 160°C. In some cases, the electrical resistance may exceed a so-called reverse ionization starting resistance value, and a reverse ionization phenomenon may occur within the electrostatic precipitator 5, significantly reducing the dust collection performance of the electrostatic precipitator 5.

例えば第5図に示すように、第1図のフローに示す従来
のプロセスでは電気集塵装置5の運転温度範囲がaとか
なり高い範囲であるため、ダストの電気抵抗は正常な電
気集塵抵抗範囲A内にあるが、第2〜3図のフローに示
す上記力法では電気集塵装置5の運転温度範囲がbとか
なり低い範囲となってしまうため、ダストの電気抵抗は
逆電離発生抵抗範囲B内に入り、集塵性能が大幅に低下
する。
For example, as shown in FIG. 5, in the conventional process shown in the flowchart of FIG. However, in the above-mentioned force method shown in the flowcharts of Figs. 2 and 3, the operating temperature range of the electrostatic precipitator 5 is within the range B, which is quite low, so the electrical resistance of the dust is equal to the reverse ionization resistance. It falls within range B, and the dust collection performance decreases significantly.

この性能低下現象は、石炭焚ボイラにおいて第5図中曲
線1に示すように低硫黄石炭を燃焼した時に顕著に発生
する(なお、第5図中曲線2は高硫黄石炭を燃焼した場
合を示す)。
This performance degradation phenomenon occurs noticeably when low-sulfur coal is burned in a coal-fired boiler, as shown in curve 1 in Figure 5 (curve 2 in Figure 5 shows the case when high-sulfur coal is burned). ).

その理由は、フライアツシュの電気抵抗をこの温度範囲
で主として司どる表面伝導に関与するSO3およびSO
3により生成するH2SO4の量が、上記低硫黄石炭の
燃焼では十分でないことに起因する。
The reason for this is that SO3 and SO, which are involved in surface conduction that mainly controls the electrical resistance of fly ash in this temperature range,
This is due to the fact that the amount of H2SO4 produced in No. 3 is not sufficient by combustion of the above-mentioned low sulfur coal.

一般に、石炭焚ボイラにおいては、SO3量は排ガス中
の全SOx量のほぼ1%と考えられ、SOx量は石炭中
の可燃硫黄分に比例する。
Generally, in a coal-fired boiler, the amount of SO3 is considered to be approximately 1% of the total amount of SOx in the exhaust gas, and the amount of SOx is proportional to the combustible sulfur content in the coal.

一方、現在主流と考えられている前記の選択的?式接触
還元法に用いられる触媒には、NH3存在下でのNOx
の還元作用(6NO+4NH3g5N2+6H20)の
他、SOの酸化作用(SO2→SO3)を促進するよう
なものがある。
On the other hand, the aforementioned selective option that is currently considered mainstream? The catalyst used in the catalytic reduction method includes NOx in the presence of NH3.
In addition to the reducing action of (6NO+4NH3g5N2+6H20), there are substances that promote the oxidizing action of SO (SO2→SO3).

ただし、従来は、このような触媒を用いてSO3を多量
に発生させると前記(1) , (2)で述べたような
欠点が生起してしまうという理由により、該触媒の使用
を忌避する方向にあった。
However, conventionally, the use of such catalysts has been avoided due to the drawbacks mentioned in (1) and (2) above when generating a large amount of SO3 using such catalysts. It was there.

そこで本発明は、電気集塵装置に前置される乾式脱硝装
置においてむしろ適当なSO2→SO3転化作用を付与
することにより電気集塵装置の集塵性能の向上を図ると
共に、二次公害を引き起こすような過度のSO2→SO
3転化および高硫黄石炭燃焼時の過剰なSO3発生を防
ぎつつ上記集塵性能の向上に必要な量の803を発生さ
せることを目的としてなされたものである。
Therefore, the present invention aims to improve the dust collection performance of the electrostatic precipitator by imparting an appropriate SO2→SO3 conversion action to the dry denitrification device installed in front of the electrostatic precipitator, while also preventing secondary pollution. Excessive SO2 → SO
This was done with the aim of generating the amount of 803 necessary to improve the above-mentioned dust collection performance while preventing excessive SO3 generation during tertiary conversion and high sulfur coal combustion.

