WO2020161874A1 - Combustion system - Google Patents

Combustion system Download PDF

Info

Publication number
WO2020161874A1
WO2020161874A1 PCT/JP2019/004518 JP2019004518W WO2020161874A1 WO 2020161874 A1 WO2020161874 A1 WO 2020161874A1 JP 2019004518 W JP2019004518 W JP 2019004518W WO 2020161874 A1 WO2020161874 A1 WO 2020161874A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitration
ammonia
exhaust gas
amount
denitration device
Prior art date
Application number
PCT/JP2019/004518
Other languages
French (fr)
Japanese (ja)
Inventor
英嗣 清永
吉田 和広
啓一郎 盛田
徹 村山
春田 正毅
雄介 猪股
Original Assignee
中国電力株式会社
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 公立大学法人首都大学東京 filed Critical 中国電力株式会社
Priority to PCT/JP2019/004518 priority Critical patent/WO2020161874A1/en
Priority to JP2019538457A priority patent/JPWO2020161874A1/en
Publication of WO2020161874A1 publication Critical patent/WO2020161874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present invention relates to a combustion system.
  • a denitration device is installed in the power plant to reduce and decompose nitrogen oxides.
  • This denitration device is filled with a denitration catalyst, and by coexisting ammonia (gas), a reduction reaction is expressed at high temperature.
  • this denitration catalyst efficiently performs a selective catalytic reduction reaction in a high temperature atmosphere of 300°C to 400°C, it is necessary to denitrate the exhaust gas containing a large amount of soot dust immediately after burning in the boiler. .. Therefore, when used for a long period of time, coal ash is deposited on the catalyst surface over time and covers the entire surface of the catalyst, which reduces the activity of the denitration catalyst.
  • Patent Document 1 monitors the temperature of the catalyst layer to automatically set the amount of unreacted leaked ammonia into the process gas to a predetermined value or less, and automatically detects the amount of ammonia when the temperature of the catalyst layer is low.
  • a method of controlling the injection amount of ammonia in a dry flue gas denitration device which controls the injection and activates the denitration device so that the amount of leaked ammonia does not exceed a predetermined value.
  • Patent Document 1 merely aims to prevent the amount of leaked ammonia from exceeding a predetermined value, and did not deal with the reduction of the denitration rate due to the deterioration of the denitration catalyst.
  • the present invention provides a combustion system capable of removing nitrogen oxides exceeding a regulation value while suppressing the amount of leaked ammonia to a predetermined value or less even when the denitration catalyst used in a denitration device is deteriorated. To aim.
  • the present invention is a combustion system, wherein a boiler that burns fuel, an exhaust passage through which exhaust gas generated by combustion of the fuel in the boiler flows, and an exhaust passage that are arranged in the exhaust passage A first denitration device that removes nitrogen oxides from the exhaust gas discharged from the boiler, and heat exchange between the exhaust gas and the combustion air in the exhaust passage and at a subsequent stage of the first denitration device.
  • An air preheater that supplies combustion air after heat exchange to the boiler and discharges exhaust gas after heat exchange;
  • a second denitration device that removes nitrogen oxides from the exhaust gas discharged from the air preheater, wherein the first denitration device includes a first ammonia injection part that injects ammonia into the exhaust gas;
  • An ammonia amount detection unit that detects the amount of leaked ammonia at the outlet of the first denitration device, and controls the amount of ammonia injected by the first ammonia injection unit based on the amount of leaked ammonia detected by the ammonia amount detection unit.
  • the second denitration device includes a first ammonia injection control unit, and a second ammonia injection unit that injects ammonia into the exhaust gas and a nitrogen oxide concentration at an outlet of the second denitration device.
  • a nitrogen oxide concentration detector for detecting, and a second ammonia injection controller for controlling the amount of ammonia injected by the second ammonia injector based on the nitrogen oxide concentration detected by the nitrogen oxide concentration detector.
  • a combustion system a combustion system.
  • the second denitration device has a denitration catalyst that contains vanadium pentoxide in an amount of 43 wt% or more, has a BET specific surface area of 30 m 2 /g or more, and is used for denitration at 200° C. or less.
  • the first ammonia injection control unit controls the ammonia injection amount so that the leak ammonia amount detected by the ammonia amount detection unit is 5 ppm or less.
  • a chimney that emits exhaust gas into the atmosphere is installed at the end of the exhaust passage, and the second denitration device is installed in the chimney.
  • the present invention even if the NOx removal catalyst used in the NOx removal device is deteriorated, it is possible to remove nitrogen oxides exceeding the regulation value while suppressing the amount of leaked ammonia to a predetermined value or less.
  • 1 is an overall configuration diagram of a combustion system according to a first embodiment of the present invention. It is a figure which shows the internal structure of the 1st denitration apparatus contained in the combustion system which concerns on 1st Embodiment of this invention. It is a figure which shows the structure of the denitration catalyst used by the 1st denitration apparatus contained in the combustion system which concerns on 1st Embodiment of this invention. It is a functional block diagram of the 1st denitration device contained in the combustion system concerning a 1st embodiment of the present invention. It is a graph which shows the property of the denitration catalyst used by the 2nd denitration device contained in the combustion system concerning a 1st embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a second denitration device included in the combustion system according to the first embodiment of the present invention. It is a whole block diagram of the combustion system which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is an overall configuration diagram of a combustion system 1 according to the first embodiment of the present invention.
  • the combustion system 1 includes a boiler 10 as a combustion device, a pulverized coal machine 20, an exhaust passage L1, a first denitration device 30, an air preheater 40, and a heat recovery device.
  • the gas heater 50, the dust collector 60, the second denitration device 70, the induced draft fan 80, the desulfurization device 90, the gas heater 100 as a heater, and the chimney 110 are provided.
  • the boiler 10 burns pulverized coal as fuel together with air.
  • combustion of pulverized coal produces exhaust gas.
  • combustion of pulverized coal produces coal ash such as clinker ash and fly ash.
  • the clinker ash generated in the boiler 10 is discharged to the clinker hopper 11 arranged below the boiler 10 and then conveyed to a coal ash recovery silo (not shown).
  • the boiler 10 is formed in a substantially inverted U shape as a whole.
  • the exhaust gas generated in the boiler 10 moves in an inverted U shape along the shape of the boiler 10.
  • the temperature of the exhaust gas in the vicinity of the exhaust gas outlet of the boiler 10 is, for example, 300 to 400°C.
  • the pulverized coal machine 20 pulverizes coal supplied from a coal bunker (not shown) into a fine particle size to form pulverized coal.
  • the pulverized coal machine 20 mixes pulverized coal and air to preheat and dry the pulverized coal.
  • the pulverized coal formed in the pulverized coal machine 20 is supplied to the boiler 10 by blowing air.
  • the exhaust passage L1 is connected to the boiler 10 on the upstream side.
  • the exhaust passage L1 is a passage through which exhaust gas generated in the boiler 10 flows.
  • the first denitration device 30 is arranged downstream of the boiler 10 in the exhaust path L1.
  • the exhaust gas generated from the boiler 10 is supplied to the first denitration device 30.
  • the first denitration device 30 removes nitrogen oxides from the exhaust gas with a denitration catalyst.
  • the configuration of the first denitration device 30 will be described in detail later.
  • the temperature of the exhaust gas in the first denitration device 30 is, for example, 300 to 400°C.
  • nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method.
  • nitrogen oxides can be efficiently removed from exhaust gas by producing nitrogen and water from nitrogen oxides with a reducing agent and a denitration catalyst.
  • the reducing agent used in the selective catalytic reduction method contains ammonia. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia and aqueous ammonia solution may be used.
  • the first denitration device 30 injects ammonia gas into the introduced exhaust gas, and then mixes the mixed gas with a honeycomb molded body having a denitration catalyst fixed thereon or an alumina carrying the denitration catalyst. It can be configured to contact fibers such as fibers. An example of the configuration of the first denitration device 30 will be described later.
  • the air preheater 40 is arranged in the exhaust path L1.
  • the air preheater 40 performs heat exchange between the exhaust gas and the combustion air sent from a forced draft fan (not shown), and recovers heat from the exhaust gas.
  • the air for combustion is heated in the air preheater 40 and then supplied to the boiler 10.
  • the gas heater 50 is arranged downstream of the air preheater 40 in the exhaust path L1.
  • the gas heater 50 is supplied with the exhaust gas whose heat is recovered in the air preheater 40.
  • the gas heater 50 further recovers heat from the exhaust gas.
  • the dust collector 60 is arranged downstream of the gas heater 50 in the exhaust path L1.
  • the dust collector 60 is supplied with the exhaust gas heat-recovered by the gas heater 50.
  • the dust collector 60 is a device that collects soot dust such as coal ash (fly ash) in the exhaust gas by applying a voltage to the electrodes.
  • the fly ash collected by the dust collector 60 is conveyed to a coal ash recovery silo (not shown).
  • the temperature of the exhaust gas in the dust collector 60 is, for example, 80 to 120°C.
  • the second denitration device 70 is arranged downstream of the dust collector 60 in the exhaust passage L1.
  • the second denitration device 70 is supplied with the exhaust gas after the soot dust is collected by the dust collector 60.
  • the second denitration device 70 removes nitrogen oxides from the exhaust gas with a denitration catalyst.
  • the configuration of the second denitration device 70 and the denitration catalyst used in the second denitration device 70 will be described in detail later.
  • the temperature of the exhaust gas in the second denitration device 70 is, for example, 130 to 200°C.
  • the second denitration device 70 removes nitrogen oxides from the exhaust gas by the selective catalytic reduction method.
  • the second denitration device 70 suppresses the emission amount of nitrogen oxides in the entire combustion system 1 to be equal to or less than the regulated value. Therefore, in the first denitration device 30, the deterioration of the denitration catalyst progresses and the decomposition is completed. The nitrogen oxides that were not present are removed.
  • the reducing agent used in the second denitration device contains ammonia. When ammonia is used as the reducing agent, any of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
  • the induction fan 80 is arranged on the exhaust path L1 downstream of the second denitration device 70.
  • the induced draft fan 80 takes in the exhaust gas from which the nitrogen oxides are removed in the second denitration device 70 from the primary side and sends it to the secondary side.
  • the desulfurization device 90 is arranged in the exhaust passage L1 downstream of the induced draft fan 80.
  • the exhaust gas sent from the induced draft fan 80 is supplied to the desulfurization device 90.
  • the desulfurization device 90 removes sulfur oxides from the exhaust gas.
  • the desulfurization apparatus 90 sprays a mixed liquid (limestone slurry) of limestone and water onto the exhaust gas to absorb the sulfur oxide contained in the exhaust gas into the mixed liquid and remove the sulfur oxide from the exhaust gas.
  • the temperature of the exhaust gas in the desulfurizer 90 is, for example, 50 to 120°C.
  • the gas heater 100 is arranged downstream of the desulfurization device 90 in the exhaust path L1. Exhaust gas from which sulfur oxides have been removed in the desulfurization device 90 is supplied to the gas heater 100.
  • the gas heater 100 heats exhaust gas.
  • the gas heater 50 and the gas heater 100 are composed of an exhaust gas flowing between the air preheater 40 and the dust collector 60 and an exhaust gas flowing between the second denitration device 70 and the desulfurization device 90 in the exhaust passage L1. You may comprise as a gas gas heater which heat-exchanges between them.
  • the chimney 110 is connected to the downstream side of the exhaust path L1.
  • the exhaust gas heated by the gas heater 100 is introduced into the chimney 110. Since the exhaust gas introduced into the chimney 110 is heated by the gas heater 100, it is effectively discharged from the upper part of the chimney 110 by the chimney effect. Further, by heating the exhaust gas in the gas heater 100, it is possible to prevent the vapor from condensing and producing white smoke above the chimney 110.
  • the temperature of the exhaust gas near the exit of the chimney 110 is 110° C., for example.
  • FIG. 2 is a configuration diagram of the first denitration device 30.
  • the first denitration device 30 includes a denitration reactor 31, a plurality of stages of denitration catalyst layers 32, 32, 32 arranged inside the denitration reactor 31, and a denitration catalyst layer 32.
  • a rectifying layer 33 arranged on the upstream side, a rectifying plate 34 arranged near the inlet of the denitration reactor 31, and an ammonia injection part 35 arranged on the upstream side of the denitration reactor 31 are provided.
  • the denitration reactor 31 serves as a place for the denitration reaction in the denitration device 30.
  • the denitration catalyst layers 32 are arranged inside the denitration reactor 31 in a plurality of stages (three stages in the present embodiment) along the flow path of the exhaust gas at predetermined intervals.
  • FIG. 3 is a configuration diagram of the denitration catalyst layer 32.
  • the denitration catalyst layer 32 includes, for example, a plurality of honeycomb catalysts 322 as denitration catalysts. More specifically, the denitration catalyst layer 32 includes a plurality of casings 321, a plurality of honeycomb catalysts 322 housed in the plurality of casings 321, and a seal member 323.
  • the casing 321 is composed of a rectangular tubular metal member with one end and the other end open.