すなわち本発明は、排ガスを乾式接触還元法による脱硝
装置とその後流に熱交換器を介して設置された電気集塵
器とにより処理する装置において、前記脱硝装置にNO
xの還元作用を有する触媒と?O2のSO3への転化作
用を有する触媒を組込み、1かつ該SOのSO3への転
化作用を有する触媒部分の接気面積を調整することによ
り、前記電気集塵器での逆電離現象を防ぐのに必要な量
のS03を前記脱硝装置にて発生させるようにしたこと
を特徴とする排ガスの処理方法を要旨とするものである
That is, the present invention provides a device for treating exhaust gas using a denitrification device using a dry catalytic reduction method and an electrostatic precipitator installed downstream thereof via a heat exchanger.
What is a catalyst that has a reducing effect on x? The reverse ionization phenomenon in the electrostatic precipitator can be prevented by incorporating a catalyst having the action of converting O2 into SO3 and adjusting the contact area of the catalyst part having the action of converting SO into SO3. The gist of the present invention is to provide a method for treating exhaust gas, characterized in that the amount of S03 required for this is generated in the denitrification device.

以下、添付図面により本発明方法を更に詳細に説明する
Hereinafter, the method of the present invention will be explained in more detail with reference to the accompanying drawings.

第6図は本発明方法の一実施態様例を示すフローシ一ト
である。
FIG. 6 is a flow sheet showing an embodiment of the method of the present invention.

第6図において、石炭焚ボイラ等の燃焼機器1からのN
Ox ,SOxおよびフライアッシュ等のダストを含む
排ガスは、NH3注入手段2からNH3が添加された後
、通常300〜400℃の温度範囲で本発明に係る脱硝
装置3′に入り、この温度範囲で排ガス中のNOxがN
H3と触媒との作用でN2とH20とに分解されると同
時に、排ガス中のSO2が触媒の作用でSO3へ転化さ
れる。
In Figure 6, N from combustion equipment 1 such as a coal-fired boiler
After NH3 is added from the NH3 injection means 2, the exhaust gas containing dust such as Ox, SOx and fly ash enters the denitrification device 3' according to the present invention at a temperature range of usually 300 to 400°C, and is denitrified in this temperature range. NOx in exhaust gas is N
H3 is decomposed into N2 and H20 by the action of the catalyst, and at the same time, SO2 in the exhaust gas is converted to SO3 by the action of the catalyst.

この触媒には、NOxの還元作用を有するものとして酸
化物で活性を示すベースメタル系ないし金属元素で活性
を示す貴金属系までの乾式接触還元法による脱硝触媒な
いしこれに準ずるものが、使用条件および使用目的に応
じて単独あるいは組み合わせて用いられ、またSO2の
SO3への転化作用を有するものとして五酸化バナジウ
ム系の化?物等その他SOのSO3への転化作用を有す
るものが用いられる。
This catalyst can be a base metal based catalyst that is active with oxides or a noble metal based catalyst that is active with metal elements, which has a NOx reduction effect, or a denitrification catalyst based on a dry catalytic reduction method, or something similar thereto, depending on the usage conditions. Vanadium pentoxide is used alone or in combination depending on the purpose of use, and has the effect of converting SO2 to SO3. A substance having an effect of converting SO into SO3 is used.

これらのNOxの還元作用を有するものとSO2とSO
3への転化作用を有するものとは、後述するように、そ
れぞれ別々の担体に担持させる等してそれぞれ別々に併
列または直列状に配置してもよいし、あるいは両者を必
要比率に混成して用いてもよい。
These substances that have a reducing effect on NOx, SO2 and SO
As described later, the substances having the conversion effect to 3 may be supported on separate carriers and arranged separately in parallel or in series, or they may be mixed in the required ratio. May be used.

上記脱硝装置3′で処理された排ガスは、熱交換器4で
熱交換され100〜170℃に冷却された後、電気集塵
器5へ導かれ除塵される。
The exhaust gas treated in the denitrification device 3' is heat exchanged in a heat exchanger 4 and cooled to 100 to 170°C, and then led to an electrostatic precipitator 5 to remove dust.