  • the casing 321 is arranged such that the opened one end and the other end face the exhaust gas flow path in the denitration reactor 31, that is, the exhaust gas flows through the inside of the casing 321. Further, the plurality of casings 321 are connected and arranged so as to be in contact with each other so as to close the exhaust gas flow path in the denitration reactor 31.
  • the honeycomb catalyst 322 is formed in a long shape (rectangular solid shape) in which a plurality of exhaust gas circulation holes 324 extending in the longitudinal direction are formed.
  • the plurality of honeycomb catalysts 322 are arranged so that the exhaust gas flow holes 324 extend along the exhaust gas flow path.
  • the plurality of honeycomb catalysts 322 are arranged inside the denitration reactor 31 while being housed in the casing 321.
  • the seal member 323 is arranged between the honeycomb catalysts 322 that are arranged adjacent to each other in the lateral direction, and prevents the exhaust gas from flowing into the gap between the honeycomb catalysts 322 that are arranged adjacent to each other.
  • the seal member 323 is made of a sheet-like member having conductivity, and is provided at a predetermined length portion (for example, 150 mm from the end) on one end side and the other end side in the longitudinal direction of the honeycomb catalyst 322. It is wrapped around.
  • sealing member 323 it is possible to use ceramic paper which is configured by mixing conductive fibers or a conductive filler with an inorganic fiber and a binder containing alumina or silica as a main component.
  • the honeycomb catalyst 322 for example, one having a rectangular parallelepiped shape of 150 mm ⁇ 150 mm ⁇ 860 mm and 400 (20 ⁇ 20) exhaust gas circulation holes having an opening of 6 mm ⁇ 6 mm is used.
  • the casing 321 a casing capable of accommodating 72 honeycomb catalysts 322 (6 vertical ⁇ 12 horizontal) is used. Then, 120 to 150 of these casings 321 are used for one layer of the denitration catalyst layer 32. That is, 9000 to 10000 honeycomb catalysts 322 are installed in the single denitration catalyst layer 32.
  • the rectifying layer 33 is arranged on the upstream side of the denitration catalyst layer 32.
  • the rectification layer 33 is composed of a metal member or the like having a plurality of openings formed in a lattice shape, and partitions the exhaust gas flow path in the denitration reactor 31.
  • the rectification layer 33 rectifies the exhaust gas that flows through the exhaust passage L1 and is introduced into the denitration reactor 31, and evenly guides it to the denitration catalyst layer 32.
  • the rectifying plate 34 is arranged upstream of the rectifying layer 33 near the inlet of the denitration reactor 31. More specifically, the rectifying plate 34 is arranged at the bent portion of the denitration reactor 31 or the inner wall of the exhaust passage L1 and projects from the inner wall to the inner surface side.
  • the current plate 34 regulates the flow of the exhaust gas in the bent portion of the exhaust passage L1 or the denitration reactor 31.
  • the rectifying layer 33 and the rectifying plate 34 By rectifying the exhaust gas by the rectifying layer 33 and the rectifying plate 34, the uneven flow introduced to the denitration catalyst layer 32 is reduced, and clogging and abrasion of the denitration catalyst layer 32 due to dust are prevented.
  • the ammonia injection unit 35 is arranged on the upstream side of the denitration reactor 31 and injects ammonia into the exhaust passage L1.
  • the ammonia injecting section 35 ammonia is injected into the high temperature exhaust gas (300° C. to 400° C.) flowing through the exhaust passage L1.
  • the exhaust gas into which the ammonia has been injected is rectified by the rectifying plate 34 and the rectifying layer 33 and introduced into the denitration catalyst layer 32.
  • the nitrogen oxides and ammonia react with each other according to the following chemical reaction formula, and decomposed into harmless nitrogen and steam. .. 4NO+4NH 3 +O 2 ⁇ 4N 2 +6H 2 O NO+NO 2 +2NH 3 ⁇ 2N 2 +3H 2 O
  • the above method is called the selective catalytic reduction method.
  • the denitration rate is also improved, but unreacted NH 3 (hereinafter referred to as leak NH 3 ) is increased.
  • the leak NH 3 is large, it reacts with SO 3 in the exhaust gas to generate acidic ammonium sulfate (NH 4 HSO 4 ), and this acidic ammonium sulfate promotes the adhesion of dust contained in the exhaust gas, and the air preheater installed in the latter stage. The element etc. will be clogged. Therefore so that the leakage NH 3 equal to or less than a predetermined value, the management of the injection amount of NH 3 is performed.
  • the injection amount of NH 3 is controlled so that the leak NH 3 is 5 ppm or less.
  • FIG. 4 is a functional block diagram of the first denitration device 30.
  • the first denitration device 30 includes an ammonia injection unit 351, an ammonia amount detection unit 352, and an ammonia injection control unit 353 as functional blocks.
  • the ammonia injection unit 351 injects ammonia into the exhaust gas discharged from the boiler 10. Further, the ammonia injection unit 351 corresponds to the ammonia injection unit 35 in FIG.
  • the ammonia amount detection unit 352 detects the amount of leak NH 3 at the outlet of the first denitration device 30.
  • the ammonia injection control unit 353 controls the ammonia injection amount by the ammonia injection unit 351 based on the leak NH 3 amount detected by the ammonia amount detection unit 352.
  • the first denitration device 30 Since the first denitration device 30 has the above-described configuration, it is possible to control the injection amount of NH 3 so that the leak NH 3 becomes a certain value or less.
  • the second denitration device 70 has a plurality of stages of denitration catalyst layers containing a plurality of honeycomb catalysts as denitration catalysts as its internal configuration, as in the first denitration device 50.
  • a denitration catalyst having vanadium pentoxide in an amount of 43 wt% or more, a BET specific surface area of 30 m 2 /g or more, and used for denitration at 200° C. or lower is used.
  • V 2 O 5 Vanadium pentoxide obtained by thermally decomposing ammonium vanadate (NH 4 VO 3 ) in air at 300° C. for 4 hours was used as a denitration catalyst of Comparative Example 3.
  • the sample name of the denitration catalyst of Comparative Example 3 was “V 2 O 5 — 300”.
  • Comparative Example 5 Vanadium pentoxide obtained by thermally decomposing ammonium vanadate in air at 500° C. for 4 hours was used as a denitration catalyst of Comparative Example 5.
  • the sample name of the denitration catalyst of Comparative Example 5 was “V 2 O 5 — 500”.
  • FIG. 5 shows the NH 3 —SCR activity of the V 2 O 5 —SG catalyst.
  • FIG. 5(a) shows the NO conversion rate at each reaction temperature in the NH 3 —SCR reaction using each catalyst.
  • FIG. 5( b) shows the relationship between the vanadium:oxalic acid ratio and the NO conversion rate at a reaction temperature of 120° C.
  • Example 2 V 2 O 5 _SG_1:3
  • the NO conversion was the highest, and when oxalic acid was added further, the NO conversion decreased.
  • Example 3 (V 2 O 5 _SG_1:4) had a lower NO conversion rate than Example 1 (V 2 O 5 _SG_1:2), despite having a larger specific surface area.
  • each of V 2 O 5 _SG of Examples 1 to 3 and Comparative Example 1, and the above Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), and Comparative Example 5 are shown.
  • the relationship between the BET specific surface area and the NO conversion rate in (V 2 O 5 — 500) is shown.
  • the plots indicated by square points show the relationship between the BET specific surface area after the selective catalytic reduction reaction and the NO conversion rate in Example 2 (V 2 O 5 _SG_1:3). Again, the NO conversion was shown to be highest in Example 2 (V 2 O 5 _SG_1:3), which is a catalyst with a vanadium:oxalic acid ratio of 1:3.
  • the amount of acid sites on the catalyst surface can be estimated by NH 3 -TPD (TPD: thermal desorption program). Therefore, using Bellcat manufactured by Microtrac Bell, in a device, Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), Comparative Example 5 (V 2 O 5 _500), 0.1 g of each catalyst of Example 1 (V 2 O 5 _SG_1:2) and Example 2 (V 2 O 5 _SG_1:3) was pretreated for 1 hour at 300° C. under He (50 ml/min) flow. .. Then, the temperature was lowered to 100° C., and 5% ammonia/He (50 ml/min) was passed for 30 minutes to adsorb ammonia. The flowing gas was switched to He (50 ml/min), the temperature was stabilized for 30 minutes, the temperature was raised at 10° C./min, and ammonia having a mass number of 16 was monitored by a mass spectrometer.
  • TPD thermal
  • Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), Comparative Example 5 (V 2 O 5 _500), Example 1 (V 2 O 5 _SG_1:2), Example 2 ( Table 1 shows the measurement results of the amount of NH 3 desorption when each of V 2 O 5 —SG — 1:3) was used. When the values of these NH 3 desorption amount and the BET specific surface area of each catalyst are plotted, the graph of FIG. 7 is obtained. As can be seen from the graph of FIG. 7, it was shown that the amount of NH 3 desorbed increases substantially in proportion to the BET specific surface area of V 2 O 5 .
  • the denitration catalyst containing vanadium oxide in an amount of 43 wt% or more in terms of vanadium pentoxide and having a specific surface area of 30 m 2 /g or more is 200 High denitration efficiency at low temperature below °C. On the other hand, no SO 2 oxidation is observed.
  • the second denitration apparatus 70 vanadium oxide is present at 43 wt% or more in terms of vanadium pentoxide, and a denitration catalyst having a specific surface area of 30 m 2 /g or more is used. Even if it exists, it can exert a high denitration effect. Therefore, the second denitration device 70 suppresses the emission amount of nitrogen oxides in the entire combustion system 1 to be equal to or less than the regulation value, and therefore the first denitration device 30 is decomposed due to deterioration of the denitration catalyst. It becomes possible to remove nitrogen oxides that could not be cut off.
  • FIG. 9 is a functional block diagram of the second denitration device 70.
  • the second denitration device 70 includes an ammonia injection unit 751, a nitrogen oxide concentration detection unit 752, and an ammonia injection control unit 753 as functional blocks.
  • the ammonia injection unit 751 injects ammonia into the exhaust gas after the soot dust is collected in the dust collector 60.
  • the nitrogen oxide concentration detector 752 detects the nitrogen oxide concentration at the outlet of the second denitration device 70.
  • the ammonia injection control unit 753 controls the amount of ammonia injection by the ammonia injection unit 751 based on the nitrogen oxide concentration detected by the nitrogen oxide concentration detection unit 752.
  • the second denitration device 70 having the above-mentioned configuration makes it possible to control the injection amount of NH 3 so that the emission amount of nitrogen oxides in the entire combustion system 1 becomes equal to or less than the regulation value.
  • the combustion system 1 As described above, the combustion system 1 according to the first embodiment configured as described above is disposed in the exhaust passage L1 through which the exhaust gas generated from the boiler 10 that burns the fuel flows, and the exhaust passage L1.
  • the first denitration device 30 for removing nitrogen oxides from the exhaust gas discharged from the boiler 10 by the catalyst, and the second denitration catalyst from the air preheater 40 at the latter stage of the air preheater 40 arranged in the exhaust passage L1.
  • the second denitration device 70 is provided with a second denitration device 70 that removes nitrogen oxides from the exhaust gas that is discharged.
  • the first denitration device 30 controls the ammonia injection amount based on the leak NH 3 amount, and the second denitration device 70 The amount of ammonia injection is controlled based on the nitrogen oxide concentration at the outlet of the denitration device.
  • the denitration catalyst used in the first denitration device 30 is deteriorated, the amount of leak NH 3 leaked in the first denitration device 30 is suppressed to a predetermined value or less, and the nitrogen oxide exceeding the regulation value is exceeded. Can be removed. Further, it becomes possible to suppress the clogging of the air preheater 40 due to ammonium sulfate.
  • the second denitration device 70 uses vanadium pentoxide in an amount of 43 wt% or more, has a BET specific surface area of 30 m 2 /g or more, and uses a denitration catalyst used for denitration at 200° C. or lower.
  • the denitration catalyst capable of low-temperature denitration in the second denitration device 70 the nitrogen oxides that could not be completely removed in the first denitration device 30 in order to suppress the amount of leak NH 3 were removed. It is possible to remove the denitrification device 30 at a later stage.
  • FIG. 10 is an overall configuration diagram of a combustion system 1A according to the second embodiment of the present invention.
  • the difference between the combustion system 1A according to the second embodiment and the combustion system 1 according to the first embodiment will be mainly described below.
  • the combustion system 1A does not include the second denitration device 70 as shown in FIG. Instead, in the combustion system 1A, the chimney 110A has a function as a second denitration device.
  • the chimney 110A has therein a denitration device that uses the same denitration catalyst as that used in the second denitration device 70 in the first embodiment.
  • 11A to 11C show the internal structure of the chimney 110A.
  • the chimney 110A may be provided with a spiral groove 111 on the inner wall of the chimney 110A, and the low temperature denitration catalyst containing vanadium may be applied to the groove 111.
  • a stepwise fin 112 may be provided on the inner wall of the chimney 110A, and the low temperature denitration catalyst may be applied to the fin 112. More specifically, the low-temperature denitration catalyst is applied to the refractory bricks forming the spiral groove 111 and the stepped fin 112, and then fired to form the inner wall of the chimney 110A as the second denitration device. Is possible.
  • a denitration catalyst layer 113 having a honeycomb catalyst may be installed inside the chimney 110A, similarly to the second denitration device 70 included in the combustion system 1 of the first embodiment. Good.
  • the denitration catalyst layer 113 may be installed in one stage or in multiple stages.
  • the denitration catalyst layer 113 is additionally stacked, the denitration catalyst layer 113 having a honeycomb catalyst coated with the denitration catalyst may be installed at a height of 2 m to 25 m in the stack. This assumes that the honeycomb catalyst is about 1 m at the longest and the gap between the denitration catalyst layers 113 is about 3 m at the highest, and it is assumed that five denitration catalyst layers are installed.
  • the space of the second denitration device 70 in the combustion system 1 becomes unnecessary, and the low temperature denitration catalyst containing vanadium is applied to the inner wall of the chimney. This makes it possible to suppress corrosion.

Abstract

Provided is a combustion system that is capable of removing nitrogen oxides exceeding a regulation value while keeping the amount of ammonia slip level at or below a prescribed value, even when a denitration catalyst used in a denitration apparatus degrades. A combustion system 1 comprises: a first denitration apparatus 30 for removing nitrogen oxides from exhaust gas expelled from a boiler 10; and a second denitration apparatus 70, positioned downstream of an air preheater 40, for removing nitrogen oxides from exhaust gas expelled from the air preheater 40. The first denitration apparatus 30 controls ammonia dosage on the basis of the amount of ammonia slip. The second denitration apparatus 70 controls ammonia dosage on the basis of outlet nitrogen oxide concentration.

Description

燃焼システムCombustion system
 本発明は、燃焼システムに関する。 The present invention relates to a combustion system.
 石炭火力発電所では、石炭燃焼に伴い窒素酸化物が発生するが、大気汚染防止法等の規制により、その排出は一定水準以下に抑えて排出することとなっている。そこで発電所には、窒素酸化物を還元分解するために脱硝装置が設置されている。この脱硝装置には、脱硝触媒が充填されており、アンモニア(ガス)を共存させることで、高温化で還元反応を発現している。 At coal-fired power plants, nitrogen oxides are generated as coal burns, but due to regulations such as the Air Pollution Control Law, their emissions are restricted to below a certain level. Therefore, a denitration device is installed in the power plant to reduce and decompose nitrogen oxides. This denitration device is filled with a denitration catalyst, and by coexisting ammonia (gas), a reduction reaction is expressed at high temperature.
 この脱硝触媒は、300℃~400℃の高温雰囲気下において、効率的に選択的触媒還元反応を行うため、ボイラで燃焼した直後の、煤塵が非常に多く含まれた排ガスを脱硝する必要がある。そのため、長期間の利用により、石炭灰が経時的に触媒表面へ堆積し、触媒表面全体を覆うことで、脱硝触媒の活性が低下する。 Since this denitration catalyst efficiently performs a selective catalytic reduction reaction in a high temperature atmosphere of 300°C to 400°C, it is necessary to denitrate the exhaust gas containing a large amount of soot dust immediately after burning in the boiler. .. Therefore, when used for a long period of time, coal ash is deposited on the catalyst surface over time and covers the entire surface of the catalyst, which reduces the activity of the denitration catalyst.
 脱硝触媒の劣化が進んだ場合、脱硝反応に必要なアンモニア投入量を増やす必要があり、アンモニア投入量が多くなると、石炭由来の硫黄分と反応し硫酸アンモニウムが生成される。この硫酸アンモニアは、脱硝装置後段の熱交換器を閉塞させ、熱交換器において熱交換をするための排ガスを吸気することができなくなるため、発電所を停止しなくてはならないこともある。 When the NOx removal catalyst deteriorates, it is necessary to increase the amount of ammonia input required for the NOx removal reaction. When the amount of ammonia input increases, it reacts with the sulfur content derived from coal to produce ammonium sulfate. This ammonia sulfate blocks the heat exchanger in the latter stage of the denitration device, and cannot exhaust the exhaust gas for heat exchange in the heat exchanger, so the power plant may have to be stopped.
 この点、特許文献1は、処理ガス中への未反応のリークアンモニアのリーク量を所定値以下とするため、触媒層の温度を監視し、触媒層の温度が低い時点からアンモニアを自動的に注入制御し、リークアンモニア量が所定値を越えないように脱硝装置を起動する、乾式排煙脱硝装置におけるアンモニア注入量制御方法を開示している。 In this regard, Patent Document 1 monitors the temperature of the catalyst layer to automatically set the amount of unreacted leaked ammonia into the process gas to a predetermined value or less, and automatically detects the amount of ammonia when the temperature of the catalyst layer is low. Disclosed is a method of controlling the injection amount of ammonia in a dry flue gas denitration device, which controls the injection and activates the denitration device so that the amount of leaked ammonia does not exceed a predetermined value.
特開昭60-71027号公報JP-A-60-71027
 しかし、特許文献1に開示される方法は、単にリークアンモニア量が所定値を超えないことを目的とするものであり、脱硝触媒の劣化に伴う脱硝率の低下に対処するものではなかった。 However, the method disclosed in Patent Document 1 merely aims to prevent the amount of leaked ammonia from exceeding a predetermined value, and did not deal with the reduction of the denitration rate due to the deterioration of the denitration catalyst.
 本発明は、脱硝装置で用いられる脱硝触媒の劣化が進んでも、リークアンモニア量を所定値以下に抑えながら、規制値を超えた窒素酸化物を除去することが可能な燃焼システムを提供することを目的とする。 The present invention provides a combustion system capable of removing nitrogen oxides exceeding a regulation value while suppressing the amount of leaked ammonia to a predetermined value or less even when the denitration catalyst used in a denitration device is deteriorated. To aim.
 本発明は、燃焼システムであって、燃料を燃焼させるボイラと、前記ボイラにおいて前記燃料が燃焼することによって発生する排ガスが流通する排気路と、前記排気路に配置され、第1の脱硝触媒によって前記ボイラから排出される排ガスから窒素酸化物を除去する第1の脱硝装置と、前記排気路に配置され且つ前記第1の脱硝装置の後段において、排ガスと燃焼用空気との間で熱交換し、熱交換後の燃焼用空気を前記ボイラに供給し、熱交換後の排ガスを排出する空気予熱器と、前記排気路に配置され且つ前記空気予熱器の後段において、第2の脱硝触媒によって前記空気予熱器から排出される排ガスから窒素酸化物を除去する第2の脱硝装置とを備え、前記第1の脱硝装置は、前記排ガスに対してアンモニアを注入する第1のアンモニア注入部と、当該第1の脱硝装置の出口におけるリークアンモニア量を検知するアンモニア量検知部と、前記アンモニア量検知部によって検知されたリークアンモニア量に基づいて、前記第1のアンモニア注入部によるアンモニア注入量を制御する第1のアンモニア注入制御部とを備え、前記第2の脱硝装置は、前記排ガスに対してアンモニアを注入する第2のアンモニア注入部と、当該第2の脱硝装置の出口における窒素酸化物濃度を検知する窒素酸化物濃度検知部と、前記窒素酸化物濃度検知部によって検知された窒素酸化物濃度に基づいて、前記第2のアンモニア注入部によるアンモニア注入量を制御する第2のアンモニア注入制御部を備える、燃焼システムに関する。 The present invention is a combustion system, wherein a boiler that burns fuel, an exhaust passage through which exhaust gas generated by combustion of the fuel in the boiler flows, and an exhaust passage that are arranged in the exhaust passage A first denitration device that removes nitrogen oxides from the exhaust gas discharged from the boiler, and heat exchange between the exhaust gas and the combustion air in the exhaust passage and at a subsequent stage of the first denitration device. An air preheater that supplies combustion air after heat exchange to the boiler and discharges exhaust gas after heat exchange; A second denitration device that removes nitrogen oxides from the exhaust gas discharged from the air preheater, wherein the first denitration device includes a first ammonia injection part that injects ammonia into the exhaust gas; An ammonia amount detection unit that detects the amount of leaked ammonia at the outlet of the first denitration device, and controls the amount of ammonia injected by the first ammonia injection unit based on the amount of leaked ammonia detected by the ammonia amount detection unit. The second denitration device includes a first ammonia injection control unit, and a second ammonia injection unit that injects ammonia into the exhaust gas and a nitrogen oxide concentration at an outlet of the second denitration device. A nitrogen oxide concentration detector for detecting, and a second ammonia injection controller for controlling the amount of ammonia injected by the second ammonia injector based on the nitrogen oxide concentration detected by the nitrogen oxide concentration detector. And a combustion system.
 また、前記第2の脱硝装置は、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を用いることが好ましい。 In addition, it is preferable that the second denitration device has a denitration catalyst that contains vanadium pentoxide in an amount of 43 wt% or more, has a BET specific surface area of 30 m 2 /g or more, and is used for denitration at 200° C. or less.
 また、前記第1のアンモニア注入制御部は、前記アンモニア量検知部によって検知されたリークアンモニア量が5ppm以下となるように、アンモニア注入量を制御することが好ましい。 Further, it is preferable that the first ammonia injection control unit controls the ammonia injection amount so that the leak ammonia amount detected by the ammonia amount detection unit is 5 ppm or less.
 また、前記排気路の末端において、大気中に排ガスを放出する煙突が設置され、前記第2の脱硝装置は前記煙突内に設置されることが好ましい。 Further, it is preferable that a chimney that emits exhaust gas into the atmosphere is installed at the end of the exhaust passage, and the second denitration device is installed in the chimney.
 本発明によれば、脱硝装置で用いられる脱硝触媒の劣化が進んでも、リークアンモニア量を所定値以下に抑えながら、規制値を超えた窒素酸化物を除去することが可能となる。 According to the present invention, even if the NOx removal catalyst used in the NOx removal device is deteriorated, it is possible to remove nitrogen oxides exceeding the regulation value while suppressing the amount of leaked ammonia to a predetermined value or less.
本発明の第1実施形態に係る燃焼システムの全体構成図である。1 is an overall configuration diagram of a combustion system according to a first embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第1の脱硝装置の内部構成を示す図である。It is a figure which shows the internal structure of the 1st denitration apparatus contained in the combustion system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃焼システムに含まれる第1の脱硝装置で用いられる脱硝触媒の構成を示す図である。It is a figure which shows the structure of the denitration catalyst used by the 1st denitration apparatus contained in the combustion system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃焼システムに含まれる第1の脱硝装置の機能ブロック図である。It is a functional block diagram of the 1st denitration device contained in the combustion system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第2の脱硝装置で用いられる脱硝触媒の性質を示すグラフである。It is a graph which shows the property of the denitration catalyst used by the 2nd denitration device contained in the combustion system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第2の脱硝装置で用いられる脱硝触媒の性質を示すグラフである。It is a graph which shows the property of the denitration catalyst used by the 2nd denitration device contained in the combustion system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第2の脱硝装置で用いられる脱硝触媒の性質を示すグラフである。It is a graph which shows the property of the denitration catalyst used by the 2nd denitration device contained in the combustion system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第2の脱硝装置で用いられる脱硝触媒の性質を示すグラフである。It is a graph which shows the property of the denitration catalyst used by the 2nd denitration device contained in the combustion system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃焼システムに含まれる第2の脱硝装置の機能ブロック図である。FIG. 3 is a functional block diagram of a second denitration device included in the combustion system according to the first embodiment of the present invention. 本発明の第2実施形態に係る燃焼システムの全体構成図である。It is a whole block diagram of the combustion system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る燃焼システムに含まれる第2の脱硝装置としての煙突の内部構成を示す図である。It is a figure which shows the internal structure of the chimney as a 2nd denitration apparatus contained in the combustion system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る燃焼システムに含まれる第2の脱硝装置としての煙突の内部構成を示す図である。It is a figure which shows the internal structure of the chimney as a 2nd denitration apparatus contained in the combustion system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る燃焼システムに含まれる第2の脱硝装置としての煙突の内部構成を示す図である。It is a figure which shows the internal structure of the chimney as a 2nd denitration apparatus contained in the combustion system which concerns on 2nd Embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔1.第1実施形態〕
〔1.1 全体構成〕
 図1は、本発明の第1の実施形態に係る燃焼システム1の全体構成図である。図1に示すように、燃焼システム1は、燃焼装置としてのボイラ10と、微粉炭機20と、排気路L1と、第1の脱硝装置30と、空気予熱器40と、熱回収器としてのガスヒータ50と、集塵装置60と、第2の脱硝装置70と、誘引通風機80と、脱硫装置90と、加熱器としてのガスヒータ100と、煙突110と、を備える。
[1. First Embodiment]
[1.1 Overall configuration]
FIG. 1 is an overall configuration diagram of a combustion system 1 according to the first embodiment of the present invention. As shown in FIG. 1, the combustion system 1 includes a boiler 10 as a combustion device, a pulverized coal machine 20, an exhaust passage L1, a first denitration device 30, an air preheater 40, and a heat recovery device. The gas heater 50, the dust collector 60, the second denitration device 70, the induced draft fan 80, the desulfurization device 90, the gas heater 100 as a heater, and the chimney 110 are provided.
 ボイラ10は、燃料としての微粉炭を空気と共に燃焼させる。ボイラ10において、微粉炭が燃焼することにより排ガスが発生する。なお、微粉炭が燃焼することによって、クリンカアッシュ及びフライアッシュ等の石炭灰が生成する。ボイラ10において生成するクリンカアッシュは、ボイラ10の下方に配置されるクリンカホッパ11に排出されてから、図示しない石炭灰回収サイロに搬送される。 The boiler 10 burns pulverized coal as fuel together with air. In the boiler 10, combustion of pulverized coal produces exhaust gas. In addition, combustion of pulverized coal produces coal ash such as clinker ash and fly ash. The clinker ash generated in the boiler 10 is discharged to the clinker hopper 11 arranged below the boiler 10 and then conveyed to a coal ash recovery silo (not shown).
 ボイラ10は、全体として略逆U字状に形成される。ボイラ10において生成する排ガスは、ボイラ10の形状に沿って逆U字状に移動する。ボイラ10の排ガスの出口付近における排ガスの温度は、例えば300~400℃である。 The boiler 10 is formed in a substantially inverted U shape as a whole. The exhaust gas generated in the boiler 10 moves in an inverted U shape along the shape of the boiler 10. The temperature of the exhaust gas in the vicinity of the exhaust gas outlet of the boiler 10 is, for example, 300 to 400°C.