第1図は、本発明に係る脱硝装置3′の一具体例を示す
図で、11は入口ノズル、12は出口ノズル、15はN
Ox還元作用を有する触媒(以下、NOx還元用触媒と
称す)とSO2のSO3への転化作用を有する触媒(以
下SO2転化用触媒と称すとを混成した触媒、16は該
触媒15の抜出しおよび供給手段である。
FIG. 1 is a diagram showing a specific example of a denitrification device 3' according to the present invention, in which 11 is an inlet nozzle, 12 is an outlet nozzle, and 15 is an N
A catalyst 16 is a mixture of a catalyst having an Ox reduction effect (hereinafter referred to as a NOx reduction catalyst) and a catalyst having an effect of converting SO2 into SO3 (hereinafter referred to as an SO2 conversion catalyst); reference numeral 16 indicates the extraction and supply of the catalyst 15; It is a means.

該抜出しおよび供給手段16は、上記触媒15の被毒に
よる性能劣化時あ?いはダスト堆積による圧力増加時に
、排ガス処理装置全体の運転を一時中断ずることなく触
媒を再生、清掃あるいは交換するために設けられる通常
の抜出しおよび供給手段であるが、本発明では電気集塵
器の集塵性能維持に必要でかつ系外へのSO3漏洩が問
題とならない量的範囲でSOのSO3への転化が行なえ
るように(すなわちSO2のSO3への転化作用を有す
る触媒部分への接気面積を調整するように)、使用燃料
中のS分あるいは電気集塵器入口SO3量を選定条件と
して上記触媒15の抜出しおよび供給量を変更し得る機
能を備えたものとする。
When the performance of the extraction and supply means 16 deteriorates due to poisoning of the catalyst 15, However, in the present invention, an electrostatic precipitator is used. In order to convert SO to SO3 in a quantitative range that is necessary to maintain the dust collection performance of the system and in which leakage of SO3 to the outside of the system is not a problem (i.e., contact with the catalyst part that has the function of converting SO2 to SO3). The catalyst 15 is equipped with a function to change the extraction and supply amount of the catalyst 15 using the S content in the fuel used or the SO3 amount at the entrance of the electrostatic precipitator as a selection condition so as to adjust the gas area.

例えば、NOx還元用触媒とSO2転化用触媒との粒径
を変え(例、NOx還元用触媒を大粒径のものとし、S
O2転化用触媒を小粒径のものとする)、混成触媒15
を抜出した後、篩分けし、両触媒の供給量を調節する。
For example, the particle size of the NOx reduction catalyst and the SO2 conversion catalyst may be changed (e.g., the NOx reduction catalyst may have a large particle size, and the
O2 conversion catalyst of small particle size), hybrid catalyst 15
After being extracted, it is sieved and the supply amounts of both catalysts are adjusted.

なお、上記選定条件のうち電気集塵器入口SO3量につ
いて本発明者等が行なった一実験結果によれば、第8図
に示すように該SO3量が20〜30ppmである時第
6図に示すフローにおける電気集塵器5の運転温度12
0〜170℃で正常な集塵性能を維持できることが判る
According to the results of an experiment conducted by the present inventors regarding the amount of SO3 at the inlet of the electrostatic precipitator among the above selection conditions, as shown in FIG. 8, when the amount of SO3 is 20 to 30 ppm, Operating temperature 12 of the electrostatic precipitator 5 in the flow shown
It can be seen that normal dust collection performance can be maintained at 0 to 170°C.

第8図は、低硫黄石炭焚ボイラ排ガスフライアッシュを
一例として用いた場合の電気集塵器入口SO3量と集塵
性能との関係を示す図表で、該図中A,Bは前記した第
5図中のA,Bと同義である。
Figure 8 is a chart showing the relationship between the amount of SO3 at the electrostatic precipitator inlet and dust collection performance when low sulfur coal-fired boiler exhaust gas fly ash is used as an example. This is synonymous with A and B in the figure.

第9図は、本発明に係る脱硝装置3′の他の具体例を示
す図で、13は層状、板状、ジグザグ状等状況に応じて
配置されたNOx還元用触媒、14は該触媒13と同様
に配置されたSO2転化用触媒で、該触媒14中にバイ
パス流量調整ダンパ17を具備させる。
FIG. 9 is a diagram showing another specific example of the denitrification device 3' according to the present invention, in which 13 is a NOx reduction catalyst arranged in a layered, plate-like, zigzag, etc. shape depending on the situation, and 14 is the catalyst 13. The SO2 conversion catalyst is arranged in the same manner as above, and a bypass flow rate adjustment damper 17 is provided in the catalyst 14.