 微粉炭機20は、図示しない石炭バンカから供給される石炭を、微細な粒度に粉砕して微粉炭を形成する。微粉炭機20は、微粉炭と空気とを混合することにより、微粉炭を予熱及び乾燥させる。微粉炭機20において形成された微粉炭は、エアーが吹きつけられることにより、ボイラ10に供給される。 The pulverized coal machine 20 pulverizes coal supplied from a coal bunker (not shown) into a fine particle size to form pulverized coal. The pulverized coal machine 20 mixes pulverized coal and air to preheat and dry the pulverized coal. The pulverized coal formed in the pulverized coal machine 20 is supplied to the boiler 10 by blowing air.
 排気路L1は、上流側がボイラ10に接続される。排気路L1は、ボイラ10において発生する排ガスが流通する流路である。 The exhaust passage L1 is connected to the boiler 10 on the upstream side. The exhaust passage L1 is a passage through which exhaust gas generated in the boiler 10 flows.
 第1の脱硝装置30は、排気路L1におけるボイラ10の下流側に配置される。第1の脱硝装置30には、ボイラ10から生成された排ガスが供給される。第1の脱硝装置30は、脱硝触媒によって排ガスから窒素酸化物を除去する。第1の脱硝装置30の構成について後段で詳述する。第1の脱硝装置30における排ガスの温度は、例えば300~400℃である。 The first denitration device 30 is arranged downstream of the boiler 10 in the exhaust path L1. The exhaust gas generated from the boiler 10 is supplied to the first denitration device 30. The first denitration device 30 removes nitrogen oxides from the exhaust gas with a denitration catalyst. The configuration of the first denitration device 30 will be described in detail later. The temperature of the exhaust gas in the first denitration device 30 is, for example, 300 to 400°C.
 第1の脱硝装置30では、選択接触還元法によって排ガスから窒素酸化物を除去する。選択接触還元法によれば、還元剤及び脱硝触媒によって窒素酸化物から窒素及び水を生成することで、排ガスから効率的に窒素酸化物を除去することができる。選択接触還元法において用いられる還元剤は、アンモニアを含む。還元剤としてアンモニアを用いる場合、アンモニアガス、液体アンモニア及びアンモニア水溶液のいずれの状態のアンモニアを用いてもよい。 In the first denitration device 30, nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method. According to the selective catalytic reduction method, nitrogen oxides can be efficiently removed from exhaust gas by producing nitrogen and water from nitrogen oxides with a reducing agent and a denitration catalyst. The reducing agent used in the selective catalytic reduction method contains ammonia. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia and aqueous ammonia solution may be used.
 より具体的には、第1の脱硝装置30は、導入された排ガスに対してアンモニアガスを注入してから、その混合ガスを、脱硝触媒を固定したハニカム成形体や脱硝触媒を担持させたアルミナ繊維等の繊維に接触させる構成とすることができる。なお、第1の脱硝装置30の構成例については後述する。 More specifically, the first denitration device 30 injects ammonia gas into the introduced exhaust gas, and then mixes the mixed gas with a honeycomb molded body having a denitration catalyst fixed thereon or an alumina carrying the denitration catalyst. It can be configured to contact fibers such as fibers. An example of the configuration of the first denitration device 30 will be described later.
 空気予熱器40は、排気路L1に配置される。空気予熱器40は、排ガスと図示しない押込式通風機から送り込まれる燃焼用の空気との間で熱交換を行い、排ガスから熱回収する。燃焼用の空気は、空気予熱器40において加熱されてからボイラ10に供給される。 The air preheater 40 is arranged in the exhaust path L1. The air preheater 40 performs heat exchange between the exhaust gas and the combustion air sent from a forced draft fan (not shown), and recovers heat from the exhaust gas. The air for combustion is heated in the air preheater 40 and then supplied to the boiler 10.
 ガスヒータ50は、排気路L1における空気予熱器40の下流側に配置される。ガスヒータ50には、空気予熱器40において熱回収された排ガスが供給される。ガスヒータ50は、排ガスから更に熱回収する。 The gas heater 50 is arranged downstream of the air preheater 40 in the exhaust path L1. The gas heater 50 is supplied with the exhaust gas whose heat is recovered in the air preheater 40. The gas heater 50 further recovers heat from the exhaust gas.
 集塵装置60は、排気路L1におけるガスヒータ50の下流側に配置される。集塵装置60には、ガスヒータ50において熱回収された排ガスが供給される。集塵装置60は、電極に電圧を印加することによって排ガス中の石炭灰(フライアッシュ)等の煤塵を収集する装置である。集塵装置60において捕集されるフライアッシュは、図示しない石炭灰回収サイロに搬送される。集塵装置60における排ガスの温度は、例えば80~120℃である。 The dust collector 60 is arranged downstream of the gas heater 50 in the exhaust path L1. The dust collector 60 is supplied with the exhaust gas heat-recovered by the gas heater 50. The dust collector 60 is a device that collects soot dust such as coal ash (fly ash) in the exhaust gas by applying a voltage to the electrodes. The fly ash collected by the dust collector 60 is conveyed to a coal ash recovery silo (not shown). The temperature of the exhaust gas in the dust collector 60 is, for example, 80 to 120°C.
 第2の脱硝装置70は、排気路L1における集塵装置60の下流側に配置される。第2の脱硝装置70には、集塵装置60において煤塵が収集された後の排ガスが供給される。第2の脱硝装置70は、脱硝触媒によって排ガスから窒素酸化物を除去する。第2の脱硝装置70の構成及び第2の脱硝装置70において用いられる脱硝触媒については、後段で詳述する。第2の脱硝装置70における排ガスの温度は、例えば130~200℃である。 The second denitration device 70 is arranged downstream of the dust collector 60 in the exhaust passage L1. The second denitration device 70 is supplied with the exhaust gas after the soot dust is collected by the dust collector 60. The second denitration device 70 removes nitrogen oxides from the exhaust gas with a denitration catalyst. The configuration of the second denitration device 70 and the denitration catalyst used in the second denitration device 70 will be described in detail later. The temperature of the exhaust gas in the second denitration device 70 is, for example, 130 to 200°C.
 第2の脱硝装置70は、第1の脱硝装置30と同様に、選択接触還元法によって排ガスから窒素酸化物を除去する。とりわけ、第2の脱硝装置70は、燃焼システム1全体としての窒素酸化物の排出量を規制値以下に抑えるため、第1の脱硝装置30において、脱硝触媒の劣化が進んだために分解しきれなかった窒素酸化物を除去する。
 また、第1の脱硝装置30と同様に、第2の脱硝装置において用いられる還元剤は、アンモニアを含む。還元剤としてアンモニアを用いる場合、アンモニアガス、液体アンモニア及びアンモニア水溶液のいずれの状態のアンモニアを用いてもよい。
The second denitration device 70, like the first denitration device 30, removes nitrogen oxides from the exhaust gas by the selective catalytic reduction method. In particular, the second denitration device 70 suppresses the emission amount of nitrogen oxides in the entire combustion system 1 to be equal to or less than the regulated value. Therefore, in the first denitration device 30, the deterioration of the denitration catalyst progresses and the decomposition is completed. The nitrogen oxides that were not present are removed.
Further, similar to the first denitration device 30, the reducing agent used in the second denitration device contains ammonia. When ammonia is used as the reducing agent, any of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
 誘引通風機80は、排気路L1における第2の脱硝装置70の下流側に配置される。誘引通風機80は、第2の脱硝装置70において窒素酸化物を除去した排ガスを、一次側から取り込んで二次側に送り出す。 The induction fan 80 is arranged on the exhaust path L1 downstream of the second denitration device 70. The induced draft fan 80 takes in the exhaust gas from which the nitrogen oxides are removed in the second denitration device 70 from the primary side and sends it to the secondary side.
 脱硫装置90は、排気路L1における誘引通風機80の下流側に配置される。脱硫装置90には、誘引通風機80から送り出された排ガスが供給される。脱硫装置90は、排ガスから硫黄酸化物を除去する。詳しくは、脱硫装置90は、排ガスに石灰石と水との混合液(石灰石スラリー)を吹き付けることによって、排ガスに含まれる硫黄酸化物を混合液に吸収させて、排ガスから硫黄酸化物を除去する。脱硫装置90における排ガスの温度は、例えば50~120℃である。 The desulfurization device 90 is arranged in the exhaust passage L1 downstream of the induced draft fan 80. The exhaust gas sent from the induced draft fan 80 is supplied to the desulfurization device 90. The desulfurization device 90 removes sulfur oxides from the exhaust gas. Specifically, the desulfurization apparatus 90 sprays a mixed liquid (limestone slurry) of limestone and water onto the exhaust gas to absorb the sulfur oxide contained in the exhaust gas into the mixed liquid and remove the sulfur oxide from the exhaust gas. The temperature of the exhaust gas in the desulfurizer 90 is, for example, 50 to 120°C.
 ガスヒータ100は、排気路L1における脱硫装置90の下流側に配置される。ガスヒータ100には、脱硫装置90において硫黄酸化物が除去された排ガスが供給される。ガスヒータ100は、排ガスを加熱する。ガスヒータ50及びガスヒータ100は、排気路L1における、空気予熱器40と集塵装置60との間を流通する排ガスと、第2の脱硝装置70と脱硫装置90との間を流通する排ガスと、の間で熱交換を行うガスガスヒータとして構成してもよい。 The gas heater 100 is arranged downstream of the desulfurization device 90 in the exhaust path L1. Exhaust gas from which sulfur oxides have been removed in the desulfurization device 90 is supplied to the gas heater 100. The gas heater 100 heats exhaust gas. The gas heater 50 and the gas heater 100 are composed of an exhaust gas flowing between the air preheater 40 and the dust collector 60 and an exhaust gas flowing between the second denitration device 70 and the desulfurization device 90 in the exhaust passage L1. You may comprise as a gas gas heater which heat-exchanges between them.
 煙突110は、排気路L1の下流側が接続される。煙突110には、ガスヒータ100において加熱された排ガスが導入される。煙突110に導入された排ガスは、ガスヒータ100によって加熱されていることから、煙突効果によって煙突110の上部から効果的に排出される。また、ガスヒータ100において排ガスが加熱されることで、煙突110の上方において水蒸気が凝縮して白煙が生じるのを防ぐことができる。煙突110の出口付近における排ガスの温度は、例えば110℃である。 The chimney 110 is connected to the downstream side of the exhaust path L1. The exhaust gas heated by the gas heater 100 is introduced into the chimney 110. Since the exhaust gas introduced into the chimney 110 is heated by the gas heater 100, it is effectively discharged from the upper part of the chimney 110 by the chimney effect. Further, by heating the exhaust gas in the gas heater 100, it is possible to prevent the vapor from condensing and producing white smoke above the chimney 110. The temperature of the exhaust gas near the exit of the chimney 110 is 110° C., for example.
〔1.2 第1の脱硝装置〕
 図2は、第1の脱硝装置30の構成図である。第1の脱硝装置30は、図2に示すように、脱硝反応器31と、この脱硝反応器31の内部に配置される複数段の脱硝触媒層32,32,32と、脱硝触媒層32の上流側に配置される整流層33と、脱硝反応器31の入口付近に配置される整流板34と、脱硝反応器31の上流側に配置されるアンモニア注入部35と、を備える。
[1.2 First denitration device]
FIG. 2 is a configuration diagram of the first denitration device 30. As shown in FIG. 2, the first denitration device 30 includes a denitration reactor 31, a plurality of stages of denitration catalyst layers 32, 32, 32 arranged inside the denitration reactor 31, and a denitration catalyst layer 32. A rectifying layer 33 arranged on the upstream side, a rectifying plate 34 arranged near the inlet of the denitration reactor 31, and an ammonia injection part 35 arranged on the upstream side of the denitration reactor 31 are provided.
 脱硝反応器31は、脱硝装置30における脱硝反応の場となる。
 脱硝触媒層32は、脱硝反応器31の内部に、排ガスの流路に沿って所定間隔をあけて複数段(本実施形態では3段)配置される。
The denitration reactor 31 serves as a place for the denitration reaction in the denitration device 30.
The denitration catalyst layers 32 are arranged inside the denitration reactor 31 in a plurality of stages (three stages in the present embodiment) along the flow path of the exhaust gas at predetermined intervals.
 図3は、脱硝触媒層32の構成図である。
 脱硝触媒層32は、図3に示すように、例として、脱硝触媒としての複数のハニカム触媒322を含んで構成される。より詳細には、脱硝触媒層32は、複数のケーシング321と、これら複数のケーシング321に収容される複数のハニカム触媒322と、シール部材323と、を備える。
FIG. 3 is a configuration diagram of the denitration catalyst layer 32.
As shown in FIG. 3, the denitration catalyst layer 32 includes, for example, a plurality of honeycomb catalysts 322 as denitration catalysts. More specifically, the denitration catalyst layer 32 includes a plurality of casings 321, a plurality of honeycomb catalysts 322 housed in the plurality of casings 321, and a seal member 323.
 ケーシング321は、一端及び他端が開放された角筒状の金属部材により構成される。ケーシング321は、開放された一端及び他端が脱硝反応器31における排ガスの流路に向かい合うように、つまり、ケーシング321の内部を排ガスが流通するように配置される。また、複数のケーシング321は、脱硝反応器31における排ガスの流路を塞ぐように当接した状態で連結されて配置される。 The casing 321 is composed of a rectangular tubular metal member with one end and the other end open. The casing 321 is arranged such that the opened one end and the other end face the exhaust gas flow path in the denitration reactor 31, that is, the exhaust gas flows through the inside of the casing 321. Further, the plurality of casings 321 are connected and arranged so as to be in contact with each other so as to close the exhaust gas flow path in the denitration reactor 31.
 ハニカム触媒322は、長手方向に延びる複数の排ガス流通穴324が形成された長尺状(直方体状)に形成される。複数のハニカム触媒322は、排ガス流通穴324の延びる方向が排ガスの流路に沿うように配置される。本実施形態では、複数のハニカム触媒322は、ケーシング321に収容された状態で脱硝反応器31の内部に配置される。 The honeycomb catalyst 322 is formed in a long shape (rectangular solid shape) in which a plurality of exhaust gas circulation holes 324 extending in the longitudinal direction are formed. The plurality of honeycomb catalysts 322 are arranged so that the exhaust gas flow holes 324 extend along the exhaust gas flow path. In the present embodiment, the plurality of honeycomb catalysts 322 are arranged inside the denitration reactor 31 while being housed in the casing 321.
 シール部材323は、短手方向に隣り合って配置されるハニカム触媒322の間に配置され、隣り合って配置されるハニカム触媒322の間の隙間に排ガスが流入することを防ぐ。本実施形態では、シール部材323は、導電性を有するシート状部材により構成され、ハニカム触媒322の長手方向の一端側及び他端側の所定の長さの部分(例えば、端部から150mm)に巻きつけられている。 The seal member 323 is arranged between the honeycomb catalysts 322 that are arranged adjacent to each other in the lateral direction, and prevents the exhaust gas from flowing into the gap between the honeycomb catalysts 322 that are arranged adjacent to each other. In the present embodiment, the seal member 323 is made of a sheet-like member having conductivity, and is provided at a predetermined length portion (for example, 150 mm from the end) on one end side and the other end side in the longitudinal direction of the honeycomb catalyst 322. It is wrapped around.
 シール部材323としては、アルミナやシリカを主成分とした無機繊維及びバインダーに導電性繊維や導電性を有するフィラーを混合して構成したセラミックペーパを用いることができる。 As the sealing member 323, it is possible to use ceramic paper which is configured by mixing conductive fibers or a conductive filler with an inorganic fiber and a binder containing alumina or silica as a main component.
 以上の脱硝触媒層32において、ハニカム触媒322としては、例えば、150mm×150mm×860mmの直方体形状で目開き6mm×6mmの排ガス流通穴が400個(20×20)形成されたものが用いられる。また、ケーシング321としては、このハニカム触媒322を72本(縦6本×横12本)収容可能なものが用いられる。そして、一層の脱硝触媒層32には、このケーシング321が120~150個用いられる。即ち、一層の脱硝触媒層32には、9000本から10000本のハニカム触媒322が設置される。 In the above-mentioned denitration catalyst layer 32, as the honeycomb catalyst 322, for example, one having a rectangular parallelepiped shape of 150 mm×150 mm×860 mm and 400 (20×20) exhaust gas circulation holes having an opening of 6 mm×6 mm is used. Further, as the casing 321, a casing capable of accommodating 72 honeycomb catalysts 322 (6 vertical×12 horizontal) is used. Then, 120 to 150 of these casings 321 are used for one layer of the denitration catalyst layer 32. That is, 9000 to 10000 honeycomb catalysts 322 are installed in the single denitration catalyst layer 32.
 図2において、整流層33は、脱硝触媒層32の上流側に配置される。整流層33は、格子状に形成された複数の開口を有する金属部材等により構成され、脱硝反応器31における排ガスの流路を区画する。整流層33は、排気路L1を流通し脱硝反応器31に導入される排ガスを整流して脱硝触媒層32に均等に導く。 In FIG. 2, the rectifying layer 33 is arranged on the upstream side of the denitration catalyst layer 32. The rectification layer 33 is composed of a metal member or the like having a plurality of openings formed in a lattice shape, and partitions the exhaust gas flow path in the denitration reactor 31. The rectification layer 33 rectifies the exhaust gas that flows through the exhaust passage L1 and is introduced into the denitration reactor 31, and evenly guides it to the denitration catalyst layer 32.
 整流板34は、脱硝反応器31の入口の近傍における整流層33よりも上流側に配置される。より具体的には、整流板34は、脱硝反応器31又は排気路L1の内壁における屈曲部分に配置され、内壁から内面側に突出する。整流板34は、排気路L1又は脱硝反応器31における屈曲部分における排ガスの流れを整える。 The rectifying plate 34 is arranged upstream of the rectifying layer 33 near the inlet of the denitration reactor 31. More specifically, the rectifying plate 34 is arranged at the bent portion of the denitration reactor 31 or the inner wall of the exhaust passage L1 and projects from the inner wall to the inner surface side. The current plate 34 regulates the flow of the exhaust gas in the bent portion of the exhaust passage L1 or the denitration reactor 31.
 上記整流層33及び整流板34により排ガスが整流されることで、脱硝触媒層32に導かれる偏流が小さくなり、ダストによる脱硝触媒層32の閉塞や摩耗が防止されている。 By rectifying the exhaust gas by the rectifying layer 33 and the rectifying plate 34, the uneven flow introduced to the denitration catalyst layer 32 is reduced, and clogging and abrasion of the denitration catalyst layer 32 due to dust are prevented.
 アンモニア注入部35は、脱硝反応器31の上流側に配置され、排気路L1にアンモニアを注入する。 The ammonia injection unit 35 is arranged on the upstream side of the denitration reactor 31 and injects ammonia into the exhaust passage L1.
 以上の構成を有する第1の脱硝装置30によれば、まず、アンモニア注入部35において、排気路L1を流通する高温の排ガス(300℃~400℃)にアンモニアが注入される。アンモニアが注入された排ガスは、整流板34及び整流層33により整流され、脱硝触媒層32に導入される。 According to the first denitration device 30 having the above configuration, first, in the ammonia injecting section 35, ammonia is injected into the high temperature exhaust gas (300° C. to 400° C.) flowing through the exhaust passage L1. The exhaust gas into which the ammonia has been injected is rectified by the rectifying plate 34 and the rectifying layer 33 and introduced into the denitration catalyst layer 32.
 脱硝触媒層32においては、アンモニアを含む排ガスがハニカム触媒の排ガス流通穴を通過するときに、以下の化学反応式に従って、窒素酸化物とアンモニアとが反応し、無害な窒素と水蒸気に分解される。
 4NO+4NH+O→4N+6H
 NO+NO+2NH→2N+3H
In the denitration catalyst layer 32, when the exhaust gas containing ammonia passes through the exhaust gas circulation holes of the honeycomb catalyst, the nitrogen oxides and ammonia react with each other according to the following chemical reaction formula, and decomposed into harmless nitrogen and steam. ..
4NO+4NH 3 +O 2 →4N 2 +6H 2 O
NO+NO 2 +2NH 3 →2N 2 +3H 2 O
 上記方法は選択接触還元法と呼ばれる。上記反応において、NOxの量に対し添加するNHの量が多ければ脱硝率も向上するが、排出される未反応のNH(以下、リークNHという)が増加する。リークNHが多いと排ガス中のSOと反応して酸性硫安(NHHSO)が生成し、この酸性硫安が排ガスに含まれるダストの付着を促進させ後段に設置されている空気予熱器のエレメント等の詰まりが生じる。従ってリークNHが一定値以下となるよう、NHの注入量の管理が行われている。本実施形態においては、例として、リークNHが5ppm以下となるように、NHの注入量を制御する。 The above method is called the selective catalytic reduction method. In the above reaction, when the amount of NH 3 added to the amount of NOx is large, the denitration rate is also improved, but unreacted NH 3 (hereinafter referred to as leak NH 3 ) is increased. If the leak NH 3 is large, it reacts with SO 3 in the exhaust gas to generate acidic ammonium sulfate (NH 4 HSO 4 ), and this acidic ammonium sulfate promotes the adhesion of dust contained in the exhaust gas, and the air preheater installed in the latter stage. The element etc. will be clogged. Therefore so that the leakage NH 3 equal to or less than a predetermined value, the management of the injection amount of NH 3 is performed. In the present embodiment, as an example, the injection amount of NH 3 is controlled so that the leak NH 3 is 5 ppm or less.
 図4は、第1の脱硝装置30の機能ブロック図である。第1の脱硝装置30は、機能ブロックとして、アンモニア注入部351、アンモニア量検知部352、及びアンモニア注入制御部353を備える。 FIG. 4 is a functional block diagram of the first denitration device 30. The first denitration device 30 includes an ammonia injection unit 351, an ammonia amount detection unit 352, and an ammonia injection control unit 353 as functional blocks.
 アンモニア注入部351は、ボイラ10から排出される排ガスに対してアンモニアを注入する。また、アンモニア注入部351は、図2のアンモニア注入部35に対応する。
 アンモニア量検知部352は、第1の脱硝装置30の出口におけるリークNH量を検知する。
 アンモニア注入制御部353は、アンモニア量検知部352によって検知されたリークNH量に基づいて、アンモニア注入部351によるアンモニア注入量を制御する。
The ammonia injection unit 351 injects ammonia into the exhaust gas discharged from the boiler 10. Further, the ammonia injection unit 351 corresponds to the ammonia injection unit 35 in FIG.
The ammonia amount detection unit 352 detects the amount of leak NH 3 at the outlet of the first denitration device 30.
The ammonia injection control unit 353 controls the ammonia injection amount by the ammonia injection unit 351 based on the leak NH 3 amount detected by the ammonia amount detection unit 352.
 第1の脱硝装置30は、上記の構成を有することにより、リークNHが一定値以下となるよう、NHの注入量を制御することが可能となる。 Since the first denitration device 30 has the above-described configuration, it is possible to control the injection amount of NH 3 so that the leak NH 3 becomes a certain value or less.
〔1.3 第2の脱硝装置〕
 第2の脱硝装置70は、図示を省略するが、その内部構成として、第1の脱硝装置50と同様に、脱硝触媒として複数のハニカム触媒を含む複数段の脱硝触媒層を有する。
[1.3 Second denitration device]
Although not shown, the second denitration device 70 has a plurality of stages of denitration catalyst layers containing a plurality of honeycomb catalysts as denitration catalysts as its internal configuration, as in the first denitration device 50.
 この脱硝触媒としては、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を用いる。
 出願人は、この脱硝触媒の国際出願として、平成28年9月12日にPCT/JP2016/076870を出願し、国内移行後、平成29年2月17日に特許6093101号として特許査定を受けた。以下、この脱硝触媒の概略について説明する。
As this denitration catalyst, a denitration catalyst having vanadium pentoxide in an amount of 43 wt% or more, a BET specific surface area of 30 m 2 /g or more, and used for denitration at 200° C. or lower is used.
The applicant applied for PCT/JP2016/0776870 on September 12, 2016 as an international application for this denitration catalyst, and after being transferred to Japan, was granted a patent decision as Patent 6093101 on February 17, 2017. .. The outline of this denitration catalyst will be described below.
 図5~図8は、上記の特許6093101号の特許公報で開示されるグラフを引用し、各々のグラフにおいてプロットされた点の呼び名を変更したものである。
 なお、図5~図8のグラフにおいて、実施例1~3、比較例1~5の各々のバナジウム触媒は、以下の方法により調整された。
5 to 8 are obtained by quoting the graphs disclosed in the above-mentioned Japanese Patent No. 6093101 and changing the names of the plotted points in each graph.
In the graphs of FIGS. 5 to 8, the vanadium catalysts of Examples 1 to 3 and Comparative Examples 1 to 5 were prepared by the following method.
[実施例1~3、比較例1~2]
 バナジン酸アンモニウムをシュウ酸溶液に溶解させた(バナジウム:シュウ酸のモル比=1:2~1:4)。全て溶かしきった後、ホットスターラー上で溶液中の水分を蒸発させ、乾燥機中において、120℃で一晩乾燥させた。その後、乾燥後の粉末を空気中において300℃で4時間焼成した。
 それらのサンプル名を、各々、“V_SG_1:1”(比較例1),“V_SG_1:2”(実施例1),“V_SG_1:3”(実施例2),“V_SG_1:4”(実施例3),“V_SG_1:5”(比較例2)とした。
[Examples 1 to 3 and Comparative Examples 1 to 2]
Ammonium vanadate was dissolved in the oxalic acid solution (vanadium:oxalic acid molar ratio=1:2-1:4). After all the components were completely melted, the water content in the solution was evaporated on a hot stirrer and dried in a dryer at 120° C. overnight. Then, the dried powder was calcined in air at 300° C. for 4 hours.
The sample names are respectively “V 2 O 5 _SG — 1:1” (Comparative Example 1), “V 2 O 5 _SG — 1:2” (Example 1), and “V 2 O 5 _SG — 1:3” (Example). 2), "V 2 O 5 _SG_1: 4" ( example 3), "V 2 O 5 _SG_1: 5" was (Comparative example 2).
[比較例3]
 バナジン酸アンモニウム(NHVO)を、空気中において300℃で4時間熱分解することにより得られた五酸化バナジウム(V)を、比較例3の脱硝触媒とした。なお、この比較例3の脱硝触媒のサンプル名を、“V_300”とした。
[Comparative Example 3]
Vanadium pentoxide (V 2 O 5 ) obtained by thermally decomposing ammonium vanadate (NH 4 VO 3 ) in air at 300° C. for 4 hours was used as a denitration catalyst of Comparative Example 3. The sample name of the denitration catalyst of Comparative Example 3 was “V 2 O 5 — 300”.
[比較例4]
 バナジン酸アンモニウムを、空気中において400℃で4時間熱分解することにより得られた五酸化バナジウムを、比較例4の脱硝触媒とした。なお、この比較例4の脱硝触媒のサンプル名を、“V_400”とした。
[Comparative Example 4]
Vanadium pentoxide obtained by thermally decomposing ammonium vanadate in air at 400° C. for 4 hours was used as a denitration catalyst of Comparative Example 4. The sample name of the denitration catalyst of Comparative Example 4 was “V 2 O 5 — 400”.
[比較例5]
 バナジン酸アンモニウムを、空気中において500℃で4時間熱分解することにより得られた五酸化バナジウムを、比較例5の脱硝触媒とした。なお、この比較例5の脱硝触媒のサンプル名を、“V_500”とした。
[Comparative Example 5]
Vanadium pentoxide obtained by thermally decomposing ammonium vanadate in air at 500° C. for 4 hours was used as a denitration catalyst of Comparative Example 5. The sample name of the denitration catalyst of Comparative Example 5 was “V 2 O 5 — 500”.
 図5に、V_SG触媒のNH-SCR活性を示す。図5(a)は、各触媒を用いたNH-SCR反応における、反応温度毎のNO転化率を示す。また、図5(b)は、反応温度120℃におけるバナジウム:シュウ酸の比率とNO転化率の関係を示す。バナジウム:シュウ酸の比率が1:3の触媒である実施例2(V_SG_1:3)において、NO転化率が最も高くなり、それ以上シュウ酸を加えると、NO転化率は減少した。実施例3(V_SG_1:4)は、実施例1(V_SG_1:2)よりも比表面積が大きいにもかかわらず、NO転化率が低かった。 FIG. 5 shows the NH 3 —SCR activity of the V 2 O 5 —SG catalyst. FIG. 5(a) shows the NO conversion rate at each reaction temperature in the NH 3 —SCR reaction using each catalyst. Further, FIG. 5( b) shows the relationship between the vanadium:oxalic acid ratio and the NO conversion rate at a reaction temperature of 120° C. In Example 2 (V 2 O 5 _SG_1:3), which is a catalyst having a vanadium:oxalic acid ratio of 1:3, the NO conversion was the highest, and when oxalic acid was added further, the NO conversion decreased. .. Example 3 (V 2 O 5 _SG_1:4) had a lower NO conversion rate than Example 1 (V 2 O 5 _SG_1:2), despite having a larger specific surface area.
 図6に、実施例1~3、比較例1の各V_SG、及び、上記の比較例3(V_300),比較例4(V_400),比較例5(V_500)における、BET比表面積とNO転化率との関係を示す。なお、四角の点で示されるプロットは、実施例2(V_SG_1:3)の、選択的触媒還元反応後におけるBET比表面積とNO転化率との関係を示す。上記の繰り返しとなるが、バナジウム:シュウ酸の比率が1:3の触媒である実施例2(V_SG_1:3)において、NO転化率が最も高くなることが示された。 In FIG. 6, each of V 2 O 5 _SG of Examples 1 to 3 and Comparative Example 1, and the above Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), and Comparative Example 5 are shown. The relationship between the BET specific surface area and the NO conversion rate in (V 2 O 5 — 500) is shown. The plots indicated by square points show the relationship between the BET specific surface area after the selective catalytic reduction reaction and the NO conversion rate in Example 2 (V 2 O 5 _SG_1:3). Again, the NO conversion was shown to be highest in Example 2 (V 2 O 5 _SG_1:3), which is a catalyst with a vanadium:oxalic acid ratio of 1:3.
 NH-TPD(TPD:昇温脱離プログラム)により、触媒表面の酸点の量を見積もることが出来る。そこで、マイクロトラックベル社製のベルキャットを用い、装置中で、比較例3(V_300)、比較例4(V_400)、比較例5(V_500)、実施例1(V_SG_1:2)、実施例2(V_SG_1:3)の各触媒0.1gを、He(50ml/min)流通下300℃にて1時間前処理した。その後、100℃に下げ、5%アンモニア/He(50ml/min)を30分流通させ、アンモニアを吸着した。流通ガスをHe(50ml/min)に切り替え、30分の安定化の後、10℃/minで昇温し、質量数16のアンモニアを質量分析計にてモニターした。 The amount of acid sites on the catalyst surface can be estimated by NH 3 -TPD (TPD: thermal desorption program). Therefore, using Bellcat manufactured by Microtrac Bell, in a device, Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), Comparative Example 5 (V 2 O 5 _500), 0.1 g of each catalyst of Example 1 (V 2 O 5 _SG_1:2) and Example 2 (V 2 O 5 _SG_1:3) was pretreated for 1 hour at 300° C. under He (50 ml/min) flow. .. Then, the temperature was lowered to 100° C., and 5% ammonia/He (50 ml/min) was passed for 30 minutes to adsorb ammonia. The flowing gas was switched to He (50 ml/min), the temperature was stabilized for 30 minutes, the temperature was raised at 10° C./min, and ammonia having a mass number of 16 was monitored by a mass spectrometer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例3(V_300)、比較例4(V_400)、比較例5(V_500)、実施例1(V_SG_1:2)、実施例2(V_SG_1:3)各々を用いた場合の、NH脱離量の測定結果を表1に示す。