該バイパス流量調整ダンパ17は、触媒14の接気面積
を調整する手段であり、これが全閉の時は排ガスの全量
が上記触媒14中を通過してSO3量が増加し、全開の
時は該触媒14の通気抵抗のため排ガスのほぼ全量がバ
イパスして803量が低下する。
The bypass flow rate adjusting damper 17 is a means for adjusting the air contact area of the catalyst 14. When it is fully closed, the entire amount of exhaust gas passes through the catalyst 14, increasing the amount of SO3, and when it is fully open, the amount of SO3 increases. Due to the ventilation resistance of the catalyst 14, almost all of the exhaust gas is bypassed and the amount of 803 is reduced.

従って、該バイパス流量調整ダンパ17の開度を調節す
ることにより、電気集塵器の集塵性能を維持するのに必
要でかつ系外への漏洩が問題とならないSO3を任意に
発生させることができる。
Therefore, by adjusting the opening degree of the bypass flow rate adjustment damper 17, it is possible to arbitrarily generate SO3 that is necessary to maintain the dust collection performance of the electrostatic precipitator and that does not cause problems with leakage to the outside of the system. can.

また、このバイパス流量調整ダンパ17に限ることなく
、バイパス流量を調節し得る手段であればどのようなも
のでもよい。
Furthermore, the present invention is not limited to this bypass flow rate adjusting damper 17, and any means that can adjust the bypass flow rate may be used.

更に、触媒13と触媒14とは図示するように間隔を設
けて配置するものに限らず、両触媒13.14を接して
配置してもよい。
Furthermore, the catalyst 13 and the catalyst 14 are not limited to being arranged with a space between them as shown in the figure, but both catalysts 13 and 14 may be arranged in contact with each other.

第10図は、本発明に係る脱硝装置3′を2基併設した
もので、この場合は各脱硝装置3′に例えば層厚を変え
てSO2のSO3への転化作用を有する触媒1 41,
1 42を配置しておき、各脱硝装置3′への排ガス
流量を出ロダンパ18.19にて調整することにより、
SO2のSO3への転化作用を有する触媒部分の接気面
積を調整するものである。
FIG. 10 shows a configuration in which two denitrification devices 3' according to the present invention are installed together. In this case, each denitrification device 3' has a catalyst 1 41 having a layer thickness that is changed to convert SO2 into SO3,
1 42 and adjust the exhaust gas flow rate to each denitrification device 3' with the output damper 18, 19.
This is to adjust the air contact area of the catalyst portion that has the function of converting SO2 to SO3.

また、脱硝装置3lを2基併設するまでもなく、異なる
SO2→SO3転化率を有する触媒141,142への
排ガス流量配分比を変更できる機構が設けられていれば
1基でもよい。
Furthermore, there is no need to install two denitrification devices 3l, but only one denitrification device 3l may be installed as long as a mechanism is provided that can change the exhaust gas flow rate distribution ratio to the catalysts 141 and 142 having different SO2→SO3 conversion rates.

第11図は、上記第9図の変形例で、第11図Aは全体
図、第11図Bは触媒14部の詳細図である。
FIG. 11 shows a modification of FIG. 9, in which FIG. 11A is an overall view and FIG. 11B is a detailed view of the catalyst 14 portion.

すなわち、触媒14を複数の板状構成とし、各触媒14
に遮蔽手段20を第11図Bの矢印方向に移動自在に取
り付け、該遮蔽手段2oの移動により触媒14の接気面
積を調整するものである。
That is, the catalyst 14 has a plurality of plate-like configurations, and each catalyst 14
A shielding means 20 is attached so as to be movable in the direction of the arrow in FIG. 11B, and the contact area of the catalyst 14 is adjusted by moving the shielding means 2o.

また、第12図は、触媒14をジグザグ状に配置する場
合の接気面積調整法を示すものである。
Further, FIG. 12 shows a method for adjusting the air contact area when the catalysts 14 are arranged in a zigzag pattern.