 これらのNH脱離量の値と、各々の触媒のBET比表面積とをプロットすると、図7のグラフが得られる。この図7のグラフからも分かるように、VのBET比表面積にほぼ比例して、NH脱離量が大きくなることが示された。また、各触媒のNH脱離量とNO転化率との対応関係をプロットすると、図8のグラフが得られた。即ち、NH脱離量=触媒表面の酸点の量が大きい触媒ほど、NO転化率が高くなることが示された。
Comparative Example 3 (V 2 O 5 _300), Comparative Example 4 (V 2 O 5 _400), Comparative Example 5 (V 2 O 5 _500), Example 1 (V 2 O 5 _SG_1:2), Example 2 ( Table 1 shows the measurement results of the amount of NH 3 desorption when each of V 2 O 5 —SG — 1:3) was used.
When the values of these NH 3 desorption amount and the BET specific surface area of each catalyst are plotted, the graph of FIG. 7 is obtained. As can be seen from the graph of FIG. 7, it was shown that the amount of NH 3 desorbed increases substantially in proportion to the BET specific surface area of V 2 O 5 . Moreover, when the correspondence between the NH 3 desorption amount of each catalyst and the NO conversion rate was plotted, the graph of FIG. 8 was obtained. That is, it was shown that the NO conversion rate increases as the amount of NH 3 desorbed=the amount of acid sites on the catalyst surface increases.
 以上のように、酸化バナジウムが五酸化バナジウム換算で43wt%以上存在し、比表面積が30m/g以上である脱硝触媒を用いた、アンモニアを還元剤とする選択的触媒還元反応においては、200℃以下の低温での脱硝効率が高い。一方で、SOの酸化は認められない。 As described above, in the selective catalytic reduction reaction using ammonia as a reducing agent, the denitration catalyst containing vanadium oxide in an amount of 43 wt% or more in terms of vanadium pentoxide and having a specific surface area of 30 m 2 /g or more is 200 High denitration efficiency at low temperature below ℃. On the other hand, no SO 2 oxidation is observed.
 第2の脱硝装置70では、酸化バナジウムが五酸化バナジウム換算で43wt%以上存在し、比表面積が30m/g以上である脱硝触媒を用いることにより、排ガスの温度が、例えば130~200℃であっても、高い脱硝効果を発揮することが出来る。このため、第2の脱硝装置70は、燃焼システム1全体としての窒素酸化物の排出量を規制値以下に抑えるため、第1の脱硝装置30において、脱硝触媒の劣化が進んだために分解しきれなかった窒素酸化物を除去することが可能となる。 In the second denitration apparatus 70, vanadium oxide is present at 43 wt% or more in terms of vanadium pentoxide, and a denitration catalyst having a specific surface area of 30 m 2 /g or more is used. Even if it exists, it can exert a high denitration effect. Therefore, the second denitration device 70 suppresses the emission amount of nitrogen oxides in the entire combustion system 1 to be equal to or less than the regulation value, and therefore the first denitration device 30 is decomposed due to deterioration of the denitration catalyst. It becomes possible to remove nitrogen oxides that could not be cut off.
 図9は、第2の脱硝装置70の機能ブロック図である。第2の脱硝装置70は、機能ブロックとして、アンモニア注入部751、窒素酸化物濃度検知部752、及びアンモニア注入制御部753を備える。 FIG. 9 is a functional block diagram of the second denitration device 70. The second denitration device 70 includes an ammonia injection unit 751, a nitrogen oxide concentration detection unit 752, and an ammonia injection control unit 753 as functional blocks.
 アンモニア注入部751は、集塵装置60において煤塵が収集された後の排ガスに対してアンモニアを注入する。
 窒素酸化物濃度検知部752は、第2の脱硝装置70の出口における窒素酸化物濃度を検知する。
 アンモニア注入制御部753は、窒素酸化物濃度検知部752によって検知された窒素酸化物濃度に基づいて、アンモニア注入部751によるアンモニア注入量を制御する。
The ammonia injection unit 751 injects ammonia into the exhaust gas after the soot dust is collected in the dust collector 60.
The nitrogen oxide concentration detector 752 detects the nitrogen oxide concentration at the outlet of the second denitration device 70.
The ammonia injection control unit 753 controls the amount of ammonia injection by the ammonia injection unit 751 based on the nitrogen oxide concentration detected by the nitrogen oxide concentration detection unit 752.
 第2の脱硝装置70は、上記の構成を有することにより、燃焼システム1全体としての窒素酸化物の排出量が規制値以下となるよう、NHの注入量を制御することが可能となる。 The second denitration device 70 having the above-mentioned configuration makes it possible to control the injection amount of NH 3 so that the emission amount of nitrogen oxides in the entire combustion system 1 becomes equal to or less than the regulation value.
〔1.4 第1の実施形態による効果〕
 以上、説明したように構成された第1の実施形態に係る燃焼システム1は、燃料を燃焼させるボイラ10から発生する排ガスが流通する排気路L1と、排気路L1に配置され、第1の脱硝触媒によってボイラ10から排出される排ガスから窒素酸化物を除去する第1の脱硝装置30と、排気路L1に配置され且つ空気予熱器40の後段において、第2の脱硝触媒によって空気予熱器40から排出される排ガスから窒素酸化物を除去する第2の脱硝装置70とを備え、第1の脱硝装置30は、リークNH量に基づいてアンモニア注入量を制御し、第2の脱硝装置70は、脱硝装置の出口における窒素酸化物濃度に基づいてアンモニア注入量を制御する。
[1.4 Effects of First Embodiment]
As described above, the combustion system 1 according to the first embodiment configured as described above is disposed in the exhaust passage L1 through which the exhaust gas generated from the boiler 10 that burns the fuel flows, and the exhaust passage L1. The first denitration device 30 for removing nitrogen oxides from the exhaust gas discharged from the boiler 10 by the catalyst, and the second denitration catalyst from the air preheater 40 at the latter stage of the air preheater 40 arranged in the exhaust passage L1. The second denitration device 70 is provided with a second denitration device 70 that removes nitrogen oxides from the exhaust gas that is discharged. The first denitration device 30 controls the ammonia injection amount based on the leak NH 3 amount, and the second denitration device 70 The amount of ammonia injection is controlled based on the nitrogen oxide concentration at the outlet of the denitration device.
 これにより、第1の脱硝装置30で用いられる脱硝触媒の劣化が進んでも、第1の脱硝装置30でリークされるリークNH量を所定値以下に抑えながら、規制値を超えた窒素酸化物を除去することが可能となる。更に、硫酸アンモニウムによる空気予熱器40の閉塞を抑制することが可能となる。 As a result, even if the denitration catalyst used in the first denitration device 30 is deteriorated, the amount of leak NH 3 leaked in the first denitration device 30 is suppressed to a predetermined value or less, and the nitrogen oxide exceeding the regulation value is exceeded. Can be removed. Further, it becomes possible to suppress the clogging of the air preheater 40 due to ammonium sulfate.
 また、第2の脱硝装置70は、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を用いる。 In addition, the second denitration device 70 uses vanadium pentoxide in an amount of 43 wt% or more, has a BET specific surface area of 30 m 2 /g or more, and uses a denitration catalyst used for denitration at 200° C. or lower.
 これにより、第2の脱硝装置70で低温脱硝が可能な脱硝触媒を用いることで、第1の脱硝装置30でリークNH量を抑えるために除去しきれなかった窒素酸化物を、第1の脱硝装置30よりも後段で除去することが可能となる。 As a result, by using the denitration catalyst capable of low-temperature denitration in the second denitration device 70, the nitrogen oxides that could not be completely removed in the first denitration device 30 in order to suppress the amount of leak NH 3 were removed. It is possible to remove the denitrification device 30 at a later stage.
〔2.第2実施形態〕
〔2.1 全体構成〕
 図10は、本発明の第2の実施形態に係る燃焼システム1Aの全体構成図である。なお、以下では説明を分かりやすくするため、主として、第2の実施形態に係る燃焼システム1Aが、第1の実施形態に係る燃焼システム1と異なる点について説明する。
[2. Second Embodiment]
[2.1 Overall configuration]
FIG. 10 is an overall configuration diagram of a combustion system 1A according to the second embodiment of the present invention. In addition, in order to make the description easy to understand, the difference between the combustion system 1A according to the second embodiment and the combustion system 1 according to the first embodiment will be mainly described below.
 図10に示されるように、燃焼システム1Aは、燃焼システム1と異なり、第2の脱硝装置70を備えない。その代わりに、燃焼システム1Aにおいては、煙突110Aが第2の脱硝装置としての機能を有する。 Unlike the combustion system 1, the combustion system 1A does not include the second denitration device 70 as shown in FIG. Instead, in the combustion system 1A, the chimney 110A has a function as a second denitration device.
 煙突110Aは、その内部に、第1の実施形態における第2の脱硝装置70で用いるのと同一の脱硝触媒を用いる脱硝装置を有する。図11A~図11Cは、煙突110Aの内部構造を示す。 The chimney 110A has therein a denitration device that uses the same denitration catalyst as that used in the second denitration device 70 in the first embodiment. 11A to 11C show the internal structure of the chimney 110A.
〔2.2 煙突〕
 煙突110Aは、例えば図11Aに示されるように、煙突110Aの内壁にらせん状の溝111を設け、この溝111にバナジウムを含む低温脱硝触媒を塗布してもよい。あるいは、図11Bに示すように、煙突110Aの内壁に階段状のフィン112を設け、このフィン112に低温脱硝触媒を塗布してもよい。
 より詳細には、上記のらせん状の溝111や階段状のフィン112を構成する耐火煉瓦に低温脱硝触媒を塗布した後、焼成することにより、煙突110Aの内壁を第2の脱硝装置とすることが可能である。
[2.2 Chimney]
For example, as shown in FIG. 11A, the chimney 110A may be provided with a spiral groove 111 on the inner wall of the chimney 110A, and the low temperature denitration catalyst containing vanadium may be applied to the groove 111. Alternatively, as shown in FIG. 11B, a stepwise fin 112 may be provided on the inner wall of the chimney 110A, and the low temperature denitration catalyst may be applied to the fin 112.
More specifically, the low-temperature denitration catalyst is applied to the refractory bricks forming the spiral groove 111 and the stepped fin 112, and then fired to form the inner wall of the chimney 110A as the second denitration device. Is possible.
 通常の燃焼システムに備わる煙突では、使用年数が経過するに従って、耐火煉瓦が腐食により劣化する度合いが高くなるが、バナジウムを含む低温脱硝触媒を塗布することにより、この劣化の度合いを低くすることが可能となる。 In a chimney provided in a normal combustion system, the degree of deterioration of refractory bricks due to corrosion increases as the years of use elapse, but the degree of deterioration can be reduced by applying a low-temperature denitration catalyst containing vanadium. It will be possible.
 あるいは、図11Cに示すように、煙突110Aの内部に、第1の実施形態の燃焼システム1に含まれる第2の脱硝装置70と同様に、ハニカム触媒を有する脱硝触媒層113を設置してもよい。この脱硝触媒層113は、一段だけ設置してもよく複数段設置してもよい。 Alternatively, as shown in FIG. 11C, a denitration catalyst layer 113 having a honeycomb catalyst may be installed inside the chimney 110A, similarly to the second denitration device 70 included in the combustion system 1 of the first embodiment. Good. The denitration catalyst layer 113 may be installed in one stage or in multiple stages.
 なお、発電所の煙突の高さは、一般的に200m前後であるため、なるべく低い位置に脱硝触媒を塗布したり、脱硝触媒を設置したりする方が、メンテナンスをする上でも好ましい。
 らせん状の溝111や階段状のフィン112に脱硝触媒を塗布する場合、煙突の最下部から最上部まで塗布することも可能ではあるが、触媒量が多くなるとコストがかさむため、最下部から、排ガス量に伴う必要な触媒量が確保できるまでの高さに塗布するとよい。また、脱硝触媒層113を積み増す場合には、煙突内における高さ2m~25mまでの箇所に、脱硝触媒を塗布したハニカム触媒を有する脱硝触媒層113を設置すればよい。これは、ハニカム触媒は長くても1m程度であると共に、脱硝触媒層113同士の間の隙間は高くても3m程度であり、この脱硝触媒層が5層設置されることを想定している。
Since the height of the chimney of a power plant is generally around 200 m, it is preferable to apply the denitration catalyst or install the denitration catalyst at a position as low as possible for maintenance.
When applying the denitration catalyst to the spiral groove 111 and the stepped fin 112, it is possible to apply from the lowermost part to the uppermost part of the chimney, but since the cost increases as the amount of catalyst increases, from the lowermost part, It is advisable to apply the resin to a height such that the required amount of catalyst associated with the amount of exhaust gas can be secured. In addition, when the denitration catalyst layer 113 is additionally stacked, the denitration catalyst layer 113 having a honeycomb catalyst coated with the denitration catalyst may be installed at a height of 2 m to 25 m in the stack. This assumes that the honeycomb catalyst is about 1 m at the longest and the gap between the denitration catalyst layers 113 is about 3 m at the highest, and it is assumed that five denitration catalyst layers are installed.
〔2.3 第2の実施形態による効果〕
 以上、説明したように構成された第2の実施形態に係る燃焼システム1Aは、第1の実施形態に係る燃焼システム1と同様の効果を奏することが出来る。
[2.3 Effect of Second Embodiment]
As described above, the combustion system 1A according to the second embodiment configured as described above can achieve the same effect as the combustion system 1 according to the first embodiment.
 更に、燃焼システム1Aでは、煙突を第2の脱硝装置とすることにより、燃焼システム1における第2の脱硝装置70のスペースが不要となると共に、煙突の内壁にバナジウムを含む低温脱硝触媒を塗布することにより、腐食を抑制することが可能となる。 Further, in the combustion system 1A, by using the chimney as the second denitration device, the space of the second denitration device 70 in the combustion system 1 becomes unnecessary, and the low temperature denitration catalyst containing vanadium is applied to the inner wall of the chimney. This makes it possible to suppress corrosion.
1 1A 燃焼システム
10 ボイラ
20 微粉炭機
30 70 脱硝装置
40 空気予熱器
50 ガスヒータ
60 集塵装置
80 誘引通風機
90 脱硫装置
100 ガスヒータ
351 751 アンモニア注入部
352 アンモニア量検知部
353 753 アンモニア注入制御部
752 窒素酸化物濃度検知部
1 1A Combustion system 10 Boiler 20 Pulverized coal machine 30 70 Denitrification device 40 Air preheater 50 Gas heater 60 Dust collector 80 Induction fan 90 Desulfurization device 100 Gas heater 351 751 Ammonia injection part 352 Ammonia amount detection part 353 753 Ammonia injection control part 752 Nitrogen oxide concentration detector

Claims (4)

  1.  燃料を燃焼させるボイラと、
     前記ボイラにおいて前記燃料が燃焼することによって発生する排ガスが流通する排気路と、
     前記排気路に配置され、第1の脱硝触媒によって前記ボイラから排出される排ガスから窒素酸化物を除去する第1の脱硝装置と、
     前記排気路に配置され且つ前記第1の脱硝装置の後段において、排ガスと燃焼用空気との間で熱交換し、熱交換後の燃焼用空気を前記ボイラに供給し、熱交換後の排ガスを排出する空気予熱器と、
     前記排気路に配置され且つ前記空気予熱器の後段において、第2の脱硝触媒によって前記空気予熱器から排出される排ガスから窒素酸化物を除去する第2の脱硝装置とを備え、
     前記第1の脱硝装置は、
      前記排ガスに対してアンモニアを注入する第1のアンモニア注入部と、
      当該第1の脱硝装置の出口におけるリークアンモニア量を検知するアンモニア量検知部と、
      前記アンモニア量検知部によって検知されたリークアンモニア量に基づいて、前記第1のアンモニア注入部によるアンモニア注入量を制御する第1のアンモニア注入制御部とを備え、
     前記第2の脱硝装置は、
      前記排ガスに対してアンモニアを注入する第2のアンモニア注入部と、
      当該第2の脱硝装置の出口における窒素酸化物濃度を検知する窒素酸化物濃度検知部と、
      前記窒素酸化物濃度検知部によって検知された窒素酸化物濃度に基づいて、前記第2のアンモニア注入部によるアンモニア注入量を制御する第2のアンモニア注入制御部を備える、燃焼システム。
    A boiler that burns fuel,
    An exhaust passage through which exhaust gas generated by burning the fuel in the boiler flows,
    A first denitration device that is disposed in the exhaust passage and that removes nitrogen oxides from the exhaust gas discharged from the boiler by the first denitration catalyst;
    In the latter stage of the first denitration device arranged in the exhaust passage, heat is exchanged between the exhaust gas and the combustion air, the combustion air after heat exchange is supplied to the boiler, and the exhaust gas after heat exchange is discharged. Air preheater to discharge,
    A second denitration device that is disposed in the exhaust path and is provided at a subsequent stage of the air preheater to remove nitrogen oxides from the exhaust gas discharged from the air preheater by the second denitration catalyst;
    The first denitration device is
    A first ammonia injection part for injecting ammonia into the exhaust gas;
    An ammonia amount detector that detects the amount of leaked ammonia at the outlet of the first denitration device;
    A first ammonia injection control unit that controls the ammonia injection amount by the first ammonia injection unit based on the amount of leaked ammonia detected by the ammonia amount detection unit,
    The second denitration device is
    A second ammonia injection part for injecting ammonia into the exhaust gas;
    A nitrogen oxide concentration detector for detecting the nitrogen oxide concentration at the outlet of the second denitration device;
    A combustion system comprising: a second ammonia injection control unit that controls an ammonia injection amount by the second ammonia injection unit based on the nitrogen oxide concentration detected by the nitrogen oxide concentration detection unit.
  2.  前記第2の脱硝装置は、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を用いる、請求項1に記載の燃焼システム。 The said 2nd denitration apparatus uses vanadium pentoxide 43 wt% or more, BET specific surface area is 30 m 2 /g or more, and uses a denitration catalyst used for denitration at 200° C. or less. Combustion system.
  3.  前記第1のアンモニア注入制御部は、前記アンモニア量検知部によって検知されたリークアンモニア量が5ppm以下となるように、アンモニア注入量を制御する、請求項1又は2に記載の燃焼システム。 The combustion system according to claim 1 or 2, wherein the first ammonia injection control unit controls the ammonia injection amount so that the amount of leaked ammonia detected by the ammonia amount detection unit is 5 ppm or less.
  4.  前記排気路の末端において、大気中に排ガスを放出する煙突が設置され、
     前記第2の脱硝装置は前記煙突内に設置される、請求項1~3のいずれか1項に記載の燃焼システム。
    At the end of the exhaust passage, a chimney that emits exhaust gas into the atmosphere is installed,
    The combustion system according to any one of claims 1 to 3, wherein the second denitration device is installed in the chimney.
PCT/JP2019/004518 2019-02-07 2019-02-07 Combustion system WO2020161874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/004518 WO2020161874A1 (en) 2019-02-07 2019-02-07 Combustion system
JP2019538457A JPWO2020161874A1 (en) 2019-02-07 2019-02-07 Combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004518 WO2020161874A1 (en) 2019-02-07 2019-02-07 Combustion system