すなわち、ジグザグ状に配置された触媒14にダンパ2
1を取り付け、該ダンパ21を閉じることにより他部の
流速を上げ接気面積を小さくすることができる。
That is, the damper 2 is connected to the catalyst 14 arranged in a zigzag pattern.
1 and closing the damper 21 can increase the flow velocity in other parts and reduce the contact area.

実施例 脱硝装置3′として第9図に示すものを用い、第6図の
フローに沿って次の実験を行った。
EXAMPLE Using the denitrification apparatus 3' shown in FIG. 9, the following experiment was conducted according to the flow shown in FIG.

入口SO2濃度を200ppm、500ppm、100
0ppmと変え、ダンパ17の開度を種々変化させてS
O2転化用触媒14の接気面積(すなわち、触媒14?
の通気量)を変え、該接気面積と電気集塵器(EP)5
人口SO3量との関係を調べた。
Inlet SO2 concentration 200ppm, 500ppm, 100ppm
0 ppm, and varied the opening degree of the damper 17.
The contact area of the O2 conversion catalyst 14 (i.e., the catalyst 14?
change the airflow rate), and change the contact area and electrostatic precipitator (EP)5.
We investigated the relationship with the amount of SO3 in the population.

この結果は第13図に示す通りであった。The results were as shown in FIG.

第13図中、101はSO−200ppm、102はS
O2=500ppm、103はSO2=1000ppm
の場合の結果である。
In Figure 13, 101 is SO-200ppm, 102 is S
O2=500ppm, 103 is SO2=1000ppm
This is the result for the case.

第13図から明らかなように、電気集塵器5入口SO3
量の目標値を30ppm(第3図中、点線104)とし
た場合、高S炭(S分1.2%で、SO2は約1000
ppm発生)を燃料として使用する際には接気面積を約
25%とすれば、上記の目標SO3量が得られ、また低
S炭(S分0.25%で、SO2は約200ppm発生
)を燃料として使用する際には接気面積を約100%と
することにより、上記の目標SO3量が得られることが
判る。
As is clear from Fig. 13, the electrostatic precipitator 5 inlet SO3
When the target value for the amount is 30 ppm (dotted line 104 in Figure 3), high S coal (S content 1.2%, SO2 is about 1000
When using low S coal (with a S content of 0.25% and SO2 generation of approximately 200 ppm) as fuel, the above target SO3 amount can be obtained by setting the air contact area to approximately 25%. It can be seen that when using SO3 as fuel, the above target amount of SO3 can be obtained by setting the contact area to about 100%.

なお、上記のS分0,25%炭より更に低S炭を燃料と
する際には、触媒14の使用量を増やし、接気面積10
0%時の転化率を向上させることにより対処することが
できる。
When using coal with a lower S content as fuel than the above-mentioned 0.25% S content coal, the amount of catalyst 14 used is increased and the contact area is increased to 10%.
This can be dealt with by increasing the conversion rate at 0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は従来の石炭焚ボイラ排ガス処理方法を示す
フロー、第5図は電気集塵装置の運転温度とダストの電
気抵抗との関係を示す図表、第6図は本発明装置の一使
用例を示すフロー、第7,8,10.11図は本発明に
係る脱硝装置の具体例を示す説明図、第12図は本発明
に係る脱硝装置内のSO2のSO3への転化作用を有す
る触媒の一配置例を示す説明図、第8図は電気集塵器の
運転温度と入口SO3量とダストの電気抵抗との関係を
示す図表、第13図は本発明の実施例で得られた結果を
示す図表である。
Figures 1 to 4 are flowcharts showing a conventional coal-fired boiler exhaust gas treatment method, Figure 5 is a chart showing the relationship between the operating temperature of an electrostatic precipitator and the electrical resistance of dust, and Figure 6 is a diagram showing a diagram of the apparatus of the present invention. Flowcharts showing usage examples, Figures 7, 8, 10 and 11 are explanatory diagrams showing specific examples of the denitrification equipment according to the present invention, and Figure 12 shows the conversion action of SO2 to SO3 in the denitrification equipment according to the present invention. FIG. 8 is a diagram showing the relationship between the operating temperature of the electrostatic precipitator, the amount of SO3 at the inlet, and the electrical resistance of dust, and FIG. This is a chart showing the results.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスを乾式接触還元法による脱硝装置とその後流
に熱交換器を介して設置された電気集塵器とに1り処理
する方法において、前記脱硝装置にNOx還元作用を有
する触媒とSO2のSO3への転化作用を有する触媒を
組込み;かつ該SO2のSO3への転化作用を有する触
媒部分の接気面積を調整することにより、前記電気集塵
器での逆電離現象を防ぐのに必要な量のSO2を前記脱
硝装置にて発生させるようにしたことを特徴とする排ガ
スの処理方法。
1. A method in which exhaust gas is treated in a denitrification device using a dry catalytic reduction method and an electrostatic precipitator installed downstream thereof via a heat exchanger, in which the denitrification device is equipped with a catalyst having an NOx reduction effect and an SO3 of SO2. By incorporating a catalyst having the action of converting SO2 into SO3; and adjusting the contact area of the catalyst portion having the action of converting SO2 into SO3, the amount necessary to prevent the reverse ionization phenomenon in the electrostatic precipitator. A method for treating exhaust gas, characterized in that SO2 is generated in the denitrification device.
JP53003308A 1978-01-18 1978-01-18 Exhaust gas treatment method Expired JPS583730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53003308A JPS583730B2 (en) 1978-01-18 1978-01-18 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53003308A JPS583730B2 (en) 1978-01-18 1978-01-18 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPS5496470A JPS5496470A (en) 1979-07-30
JPS583730B2 true JPS583730B2 (en) 1983-01-22