Publications (1)

Publication Number Publication Date
WO2020161874A1 true WO2020161874A1 (en) 2020-08-13

Family

ID=71947771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004518 WO2020161874A1 (en) 2019-02-07 2019-02-07 Combustion system

Country Status (2)

Country Link
JP (1) JPWO2020161874A1 (en)
WO (1) WO2020161874A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975674A (en) * 1995-09-11 1997-03-25 Kansai Electric Power Co Inc:The Exhaust gas purifying apparatus
JPH10235155A (en) * 1997-02-26 1998-09-08 Ishikawajima Harima Heavy Ind Co Ltd Denitration apparatus in gas turbine combined cycle
JP2003290630A (en) * 2002-04-03 2003-10-14 Mitsubishi Heavy Ind Ltd Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide
JP2003340282A (en) * 2002-05-22 2003-12-02 Osaka Gas Co Ltd Low temperature denitration catalyst, and low temperature denitration method for exhaust gas
JP2012192345A (en) * 2011-03-16 2012-10-11 Nippon Steel Engineering Co Ltd Denitration control method and catalytic reaction tower used therefor
JP2017006813A (en) * 2015-06-17 2017-01-12 株式会社東芝 Denitration apparatus and treatment method of nitrogen oxide
JP2017032214A (en) * 2015-07-31 2017-02-09 中国電力株式会社 Denitration device deterioration control method
WO2018047377A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Combustion system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975674A (en) * 1995-09-11 1997-03-25 Kansai Electric Power Co Inc:The Exhaust gas purifying apparatus
JPH10235155A (en) * 1997-02-26 1998-09-08 Ishikawajima Harima Heavy Ind Co Ltd Denitration apparatus in gas turbine combined cycle
JP2003290630A (en) * 2002-04-03 2003-10-14 Mitsubishi Heavy Ind Ltd Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide
JP2003340282A (en) * 2002-05-22 2003-12-02 Osaka Gas Co Ltd Low temperature denitration catalyst, and low temperature denitration method for exhaust gas
JP2012192345A (en) * 2011-03-16 2012-10-11 Nippon Steel Engineering Co Ltd Denitration control method and catalytic reaction tower used therefor
JP2017006813A (en) * 2015-06-17 2017-01-12 株式会社東芝 Denitration apparatus and treatment method of nitrogen oxide
JP2017032214A (en) * 2015-07-31 2017-02-09 中国電力株式会社 Denitration device deterioration control method
WO2018047377A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Combustion system
WO2018047380A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Regeneration method for denitration catalyst

Also Published As

Publication number Publication date
JPWO2020161874A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US8480984B2 (en) Biomass boiler SCR NOx and CO reduction system
US10767535B2 (en) Method for recycling denitration catalyst
US7829033B2 (en) Selective catalytic reduction of NOx enabled by sidestream urea decomposition
US5176088A (en) Furnace ammonia and limestone injection with dry scrubbing for improved simultaneous SOX and NOX removal
US6156277A (en) Exhaust gas cleaning plant for a cement rotary kiln
WO2015186818A1 (en) Boiler system and electric power generation plant provided with same
CN109364741A (en) A kind of cement kiln flue gas dry desulfurization and high dirt SCR denitration device and technique
TW201231147A (en) Exhaust gas treatment method and apparatus
CN106582225A (en) SNCR-SCR combined denitration system based on demercuration and deamination modified catalyst and denitration method achieved by adopting system
CN104399360B (en) NOx and mercury combined removal process and device based on combination of SNCR-SCR
CN110052141A (en) The desulphurization denitration dedusting minimum discharge technique and system of sour feedstock production cement
WO2017022521A1 (en) Coal-fired power generation equipment
CN113134269A (en) Preparation of catalytic ceramic fiber filter cylinder and application of catalytic ceramic fiber filter cylinder in denitration and dedusting integration
CN107551778A (en) A kind of denitrating flue gas desulfurization dust-removing technique method
JP6233545B2 (en) Coal-fired power generation facility
WO2017022518A1 (en) Coal-fired power generation equipment
WO2020161874A1 (en) Combustion system
KR102442180B1 (en) A catalyst-integrated dust collector that simultaneously processes the denitrification and de-dusting functions in the cement kiln or steel mill sintering furnace process
WO2020161875A1 (en) Combustion system
CN211562512U (en) Denitration reaction device based on dipping type SCR denitration catalyst
CN210159444U (en) Desulfurization, denitrification and dedusting ultra-low discharge system for producing cement by using high-sulfur raw materials
WO2017022519A1 (en) Coal-fired power generation equipment
JP6504314B1 (en) NOx removal equipment
WO2017022520A1 (en) Method for inhibiting degradation of denitration device
KR102580496B1 (en) SNCR-SCR Hybrid NOx Reduction System

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538457

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914225

Country of ref document: EP

Kind code of ref document: A1