Family

ID=11553718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53003308A Expired JPS583730B2 (en) 1978-01-18 1978-01-18 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPS583730B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135526U (en) * 1984-07-31 1986-03-05 中尾 一俊 wire sling
JPS6314314U (en) * 1986-07-11 1988-01-30
JPH0314911Y2 (en) * 1985-07-19 1991-04-02
JPH0412747Y2 (en) * 1986-10-21 1992-03-26
CN106731828A (en) * 2017-02-21 2017-05-31 毛凡景 A kind of method for the joint removing of Industrial Stoves desulphurization denitration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135526U (en) * 1984-07-31 1986-03-05 中尾 一俊 wire sling
JPH0314911Y2 (en) * 1985-07-19 1991-04-02
JPS6314314U (en) * 1986-07-11 1988-01-30
JPH0412747Y2 (en) * 1986-10-21 1992-03-26
CN106731828A (en) * 2017-02-21 2017-05-31 毛凡景 A kind of method for the joint removing of Industrial Stoves desulphurization denitration

Also Published As

Publication number Publication date
JPS5496470A (en) 1979-07-30

Similar Documents

Publication Publication Date Title
RU2007147908A (en) METHOD AND DEVICE FOR TREATMENT OF EXHAUST GASES FORMED WHEN WORKING INTERNAL COMBUSTION ENGINES
GB2082085A (en) Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
MXPA04006507A (en) Exhaust gas treatment system.
JPH0667453B2 (en) Denitration equipment
JP2008241061A (en) Flue gas treatment facility
JP6636259B2 (en) Exhaust gas aftertreatment system and method for exhaust gas aftertreatment
CN109647158B (en) Flue gas desulfurization and denitrification system of circulating fluidized bed boiler and treatment method thereof
JPS583730B2 (en) Exhaust gas treatment method
EP3036480B1 (en) Arrangement and method for flue gas stream bypass during selective catalytic reduction
JPH11300164A (en) Boiler plant having denitration device, and denitration method
JPH0366006B2 (en)
JP3112570B2 (en) Exhaust gas heating device for flue gas denitration equipment
CN113663490A (en) Method for removing sulfur oxides in catalytic cracking regeneration flue gas in cascade manner
CN209188514U (en) One kind being based on ammonia process-SCR combined desulfurization and denitration system
EP0468205B1 (en) Apparatus for treating exhaust gas
JPH0345812A (en) Method for treating gas discharged from pulverized coal-burning boiler
JPH11165043A (en) Treatment of waste gas of waste incinerator
JPH0568850A (en) Method for simultaneously denitrating and desulfurizing exhaust gas of combustor
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
JPH01135519A (en) Exhaust gas treating process
JPH08257363A (en) Exhaust gas treatment method
WO2020161874A1 (en) Combustion system
JPH0194925A (en) Apparatus for removing nitrogen oxides in flue gas
WO2020161875A1 (en) Combustion system
JPH0352624A (en) Dry simultaneous desulfurization and denitrification